FreshRSS

๐Ÿ”’
โŒ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

NixImports - A .NET Malware Loader, Using API-Hashing To Evade Static Analysis

By: Zion3R


A .NET malware loader, using API-Hashing and dynamic invoking to evade static analysis

How does it work?

NixImports uses my managed API-Hashing implementation HInvoke, to dynamically resolve most of it's called functions at runtime. To resolve the functions HInvoke requires two hashes the typeHash and the methodHash. These hashes represent the type name and the methods FullName, on runtime HInvoke parses the entire mscorlib to find the matching type and method. Due to this process, HInvoke does not leave any import references to the methods called trough it.

Another interesting feature of NixImports is that it avoids calling known methods as much as possible, whenever applicable NixImports uses internal methods instead of their wrappers. By using internal methods only we can evade basic hooks and monitoring employed by some security tools.

For a more detailed explanation checkout my blog post.

You can generate hashes for HInvoke using this tool


How to use

NixImports only requires a filepath to the .NET binary you want to pack with it.

NixImports.exe <filepath>

It will automatically generate a new executable called Loader.exe in it's root folder. The loader executable will contain your encoded payload and the stub code required to run it.

Tips for Defenders

If youre interested in detection engineering and possible detection of NixImports, checkout the last section of my blog post

Or click here for a basic yara rule covering NixImports.



Threatest - Threatest Is A Go Framework For End-To-End Testing Threat Detection Rules


Threatest is a Go framework for testing threat detection end-to-end.

Threatest allows you to detonate an attack technique, and verify that the alert you expect was generated in your favorite security platform.

Read the announcement blog post: https://securitylabs.datadoghq.com/articles/threatest-end-to-end-testing-threat-detection/


Concepts

Detonators

A detonator describes how and where an attack technique is executed.

Supported detonators:

  • Local command execution
  • SSH command execution
  • Stratus Red Team
  • AWS detonator

Alert matchers

An alert matcher is a platform-specific integration that can check if an expected alert was triggered.

Supported alert matchers:

  • Datadog security signals

Detonation and alert correlation

Each detonation is assigned a UUID. This UUID is reflected in the detonation and used to ensure that the matched alert corresponds exactly to this detonation.

The way this is done depends on the detonator; for instance, Stratus Red Team and the AWS Detonator inject it in the user-agent; the SSH detonator uses a parent process containing the UUID.

Sample usage

See examples for complete usage example.

Testing Datadog Cloud SIEM signals triggered by Stratus Red Team

threatest := Threatest()

threatest.Scenario("AWS console login").
WhenDetonating(StratusRedTeamTechnique("aws.initial-access.console-login-without-mfa")).
Expect(DatadogSecuritySignal("AWS Console login without MFA").WithSeverity("medium")).
WithTimeout(15 * time.Minute)

assert.NoError(t, threatest.Run())

Testing Datadog Cloud Workload Security signals triggered by running commands over SSH

ssh, _ := NewSSHCommandExecutor("test-box", "", "")

threatest := Threatest()

threatest.Scenario("curl to metadata service").
WhenDetonating(NewCommandDetonator(ssh, "curl http://169.254.169.254 --connect-timeout 1")).
Expect(DatadogSecuritySignal("EC2 Instance Metadata Service Accessed via Network Utility"))

assert.NoError(t, threatest.Run())


โŒ