FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayKitPloit - PenTest Tools!

Startup-SBOM - A Tool To Reverse Engineer And Inspect The RPM And APT Databases To List All The Packages Along With Executables, Service And Versions

By: Zion3R


This is a simple SBOM utility which aims to provide an insider view on which packages are getting executed.

The process and objective is simple we can get a clear perspective view on the packages installed by APT (currently working on implementing this for RPM and other package managers). This is mainly needed to check which all packages are actually being executed.


Installation

The packages needed are mentioned in the requirements.txt file and can be installed using pip:

pip3 install -r requirements.txt

Usage

  • First of all install the packages.
  • Secondly , you need to set up environment variables such as:
    • Mount the image: Currently I am still working on a mechanism to automatically define a mount point and mount different types of images and volumes but its still quite a task for me.
  • Finally run the tool to list all the packages.
Argument Description
--analysis-mode Specifies the mode of operation. Default is static. Choices are static and chroot.
--static-type Specifies the type of analysis for static mode. Required for static mode only. Choices are info and service.
--volume-path Specifies the path to the mounted volume. Default is /mnt.
--save-file Specifies the output file for JSON output.
--info-graphic Specifies whether to generate visual plots for CHROOT analysis. Default is True.
--pkg-mgr Manually specify the package manager or dont add this option for automatic check.
APT:
- Static Info Analysis:
- This command runs the program in static analysis mode, specifically using the Info Directory analysis method.
- It analyzes the packages installed on the mounted volume located at /mnt.
- It saves the output in a JSON file named output.json.
- It generates visual plots for CHROOT analysis.
```bash
python3 main.py --pkg-mgr apt --analysis-mode static --static-type info --volume-path /mnt --save-file output.json
```
  • Static Service Analysis:

  • This command runs the program in static analysis mode, specifically using the Service file analysis method.

  • It analyzes the packages installed on the mounted volume located at /custom_mount.
  • It saves the output in a JSON file named output.json.
  • It does not generate visual plots for CHROOT analysis. bash python3 main.py --pkg-mgr apt --analysis-mode static --static-type service --volume-path /custom_mount --save-file output.json --info-graphic False

  • Chroot analysis with or without Graphic output:

  • This command runs the program in chroot analysis mode.
  • It analyzes the packages installed on the mounted volume located at /mnt.
  • It saves the output in a JSON file named output.json.
  • It generates visual plots for CHROOT analysis.
  • For graphical output keep --info-graphic as True else False bash python3 main.py --pkg-mgr apt --analysis-mode chroot --volume-path /mnt --save-file output.json --info-graphic True/False

RPM - Static Analysis: - Similar to how its done on apt but there is only one type of static scan avaialable for now. bash python3 main.py --pkg-mgr rpm --analysis-mode static --volume-path /mnt --save-file output.json

  • Chroot analysis with or without Graphic output:
  • Exactly how its done on apt. bash python3 main.py --pkg-mgr rpm --analysis-mode chroot --volume-path /mnt --save-file output.json --info-graphic True/False

Supporting Images

Currently the tool works on Debian and Red Hat based images I can guarentee the debian outputs but the Red-Hat onces still needs work to be done its not perfect.

I am working on the pacman side of things I am trying to find a relaiable way of accessing the pacman db for static analysis.

Graphical Output Images (Chroot)

APT Chroot

RPM Chroot

Inner Workings

For the workings and process related documentation please read the wiki page: Link

TODO

  • [x] Support for RPM
  • [x] Support for APT
  • [x] Support for Chroot Analysis
  • [x] Support for Versions
  • [x] Support for Chroot Graphical output
  • [x] Support for organized graphical output
  • [ ] Support for Pacman

Ideas and Discussions

Ideas regarding this topic are welcome in the discussions page.



Above - Invisible Network Protocol Sniffer

By: Zion3R


Invisible protocol sniffer for finding vulnerabilities in the network. Designed for pentesters and security engineers.


Above: Invisible network protocol sniffer
Designed for pentesters and security engineers

Author: Magama Bazarov, <caster@exploit.org>
Pseudonym: Caster
Version: 2.6
Codename: Introvert

Disclaimer

All information contained in this repository is provided for educational and research purposes only. The author is not responsible for any illegal use of this tool.

It is a specialized network security tool that helps both pentesters and security professionals.

Mechanics

Above is a invisible network sniffer for finding vulnerabilities in network equipment. It is based entirely on network traffic analysis, so it does not make any noise on the air. He's invisible. Completely based on the Scapy library.

Above allows pentesters to automate the process of finding vulnerabilities in network hardware. Discovery protocols, dynamic routing, 802.1Q, ICS Protocols, FHRP, STP, LLMNR/NBT-NS, etc.

Supported protocols

Detects up to 27 protocols:

MACSec (802.1X AE)
EAPOL (Checking 802.1X versions)
ARP (Passive ARP, Host Discovery)
CDP (Cisco Discovery Protocol)
DTP (Dynamic Trunking Protocol)
LLDP (Link Layer Discovery Protocol)
802.1Q Tags (VLAN)
S7COMM (Siemens)
OMRON
TACACS+ (Terminal Access Controller Access Control System Plus)
ModbusTCP
STP (Spanning Tree Protocol)
OSPF (Open Shortest Path First)
EIGRP (Enhanced Interior Gateway Routing Protocol)
BGP (Border Gateway Protocol)
VRRP (Virtual Router Redundancy Protocol)
HSRP (Host Standby Redundancy Protocol)
GLBP (Gateway Load Balancing Protocol)
IGMP (Internet Group Management Protocol)
LLMNR (Link Local Multicast Name Resolution)
NBT-NS (NetBIOS Name Service)
MDNS (Multicast DNS)
DHCP (Dynamic Host Configuration Protocol)
DHCPv6 (Dynamic Host Configuration Protocol v6)
ICMPv6 (Internet Control Message Protocol v6)
SSDP (Simple Service Discovery Protocol)
MNDP (MikroTik Neighbor Discovery Protocol)

Operating Mechanism

Above works in two modes:

  • Hot mode: Sniffing on your interface specifying a timer
  • Cold mode: Analyzing traffic dumps

The tool is very simple in its operation and is driven by arguments:

  • Interface: Specifying the network interface on which sniffing will be performed
  • Timer: Time during which traffic analysis will be performed
  • Input: The tool takes an already prepared .pcap as input and looks for protocols in it
  • Output: Above will record the listened traffic to .pcap file, its name you specify yourself
  • Passive ARP: Detecting hosts in a segment using Passive ARP
usage: above.py [-h] [--interface INTERFACE] [--timer TIMER] [--output OUTPUT] [--input INPUT] [--passive-arp]

options:
-h, --help show this help message and exit
--interface INTERFACE
Interface for traffic listening
--timer TIMER Time in seconds to capture packets, if not set capture runs indefinitely
--output OUTPUT File name where the traffic will be recorded
--input INPUT File name of the traffic dump
--passive-arp Passive ARP (Host Discovery)

Information about protocols

The information obtained will be useful not only to the pentester, but also to the security engineer, he will know what he needs to pay attention to.

When Above detects a protocol, it outputs the necessary information to indicate the attack vector or security issue:

  • Impact: What kind of attack can be performed on this protocol;

  • Tools: What tool can be used to launch an attack;

  • Technical information: Required information for the pentester, sender MAC/IP addresses, FHRP group IDs, OSPF/EIGRP domains, etc.

  • Mitigation: Recommendations for fixing the security problems

  • Source/Destination Addresses: For protocols, Above displays information about the source and destination MAC addresses and IP addresses


Installation

Linux

You can install Above directly from the Kali Linux repositories

caster@kali:~$ sudo apt update && sudo apt install above

Or...

caster@kali:~$ sudo apt-get install python3-scapy python3-colorama python3-setuptools
caster@kali:~$ git clone https://github.com/casterbyte/Above
caster@kali:~$ cd Above/
caster@kali:~/Above$ sudo python3 setup.py install

macOS:

# Install python3 first
brew install python3
# Then install required dependencies
sudo pip3 install scapy colorama setuptools

# Clone the repo
git clone https://github.com/casterbyte/Above
cd Above/
sudo python3 setup.py install

Don't forget to deactivate your firewall on macOS!

Settings > Network > Firewall


How to Use

Hot mode

Above requires root access for sniffing

Above can be run with or without a timer:

caster@kali:~$ sudo above --interface eth0 --timer 120

To stop traffic sniffing, press CTRL + Π‘

WARNING! Above is not designed to work with tunnel interfaces (L3) due to the use of filters for L2 protocols. Tool on tunneled L3 interfaces may not work properly.

Example:

caster@kali:~$ sudo above --interface eth0 --timer 120

-----------------------------------------------------------------------------------------
[+] Start sniffing...

[*] After the protocol is detected - all necessary information about it will be displayed
--------------------------------------------------
[+] Detected SSDP Packet
[*] Attack Impact: Potential for UPnP Device Exploitation
[*] Tools: evil-ssdp
[*] SSDP Source IP: 192.168.0.251
[*] SSDP Source MAC: 02:10:de:64:f2:34
[*] Mitigation: Ensure UPnP is disabled on all devices unless absolutely necessary, monitor UPnP traffic
--------------------------------------------------
[+] Detected MDNS Packet
[*] Attack Impact: MDNS Spoofing, Credentials Interception
[*] Tools: Responder
[*] MDNS Spoofing works specifically against Windows machines
[*] You cannot get NetNTLMv2-SSP from Apple devices
[*] MDNS Speaker IP: fe80::183f:301c:27bd:543
[*] MDNS Speaker MAC: 02:10:de:64:f2:34
[*] Mitigation: Filter MDNS traffic. Be careful with MDNS filtering
--------------------------------------------------

If you need to record the sniffed traffic, use the --output argument

caster@kali:~$ sudo above --interface eth0 --timer 120 --output above.pcap

If you interrupt the tool with CTRL+C, the traffic is still written to the file

Cold mode

If you already have some recorded traffic, you can use the --input argument to look for potential security issues

caster@kali:~$ above --input ospf-md5.cap

Example:

caster@kali:~$ sudo above --input ospf-md5.cap

[+] Analyzing pcap file...

--------------------------------------------------
[+] Detected OSPF Packet
[+] Attack Impact: Subnets Discovery, Blackhole, Evil Twin
[*] Tools: Loki, Scapy, FRRouting
[*] OSPF Area ID: 0.0.0.0
[*] OSPF Neighbor IP: 10.0.0.1
[*] OSPF Neighbor MAC: 00:0c:29:dd:4c:54
[!] Authentication: MD5
[*] Tools for bruteforce: Ettercap, John the Ripper
[*] OSPF Key ID: 1
[*] Mitigation: Enable passive interfaces, use authentication
--------------------------------------------------
[+] Detected OSPF Packet
[+] Attack Impact: Subnets Discovery, Blackhole, Evil Twin
[*] Tools: Loki, Scapy, FRRouting
[*] OSPF Area ID: 0.0.0.0
[*] OSPF Neighbor IP: 192.168.0.2
[*] OSPF Neighbor MAC: 00:0c:29:43:7b:fb
[!] Authentication: MD5
[*] Tools for bruteforce: Ettercap, John the Ripper
[*] OSPF Key ID: 1
[*] Mitigation: Enable passive interfaces, use authentication

Passive ARP

The tool can detect hosts without noise in the air by processing ARP frames in passive mode

caster@kali:~$ sudo above --interface eth0 --passive-arp --timer 10

[+] Host discovery using Passive ARP

--------------------------------------------------
[+] Detected ARP Reply
[*] ARP Reply for IP: 192.168.1.88
[*] MAC Address: 00:00:0c:07:ac:c8
--------------------------------------------------
[+] Detected ARP Reply
[*] ARP Reply for IP: 192.168.1.40
[*] MAC Address: 00:0c:29:c5:82:81
--------------------------------------------------

Outro

I wrote this tool because of the track "A View From Above (Remix)" by KOAN Sound. This track was everything to me when I was working on this sniffer.




Linux-Smart-Enumeration - Linux Enumeration Tool For Pentesting And CTFs With Verbosity Levels

By: Zion3R


First, a couple of useful oneliners ;)

wget "https://github.com/diego-treitos/linux-smart-enumeration/releases/latest/download/lse.sh" -O lse.sh;chmod 700 lse.sh
curl "https://github.com/diego-treitos/linux-smart-enumeration/releases/latest/download/lse.sh" -Lo lse.sh;chmod 700 lse.sh

Note that since version 2.10 you can serve the script to other hosts with the -S flag!


linux-smart-enumeration

Linux enumeration tools for pentesting and CTFs

This project was inspired by https://github.com/rebootuser/LinEnum and uses many of its tests.

Unlike LinEnum, lse tries to gradualy expose the information depending on its importance from a privesc point of view.

What is it?

This shell script will show relevant information about the security of the local Linux system, helping to escalate privileges.

From version 2.0 it is mostly POSIX compliant and tested with shellcheck and posh.

It can also monitor processes to discover recurrent program executions. It monitors while it is executing all the other tests so you save some time. By default it monitors during 1 minute but you can choose the watch time with the -p parameter.

It has 3 levels of verbosity so you can control how much information you see.

In the default level you should see the highly important security flaws in the system. The level 1 (./lse.sh -l1) shows interesting information that should help you to privesc. The level 2 (./lse.sh -l2) will just dump all the information it gathers about the system.

By default it will ask you some questions: mainly the current user password (if you know it ;) so it can do some additional tests.

How to use it?

The idea is to get the information gradually.

First you should execute it just like ./lse.sh. If you see some green yes!, you probably have already some good stuff to work with.

If not, you should try the level 1 verbosity with ./lse.sh -l1 and you will see some more information that can be interesting.

If that does not help, level 2 will just dump everything you can gather about the service using ./lse.sh -l2. In this case you might find useful to use ./lse.sh -l2 | less -r.

You can also select what tests to execute by passing the -s parameter. With it you can select specific tests or sections to be executed. For example ./lse.sh -l2 -s usr010,net,pro will execute the test usr010 and all the tests in the sections net and pro.

Use: ./lse.sh [options]

OPTIONS
-c Disable color
-i Non interactive mode
-h This help
-l LEVEL Output verbosity level
0: Show highly important results. (default)
1: Show interesting results.
2: Show all gathered information.
-s SELECTION Comma separated list of sections or tests to run. Available
sections:
usr: User related tests.
sud: Sudo related tests.
fst: File system related tests.
sys: System related tests.
sec: Security measures related tests.
ret: Recurren tasks (cron, timers) related tests.
net: Network related tests.
srv: Services related tests.
pro: Processes related tests.
sof: Software related tests.
ctn: Container (docker, lxc) related tests.
cve: CVE related tests.
Specific tests can be used with their IDs (i.e.: usr020,sud)
-e PATHS Comma separated list of paths to exclude. This allows you
to do faster scans at the cost of completeness
-p SECONDS Time that the process monitor will spend watching for
processes. A value of 0 will disable any watch (default: 60)
-S Serve the lse.sh script in this host so it can be retrieved
from a remote host.

Is it pretty?

Usage demo

Also available in webm video


Level 0 (default) output sample


Level 1 verbosity output sample


Level 2 verbosity output sample


Examples

Direct execution oneliners

bash <(wget -q -O - "https://github.com/diego-treitos/linux-smart-enumeration/releases/latest/download/lse.sh") -l2 -i
bash <(curl -s "https://github.com/diego-treitos/linux-smart-enumeration/releases/latest/download/lse.sh") -l1 -i


CSAF - Cyber Security Awareness Framework

By: Zion3R

The Cyber Security Awareness Framework (CSAF) is a structured approach aimed at enhancing Cybersecurity" title="Cybersecurity">cybersecurity awareness and understanding among individuals, organizations, and communities. It provides guidance for the development of effective Cybersecurity" title="Cybersecurity">cybersecurity awareness programs, covering key areas such as assessing awareness needs, creating educational m aterials, conducting training and simulations, implementing communication campaigns, and measuring awareness levels. By adopting this framework, organizations can foster a robust security culture, enhance their ability to detect and respond to cyber threats, and mitigate the risks associated with attacks and security breaches.


Requirements

Software

  • Docker
  • Docker-compose

Hardware

Minimum

  • 4 Core CPU
  • 10GB RAM
  • 60GB Disk free

Recommendation

  • 8 Core CPU or above
  • 16GB RAM or above
  • 100GB Disk free or above

Installation

Clone the repository

git clone https://github.com/csalab-id/csaf.git

Navigate to the project directory

cd csaf

Pull the Docker images

docker-compose --profile=all pull

Generate wazuh ssl certificate

docker-compose -f generate-indexer-certs.yml run --rm generator

For security reason you should set env like this first

export ATTACK_PASS=ChangeMePlease
export DEFENSE_PASS=ChangeMePlease
export MONITOR_PASS=ChangeMePlease
export SPLUNK_PASS=ChangeMePlease
export GOPHISH_PASS=ChangeMePlease
export MAIL_PASS=ChangeMePlease
export PURPLEOPS_PASS=ChangeMePlease

Start all the containers

docker-compose --profile=all up -d

You can run specific profiles for running specific labs with the following profiles - all - attackdefenselab - phisinglab - breachlab - soclab

For example

docker-compose --profile=attackdefenselab up -d

Proof



Exposed Ports

An exposed port can be accessed using a proxy socks5 client, SSH client, or HTTP client. Choose one for the best experience.

  • Port 6080 (Access to attack network)
  • Port 7080 (Access to defense network)
  • Port 8080 (Access to monitor network)

Example usage

Access internal network with proxy socks5

  • curl --proxy socks5://ipaddress:6080 http://10.0.0.100/vnc.html
  • curl --proxy socks5://ipaddress:7080 http://10.0.1.101/vnc.html
  • curl --proxy socks5://ipaddress:8080 http://10.0.3.102/vnc.html

Remote ssh with ssh client

  • ssh kali@ipaddress -p 6080 (default password: attackpassword)
  • ssh kali@ipaddress -p 7080 (default password: defensepassword)
  • ssh kali@ipaddress -p 8080 (default password: monitorpassword)

Access kali linux desktop with curl / browser

  • curl http://ipaddress:6080/vnc.html
  • curl http://ipaddress:7080/vnc.html
  • curl http://ipaddress:8080/vnc.html

Domain Access

  • http://attack.lab/vnc.html (default password: attackpassword)
  • http://defense.lab/vnc.html (default password: defensepassword)
  • http://monitor.lab/vnc.html (default password: monitorpassword)
  • https://gophish.lab:3333/ (default username: admin, default password: gophishpassword)
  • https://server.lab/ (default username: postmaster@server.lab, default passowrd: mailpassword)
  • https://server.lab/iredadmin/ (default username: postmaster@server.lab, default passowrd: mailpassword)
  • https://mail.server.lab/ (default username: postmaster@server.lab, default passowrd: mailpassword)
  • https://mail.server.lab/iredadmin/ (default username: postmaster@server.lab, default passowrd: mailpassword)
  • http://phising.lab/
  • http://10.0.0.200:8081/
  • http://gitea.lab/ (default username: csalab, default password: giteapassword)
  • http://dvwa.lab/ (default username: admin, default passowrd: password)
  • http://dvwa-monitor.lab/ (default username: admin, default passowrd: password)
  • http://dvwa-modsecurity.lab/ (default username: admin, default passowrd: password)
  • http://wackopicko.lab/
  • http://juiceshop.lab/
  • https://wazuh-indexer.lab:9200/ (default username: admin, default passowrd: SecretPassword)
  • https://wazuh-manager.lab/
  • https://wazuh-dashboard.lab:5601/ (default username: admin, default passowrd: SecretPassword)
  • http://splunk.lab/ (default username: admin, default password: splunkpassword)
  • https://infectionmonkey.lab:5000/
  • http://purpleops.lab/ (default username: admin@purpleops.com, default password: purpleopspassword)
  • http://caldera.lab/ (default username: red/blue, default password: calderapassword)

Network / IP Address

Attack

  • 10.0.0.100 attack.lab
  • 10.0.0.200 phising.lab
  • 10.0.0.201 server.lab
  • 10.0.0.201 mail.server.lab
  • 10.0.0.202 gophish.lab
  • 10.0.0.110 infectionmonkey.lab
  • 10.0.0.111 mongodb.lab
  • 10.0.0.112 purpleops.lab
  • 10.0.0.113 caldera.lab

Defense

  • 10.0.1.101 defense.lab
  • 10.0.1.10 dvwa.lab
  • 10.0.1.13 wackopicko.lab
  • 10.0.1.14 juiceshop.lab
  • 10.0.1.20 gitea.lab
  • 10.0.1.110 infectionmonkey.lab
  • 10.0.1.112 purpleops.lab
  • 10.0.1.113 caldera.lab

Monitor

  • 10.0.3.201 server.lab
  • 10.0.3.201 mail.server.lab
  • 10.0.3.9 mariadb.lab
  • 10.0.3.10 dvwa.lab
  • 10.0.3.11 dvwa-monitor.lab
  • 10.0.3.12 dvwa-modsecurity.lab
  • 10.0.3.102 monitor.lab
  • 10.0.3.30 wazuh-manager.lab
  • 10.0.3.31 wazuh-indexer.lab
  • 10.0.3.32 wazuh-dashboard.lab
  • 10.0.3.40 splunk.lab

Public

  • 10.0.2.101 defense.lab
  • 10.0.2.13 wackopicko.lab

Internet

  • 10.0.4.102 monitor.lab
  • 10.0.4.30 wazuh-manager.lab
  • 10.0.4.32 wazuh-dashboard.lab
  • 10.0.4.40 splunk.lab

Internal

  • 10.0.5.100 attack.lab
  • 10.0.5.12 dvwa-modsecurity.lab
  • 10.0.5.13 wackopicko.lab

License

This Docker Compose application is released under the MIT License. See the LICENSE file for details.



VolWeb - A Centralized And Enhanced Memory Analysis Platform

By: Zion3R


VolWeb is a digital forensic memory analysis platform that leverages the power of the Volatility 3 framework. It is dedicated to aiding in investigations and incident responses.


Objective

The goal of VolWeb is to enhance the efficiency of memory collection and forensic analysis by providing a centralized, visual, and enhanced web application for incident responders and digital forensics investigators. Once an investigator obtains a memory image from a Linux or Windows system, the evidence can be uploaded to VolWeb, which triggers automatic processing and extraction of artifacts using the power of the Volatility 3 framework.

By utilizing cloud-native storage technologies, VolWeb also enables incident responders to directly upload memory images into the VolWeb platform from various locations using dedicated scripts interfaced with the platform and maintained by the community. Another goal is to allow users to compile technical information, such as Indicators, which can later be imported into modern CTI platforms like OpenCTI, thereby connecting your incident response and CTI teams after your investigation.

Project Documentation and Getting Started Guide

The project documentation is available on the Wiki. There, you will be able to deploy the tool in your investigation environment or lab.

[!IMPORTANT] Take time to read the documentation in order to avoid common miss-configuration issues.

Interacting with the REST API

VolWeb exposes a REST API to allow analysts to interact with the platform. There is a dedicated repository proposing some scripts maintained by the community: https://github.com/forensicxlab/VolWeb-Scripts Check the wiki of the project to learn more about the possible API calls.

Issues

If you have encountered a bug, or wish to propose a feature, please feel free to open an issue. To enable us to quickly address them, follow the guide in the "Contributing" section of the Wiki associated with the project.

Contact

Contact me at k1nd0ne@mail.com for any questions regarding this tool.

Next Release Goals

Check out the roadmap: https://github.com/k1nd0ne/VolWeb/projects/1



Drozer - The Leading Security Assessment Framework For Android

By: Zion3R


drozer (formerly Mercury) is the leading security testing framework for Android.

drozer allows you to search for security vulnerabilities in apps and devices by assuming the role of an app and interacting with the Dalvik VM, other apps' IPC endpoints and the underlying OS.

drozer provides tools to help you use, share and understand public Android exploits. It helps you to deploy a drozer Agent to a device through exploitation or social engineering. Using weasel (WithSecure's advanced exploitation payload) drozer is able to maximise the permissions available to it by installing a full agent, injecting a limited agent into a running process, or connecting a reverse shell to act as a Remote Access Tool (RAT).

drozer is a good tool for simulating a rogue application. A penetration tester does not have to develop an app with custom code to interface with a specific content provider. Instead, drozer can be used with little to no programming experience required to show the impact of letting certain components be exported on a device.

drozer is open source software, maintained by WithSecure, and can be downloaded from: https://labs.withsecure.com/tools/drozer/


Docker Container

To help with making sure drozer can be run on modern systems, a Docker container was created that has a working build of Drozer. This is currently the recommended method of using Drozer on modern systems.

  • The Docker container and basic setup instructions can be found here.
  • Instructions on building your own Docker container can be found here.

Manual Building and Installation

Prerequisites

  1. Python2.7

Note: On Windows please ensure that the path to the Python installation and the Scripts folder under the Python installation are added to the PATH environment variable.

  1. Protobuf 2.6 or greater

  2. Pyopenssl 16.2 or greater

  3. Twisted 10.2 or greater

  4. Java Development Kit 1.7

Note: On Windows please ensure that the path to javac.exe is added to the PATH environment variable.

  1. Android Debug Bridge

Building Python wheel

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
python setup.py bdist_wheel

Installing Python wheel

sudo pip install dist/drozer-2.x.x-py2-none-any.whl

Building for Debian/Ubuntu/Mint

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
make deb

Installing .deb (Debian/Ubuntu/Mint)

sudo dpkg -i drozer-2.x.x.deb

Building for Redhat/Fedora/CentOS

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
make rpm

Installing .rpm (Redhat/Fedora/CentOS)

sudo rpm -I drozer-2.x.x-1.noarch.rpm

Building for Windows

NOTE: Windows Defender and other Antivirus software will flag drozer as malware (an exploitation tool without exploit code wouldn't be much fun!). In order to run drozer you would have to add an exception to Windows Defender and any antivirus software. Alternatively, we recommend running drozer in a Windows/Linux VM.

git clone https://github.com/WithSecureLabs/drozer.git
cd drozer
python.exe setup.py bdist_msi

Installing .msi (Windows)

Run dist/drozer-2.x.x.win-x.msi 

Usage

Installing the Agent

Drozer can be installed using Android Debug Bridge (adb).

Download the latest Drozer Agent here.

$ adb install drozer-agent-2.x.x.apk

Starting a Session

You should now have the drozer Console installed on your PC, and the Agent running on your test device. Now, you need to connect the two and you're ready to start exploring.

We will use the server embedded in the drozer Agent to do this.

If using the Android emulator, you need to set up a suitable port forward so that your PC can connect to a TCP socket opened by the Agent inside the emulator, or on the device. By default, drozer uses port 31415:

$ adb forward tcp:31415 tcp:31415

Now, launch the Agent, select the "Embedded Server" option and tap "Enable" to start the server. You should see a notification that the server has started.

Then, on your PC, connect using the drozer Console:

On Linux:

$ drozer console connect

On Windows:

> drozer.bat console connect

If using a real device, the IP address of the device on the network must be specified:

On Linux:

$ drozer console connect --server 192.168.0.10

On Windows:

> drozer.bat console connect --server 192.168.0.10

You should be presented with a drozer command prompt:

selecting f75640f67144d9a3 (unknown sdk 4.1.1)  
dz>

The prompt confirms the Android ID of the device you have connected to, along with the manufacturer, model and Android software version.

You are now ready to start exploring the device.

Command Reference

Command Description
run Executes a drozer module
list Show a list of all drozer modules that can be executed in the current session. This hides modules that you do not have suitable permissions to run.
shell Start an interactive Linux shell on the device, in the context of the Agent process.
cd Mounts a particular namespace as the root of session, to avoid having to repeatedly type the full name of a module.
clean Remove temporary files stored by drozer on the Android device.
contributors Displays a list of people who have contributed to the drozer framework and modules in use on your system.
echo Print text to the console.
exit Terminate the drozer session.
help Display help about a particular command or module.
load Load a file containing drozer commands, and execute them in sequence.
module Find and install additional drozer modules from the Internet.
permissions Display a list of the permissions granted to the drozer Agent.
set Store a value in a variable that will be passed as an environment variable to any Linux shells spawned by drozer.
unset Remove a named variable that drozer passes to any Linux shells that it spawns.

License

drozer is released under a 3-clause BSD License. See LICENSE for full details.

Contacting the Project

drozer is Open Source software, made great by contributions from the community.

Bug reports, feature requests, comments and questions can be submitted here.



Kali Linux 2024.1 - Penetration Testing and Ethical Hacking Linux Distribution

By: Zion3R

Time for another Kali Linux release! – Kali Linux 2024.1. This release has various impressive updates.


The summary of the changelog since the 2023.4 release from December is:

Airgorah - A WiFi Auditing Software That Can Perform Deauth Attacks And Passwords Cracking

By: Zion3R


Airgorah is a WiFi auditing software that can discover the clients connected to an access point, perform deauthentication attacks against specific clients or all the clients connected to it, capture WPA handshakes, and crack the password of the access point.

It is written in Rust and uses GTK4 for the graphical part. The software is mainly based on aircrack-ng tools suite.

⭐ Don't forget to put a star if you like the project!

Legal

Airgorah is designed to be used in testing and discovering flaws in networks you are owner of. Performing attacks on WiFi networks you are not owner of is illegal in almost all countries. I am not responsible for whatever damage you may cause by using this software.

Requirements

This software only works on linux and requires root privileges to run.

You will also need a wireless network card that supports monitor mode and packet injection.

Installation

The installation instructions are available here.

Usage

The documentation about the usage of the application is available here.

License

This project is released under MIT license.

Contributing

If you have any question about the usage of the application, do not hesitate to open a discussion

If you want to report a bug or provide a feature, do not hesitate to open an issue or submit a pull request



MacMaster - MAC Address Changer

By: Zion3R


MacMaster is a versatile command line tool designed to change the MAC address of network interfaces on your system. It provides a simple yet powerful solution for network anonymity and testing.

Features

  • Custom MAC Address: Set a specific MAC address to your network interface.
  • Random MAC Address: Generate and set a random MAC address.
  • Reset to Original: Reset the MAC address to its original hardware value.
  • Custom OUI: Set a custom Organizationally Unique Identifier (OUI) for the MAC address.
  • Version Information: Easily check the version of MacMaster you are using.

Installation

MacMaster requires Python 3.6 or later.

  1. Clone the repository:
    $ git clone https://github.com/HalilDeniz/MacMaster.git
  2. Navigate to the cloned directory:
    cd MacMaster
  3. Install the package:
    $ python setup.py install

Usage

$ macmaster --help         
usage: macmaster [-h] [--interface INTERFACE] [--version]
[--random | --newmac NEWMAC | --customoui CUSTOMOUI | --reset]

MacMaster: Mac Address Changer

options:
-h, --help show this help message and exit
--interface INTERFACE, -i INTERFACE
Network interface to change MAC address
--version, -V Show the version of the program
--random, -r Set a random MAC address
--newmac NEWMAC, -nm NEWMAC
Set a specific MAC address
--customoui CUSTOMOUI, -co CUSTOMOUI
Set a custom OUI for the MAC address
--reset, -rs Reset MAC address to the original value

Arguments

  • --interface, -i: Specify the network interface.
  • --random, -r: Set a random MAC address.
  • --newmac, -nm: Set a specific MAC address.
  • --customoui, -co: Set a custom OUI for the MAC address.
  • --reset, -rs: Reset MAC address to the original value.
  • --version, -V: Show the version of the program.
  1. Set a specific MAC address:
    $ macmaster.py -i eth0 -nm 00:11:22:33:44:55
  2. Set a random MAC address:
    $ macmaster.py -i eth0 -r
  3. Reset MAC address to its original value:
    $ macmaster.py -i eth0 -rs
  4. Set a custom OUI:
    $ macmaster.py -i eth0 -co 08:00:27
  5. Show program version:
    $ macmaster.py -V

Replace eth0 with your desired network interface.

Note

You must run this script as root or use sudo to run this script for it to work properly. This is because changing a MAC address requires root privileges.

Contributing

Contributions are welcome! To contribute to MacMaster, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

For any inquiries or further information, you can reach me through the following channels:

Contact



PacketSpy - Powerful Network Packet Sniffing Tool Designed To Capture And Analyze Network Traffic

By: Zion3R


PacketSpy is a powerful network packet sniffing tool designed to capture and analyze network traffic. It provides a comprehensive set of features for inspecting HTTP requests and responses, viewing raw payload data, and gathering information about network devices. With PacketSpy, you can gain valuable insights into your network's communication patterns and troubleshoot network issues effectively.


Features

  • Packet Capture: Capture and analyze network packets in real-time.
  • HTTP Inspection: Inspect HTTP requests and responses for detailed analysis.
  • Raw Payload Viewing: View raw payload data for deeper investigation.
  • Device Information: Gather information about network devices, including IP addresses and MAC addresses.

Installation

git clone https://github.com/HalilDeniz/PacketSpy.git

Requirements

PacketSpy requires the following dependencies to be installed:

pip install -r requirements.txt

Getting Started

To get started with PacketSpy, use the following command-line options:

root@denizhalil:/PacketSpy# python3 packetspy.py --help                          
usage: packetspy.py [-h] [-t TARGET_IP] [-g GATEWAY_IP] [-i INTERFACE] [-tf TARGET_FIND] [--ip-forward] [-m METHOD]

options:
-h, --help show this help message and exit
-t TARGET_IP, --target TARGET_IP
Target IP address
-g GATEWAY_IP, --gateway GATEWAY_IP
Gateway IP address
-i INTERFACE, --interface INTERFACE
Interface name
-tf TARGET_FIND, --targetfind TARGET_FIND
Target IP range to find
--ip-forward, -if Enable packet forwarding
-m METHOD, --method METHOD
Limit sniffing to a specific HTTP method

Examples

  1. Device Detection
root@denizhalil:/PacketSpy# python3 packetspy.py -tf 10.0.2.0/24 -i eth0

Device discovery
**************************************
Ip Address Mac Address
**************************************
10.0.2.1 52:54:00:12:35:00
10.0.2.2 52:54:00:12:35:00
10.0.2.3 08:00:27:78:66:95
10.0.2.11 08:00:27:65:96:cd
10.0.2.12 08:00:27:2f:64:fe

  1. Man-in-the-Middle Sniffing
root@denizhalil:/PacketSpy# python3 packetspy.py -t 10.0.2.11 -g 10.0.2.1 -i eth0
******************* started sniff *******************

HTTP Request:
Method: b'POST'
Host: b'testphp.vulnweb.com'
Path: b'/userinfo.php'
Source IP: 10.0.2.20
Source MAC: 08:00:27:04:e8:82
Protocol: HTTP
User-Agent: b'Mozilla/5.0 (X11; Linux x86_64; rv:105.0) Gecko/20100101 Firefox/105.0'

Raw Payload:
b'uname=admin&pass=mysecretpassword'

HTTP Response:
Status Code: b'302'
Content Type: b'text/html; charset=UTF-8'
--------------------------------------------------

FootNote

Https work still in progress

Contributing

Contributions are welcome! To contribute to PacketSpy, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

If you have any questions, comments, or suggestions about PacketSpy, please feel free to contact me:

License

PacketSpy is released under the MIT License. See LICENSE for more information.



Kali Linux 2023.4 - Penetration Testing and Ethical Hacking Linux Distribution

By: Zion3R

Time for another Kali Linux release! – Kali Linux 2023.4. This release has various impressive updates.


The summary of the changelog since the 2023.3 release from August is:

PassBreaker - Command-line Password Cracking Tool Developed In Python

By: Zion3R


PassBreaker is a command-line password cracking tool developed in Python. It allows you to perform various password cracking techniques such as wordlist-based attacks and brute force attacks.Β 

Features

  • Wordlist-based password cracking
  • Brute force password cracking
  • Support for multiple hash algorithms
  • Optional salt value
  • Parallel processing option for faster cracking
  • Password complexity evaluation
  • Customizable minimum and maximum password length
  • Customizable character set for brute force attacks

Installation

  1. Clone the repository:

    git clone https://github.com/HalilDeniz/PassBreaker.git
  2. Install the required dependencies:

    pip install -r requirements.txt

Usage

python passbreaker.py <password_hash> <wordlist_file> [--algorithm]

Replace <password_hash> with the target password hash and <wordlist_file> with the path to the wordlist file containing potential passwords.

Options

  • --algorithm <algorithm>: Specify the hash algorithm to use (e.g., md5, sha256, sha512).
  • -s, --salt <salt>: Specify a salt value to use.
  • -p, --parallel: Enable parallel processing for faster cracking.
  • -c, --complexity: Evaluate password complexity before cracking.
  • -b, --brute-force: Perform a brute force attack.
  • --min-length <min_length>: Set the minimum password length for brute force attacks.
  • --max-length <max_length>: Set the maximum password length for brute force attacks.
  • --character-set <character_set>: Set the character set to use for brute force attacks.

Elbette! İşte İngilizce olarak yazılmış başlık ve küçük bir bilgi ile daha fazla kullanım ârneği:

Usage Examples

Wordlist-based Password Cracking

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5

This command attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the MD5 algorithm and a wordlist from the "passwords.txt" file.

Brute Force Attack

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 --brute-force --min-length 6 --max-length 8 --character-set abc123

This command performs a brute force attack to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" by trying all possible combinations of passwords with a length between 6 and 8 characters, using the character set "abc123".

Password Complexity Evaluation

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha256 --complexity

This command evaluates the complexity of passwords in the "passwords.txt" file and attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the SHA-256 algorithm. It only tries passwords that meet the complexity requirements.

Using Salt Value

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5 --salt mysalt123

This command uses a specific salt value ("mysalt123") for the password cracking process. Salt is used to enhance the security of passwords.

Parallel Processing

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha512 --parallel

This command performs password cracking with parallel processing for faster cracking. It utilizes multiple processing cores, but it may consume more system resources.

These examples demonstrate different features and use cases of the "PassBreaker" password cracking tool. Users can customize the parameters based on their needs and goals.

Disclaimer

This tool is intended for educational and ethical purposes only. Misuse of this tool for any malicious activities is strictly prohibited. The developers assume no liability and are not responsible for any misuse or damage caused by this tool.

Contributing

Contributions are welcome! To contribute to PassBreaker, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

If you have any questions, comments, or suggestions about PassBreaker, please feel free to contact me:

License

PassBreaker is released under the MIT License. See LICENSE for more information.



Kali Linux 2023.3 - Penetration Testing and Ethical Hacking Linux Distribution

By: Zion3R

Time for another Kali Linux release! – Kali Linux 2023.3. This release has various impressive updates.


The highlights of the changelog since the 2023.2 release from May:

Bashfuscator - A Fully Configurable And Extendable Bash Obfuscation Framework

By: Zion3R

Documentation

What is Bashfuscator?

Bashfuscator is a modular and extendable Bash obfuscation framework written in Python 3. It provides numerous different ways of making Bash one-liners or scripts much more difficult to understand. It accomplishes this by generating convoluted, randomized Bash code that at runtime evaluates to the original input and executes it. Bashfuscator makes generating highly obfuscated Bash commands and scripts easy, both from the command line and as a Python library.

The purpose of this project is to give Red Team the ability to bypass static detections on a Linux system, and the knowledge and tools to write better Bash obfuscation techniques.

This framework was also developed with Blue Team in mind. With this framework, Blue Team can easily generate thousands of unique obfuscated scripts or commands to help create and test detections of Bash obfuscation.


Media/slides

This is a list of all the media (i.e. youtube videos) or links to slides about Bashfuscator.

Payload support

Though Bashfuscator does work on UNIX systems, many of the payloads it generates will not. This is because most UNIX systems use BSD style utilities, and Bashfuscator was built to work with GNU style utilities. In the future BSD payload support may be added, but for now payloads generated with Bashfuscator should work on GNU Linux systems with Bash 4.0 or newer.

Installation & Requirements

Bashfuscator requires Python 3.6+.

On a Debian-based distro, run this command to install dependencies:

sudo apt-get update && sudo apt-get install python3 python3-pip python3-argcomplete xclip

On a RHEL-based distro, run this command to install dependencies:

sudo dnf update && sudo dnf install python3 python3-pip python3-argcomplete xclip

Then, run these commands to clone and install Bashfuscator:

git clone https://github.com/Bashfuscator/Bashfuscator
cd Bashfuscator
python3 setup.py install --user

Only Debian and RHEL based distros are supported. Bashfuscator has been tested working on some UNIX systems, but is not supported on those systems.

Example Usage

For simple usage, just pass the command you want to obfuscate with -c, or the script you want to obfuscate with -f.

$ bashfuscator -c "cat /etc/passwd"
[+] Mutators used: Token/ForCode -> Command/Reverse
[+] Payload:

${@/l+Jau/+<b=k } p''"r"i""n$'t\u0066' %s "$( ${*%%Frf\[4?T2 } ${*##0\!j.G } "r"'e'v <<< ' "} ~@{$" ") } j@C`\7=-k#*{$ "} ,@{$" ; } ; } ,,*{$ "}] } ,*{$ "} f9deh`\>6/J-F{\,vy//@{$" niOrw$ } QhwV#@{$ [NMpHySZ{$" s% "f"'"'"'4700u\n9600u\r'"'"'$p { ; } ~*{$ "} 48T`\PJc}\#@{$" 1#31 "} ,@{$" } D$y?U%%*{$ 0#84 *$ } Lv:sjb/@{$ 2#05 } ~@{$ 2#4 }*!{$ } OGdx7=um/X@RA{\eA/*{$ 1001#2 } Scnw:i/@{$ } ~~*{$ 11#4 "} O#uG{\HB%@{$" 11#7 "} ^^@{$" 011#2 "} ~~@{$" 11#3 } L[\h3m/@{$ "} ~@{$" 11#2 } 6u1N.b!\b%%*{$ } YCMI##@{$ 31#5 "} ,@{$" 01#7 } (\}\;]\//*{$ } %#6j/?pg%m/*{$ 001#2 "} 6IW]\p*n%@{$" } ^^@{$ 21#7 } !\=jy#@{$ } tz}\k{\v1/?o:Sn@V/*{$ 11#5 ni niOrw rof ; "} ,,@{$" } MD`\!\]\P%%*{$ ) }@{$ a } ogt=y%*{$ "@$" /\ } {\nZ2^##*{$ \ *$ c }@{$ } h;|Yeen{\/.8oAl-RY//@{$ p *$ "}@{$" t } zB(\R//*{$ } mX=XAFz_/9QKu//*{$ e *$ s } ~~*{$ d } ,*{$ } 2tgh%X-/L=a_r#f{\//*{$ w } {\L8h=@*##@{$ "} W9Zw##@{$" (=NMpHySZ ($" la'"'"''"'"'"v"'"'"''"'"''"'"'541\'"'"'$ } &;@0#*{$ ' "${@}" "${@%%Ij\[N }" ${@~~ } )" ${!*} | $@ $'b\u0061'''sh ${*//J7\{=.QH }

[+] Payload size: 1232 characters

You can copy the obfuscated payload to your clipboard with --clip, or write it to a file with -o.

For more advanced usage, use the --choose-mutators flag, and specify exactly what obfuscation modules, or Mutators, you want to use in what order. Use also the -s argument to control the level of obfuscation used.

bashfuscator -c "cat /etc/passwd" --choose-mutators token/special_char_only compress/bzip2 string/file_glob -s 1
[+] Payload:

"${@#b }" "e"$'\166'"a""${@}"l "$( ${!@}m''$'k\144'''ir -p '/tmp/wW'${*~~} ;$'\x70'"${@/AZ }"rin""tf %s 'MxJDa0zkXG4CsclDKLmg9KW6vgcLDaMiJNkavKPNMxU0SJqlJfz5uqG4rOSimWr2A7L5pyqLPp5kGQZRdUE3xZNxAD4EN7HHDb44XmRpN2rHjdwxjotov9teuE8dAGxUAL'> '/tmp/wW/?
??'; prin${@#K. }tf %s 'wYg0iUjRoaGhoNMgYgAJNKSp+lMGkx6pgCGRhDDRGMNDTQA0ABoAAZDQIkhCkyPNIm1DTQeppjRDTTQ8D9oqA/1A9DjGhOu1W7/t4J4Tt4fE5+isX29eKzeMb8pJsPya93' > '/tmp/wW/???
' "${@,, }" &&${*}pri''\n${*,}tf %s 'RELKWCoKqqFP5VElVS5qmdRJQelAziQTBBM99bliyhIQN8VyrjiIrkd2LFQIrwLY2E9ZmiSYqay6JNmzeWAklyhFuph1mXQry8maqHmtSAKnNr17wQlIXl/ioKq4hMlx76' >'/tmp/wW/??

';"${@, }" $'\x70'rintf %s 'clDkczJBNsB1gAOsW2tAFoIhpWtL3K/n68vYs4Pt+tD6+2X4FILnaFw4xaWlbbaJBKjbGLouOj30tcP4cQ6vVTp0H697aeleLe4ebnG95jynuNZvbd1qiTBDwAPVLT tCLx' >'/tmp/wW/?

?' ; ${*/~} p""${@##vl }ri""n''tf %s ' pr'"'"'i'"'"'$'"'"'n\x74'"'"'f %s "$( prin${*//N/H }tf '"'"'QlpoOTFBWSZTWVyUng4AA3R/gH7z/+Bd/4AfwAAAD8AAAA9QA/7rm7NzircbE1wlCTBEamT1PKekxqYIA9TNQ' >'/tmp/wW/????' "${@%\` }" ;p''r""i$'\x6e'''$'\164'"f" %s 'puxuZjSK09iokSwsERuYmYxzhEOARc1UjcKZy3zsiCqG5AdYHeQACRPKqVPIqkxaQnt/RMmoLKqCiypS0FLaFtirJFqQtbJLUVFoB/qUmEWVKxVFBYjHZcIAYlVRbkgWjh' >'/tmp/wW/?


' ${*};"p"rin''$'\x74f' %s 'Gs02t3sw+yFjnPjcXLJSI5XTnNzNMjJnSm0ChZQfSiFbxj6xzTfngZC4YbPvaCS3jMXvYinGLUWVfmuXtJXX3dpu379mvDn917Pg7PaoCJm2877OGzLn0y3FtndddpDohg'>'/tmp/wW/?
?
' && "${@^^ }" pr""intf %s 'Q+kXS+VgQ9OklAYb+q+GYQQzi4xQDlAGRJBCQbaTSi1cpkRmZlhSkDjcknJUADEBeXJAIFIyESJmDEwQExXjV4+vkDaHY/iGnNFBTYfo7kDJIucUES5mATqrAJ/KIyv1UV'> '/tmp/wW/
???' ${*^}; ${!@} "${@%%I }"pri""n$'\x74f' %s '1w6xQDwURXSpvdUvYXckU4UJBclJ4OA'"'"' |""b${*/t/\( }a\se$'"'"'6\x34'"'"' -d| bu${*/\]%}nzi'"'"'p'"'"'${!@}2 -c)" $@ |$ {@//Y^ } \ba\s"h" ' > '/tmp/wW/
??
' ${@%b } ; pr"i"\ntf %s 'g8oZ91rJxesUWCIaWikkYQDim3Zw341vrli0kuGMuiZ2Q5IkkgyAAJFzgqiRWXergULhLMNTjchAQSXpRWQUgklCEQLxOyAMq71cGgKMzrWWKlrlllq1SXFNRqsRBZsKUE' > '/tmp/wW/??
?'"${@//Y }" ;$'c\141t' '/tmp/wW'/???? ${*/m};"${@,, }" $'\162'\m '/tmp/wW'/???? &&${@^ }rmd\ir '/tmp/wW'; ${@^^ } )" "${@}"

[+] Payload size: 2062 characters

For more detailed usage and examples, please refer to the documentation.

Extending the Framework

Adding new obfuscation methods to the framework is simple, as Bashfuscator was built to be a modular and extendable framework. Bashfuscator's backend does all the heavy lifting so you can focus on writing robust obfuscation methods (documentation on adding modules coming soon).

Authors and Contributers

  • Andrew LeFevre (capnspacehook): project lead and creator
  • Charity Barker (cpbarker): team member
  • Nathaniel Hatfield (343iChurch): writing the RotN Mutator
  • Elijah Barker (elijah-barker): writing the Hex Hash, Folder and File Glob Mutators
  • Sam Kreischer: the awesome logo

Credits

Disclaimer

Bashfuscator was created for educational purposes only, use only on computers or networks you have explicit permission to do so. The Bashfuscator team is not responsible for any illegal or malicious acts preformed with this project.



msLDAPDump - LDAP Enumeration Tool

By: Zion3R


msLDAPDump simplifies LDAP enumeration in a domain environment by wrapping the lpap3 library from Python in an easy-to-use interface. Like most of my tools, this one works best on Windows. If using Unix, the tool will not resolve hostnames that are not accessible via eth0 currently.


Binding Anonymously

Users can bind to LDAP anonymously through the tool and dump basic information about LDAP, including domain naming context, domain controller hostnames, and more.

Credentialed Bind

Users can bind to LDAP utilizing valid user account credentials or a valid NTLM hash. Using credentials will obtain the same information as the anonymously binded request, as well as checking for the following:
  • Subnet scan for systems with ports 389 and 636 open
  • Basic Domain Info (Current user permissions, domain SID, password policy, machine account quota)
  • Users
  • Groups
  • Kerberoastable Accounts
  • ASREPRoastable Accounts
  • Constrained Delegation
  • Unconstrained Delegation
  • Computer Accounts - will also attempt DNS lookups on the hostname to identify IP addresses
  • Identify Domain Controllers
  • Identify Servers
  • Identify Deprecated Operating Systems
  • Identify MSSQL Servers
  • Identify Exchange Servers
  • Group Policy Objects (GPO)
  • Passwords in User description fields

Each check outputs the raw contents to a text file, and an abbreviated, cleaner version of the results in the terminal environment. The results in the terminal are pulled from the individual text files.

  • Add support for LDAPS (LDAP Secure)
  • NTLM Authentication
  • Figure out why Unix only allows one adapter to make a call out to the LDAP server (removed resolution from Linux until resolved)
  • Add support for querying child domain information (currently does not respond nicely to querying child domain controllers)
  • Figure out how to link the name to the Description field dump at the end of the script
  • mplement command line options rather than inputs
  • Check for deprecated operating systems in the domain

Mandatory Disclaimer

Please keep in mind that this tool is meant for ethical hacking and penetration testing purposes only. I do not condone any behavior that would include testing targets that you do not currently have permission to test against.



LSMS - Linux Security And Monitoring Scripts

By: Zion3R

These are a collection of security and monitoring scripts you can use to monitor your Linux installation for security-related events or for an investigation. Each script works on its own and is independent of other scripts. The scripts can be set up to either print out their results, send them to you via mail, or using AlertR as notification channel.


Repository Structure

The scripts are located in the directory scripts/. Each script contains a short summary in the header of the file with a description of what it is supposed to do, (if needed) dependencies that have to be installed and (if available) references to where the idea for this script stems from.

Each script has a configuration file in the scripts/config/ directory to configure it. If the configuration file was not found during the execution of the script, the script will fall back to default settings and print out the results. Hence, it is not necessary to provide a configuration file.

The scripts/lib/ directory contains code that is shared between different scripts.

Scripts using a monitor_ prefix hold a state and are only useful for monitoring purposes. A single usage of them for an investigation will only result in showing the current state the Linux system and not changes that might be relevant for the system's security. If you want to establish the current state of your system as benign for these scripts, you can provide the --init argument.

Usage

Take a look at the header of the script you want to execute. It contains a short description what this script is supposed to do and what requirements are needed (if any needed at all). If requirements are needed, install them before running the script.

The shared configuration file scripts/config/config.py contains settings that are used by all scripts. Furthermore, each script can be configured by using the corresponding configuration file in the scripts/config/ directory. If no configuration file was found, a default setting is used and the results are printed out.

Finally, you can run all configured scripts by executing start_search.py (which is located in the main directory) or by executing each script manually. A Python3 interpreter is needed to run the scripts.

Monitoring

If you want to use the scripts to monitor your Linux system constantly, you have to perform the following steps:

  1. Set up a notification channel that is supported by the scripts (currently printing out, mail, or AlertR).

  2. Configure the scripts that you want to run using the configuration files in the scripts/config/ directory.

  3. Execute start_search.py with the --init argument to initialize the scripts with the monitor_ prefix and let them establish a state of your system. However, this assumes that your system is currently uncompromised. If you are unsure of this, you should verify its current state.

  4. Set up a cron job as root user that executes start_search.py (e.g., 0 * * * * root /opt/LSMS/start_search.py to start the search hourly).

List of Scripts

Name Script
Monitoring cron files monitor_cron.py
Monitoring /etc/hosts file monitor_hosts_file.py
Monitoring /etc/ld.so.preload file monitor_ld_preload.py
Monitoring /etc/passwd file monitor_passwd.py
Monitoring modules monitor_modules.py
Monitoring SSH authorized_keys files monitor_ssh_authorized_keys.py
Monitoring systemd unit files monitor_systemd_units.py
Search executables in /dev/shm search_dev_shm.py
Search fileless programs (memfd_create) search_memfd_create.py
Search hidden ELF files search_hidden_exe.py
Search immutable files search_immutable_files.py
Search kernel thread impersonations search_non_kthreads.py
Search processes that were started by a now disconnected SSH session search_ssh_leftover_processes.py
Search running deleted programs search_deleted_exe.py
Test script to check if alerting works test_alert.py
Verify integrity of installed .deb packages verify_deb_packages.py


Kali Linux 2023.2 - Penetration Testing and Ethical Hacking Linux Distribution

By: Zion3R

Time for another Kali Linux release! – Kali Linux 2023.2. This release has various impressive updates.


The changelog highlights over the last few weeks since March’s release of 2023.1 is:

Platbox - UEFI And SMM Assessment Tool

By: Zion3R


UEFI and SMM Assessment Tool

Features

Platbox is a tool that helps assessing the security of the platform:

  • Dumps the platform registers that are interesting security-wise
    • Flash Locks
    • MMIO and Remapping Locks
    • SMM Base and Locks
    • MSRs
  • RW access to the PCI configuration space of devices.
  • RW to physical memory and virtual memory.
  • Allows allocating physical memory and map memory to usermode.
  • Read and Write MSRs.
  • Dump SPI Flash content (BIOS) into a file.
  • Basic dumb SMI Fuzzer.
  • Dump S3 Bootscript (from SMM-Lockbox) into a file.
  • Dump EFI Memory Map (Linux only for now).
  • List UEFI variables.
  • Supports Linux and Windows.
  • Supports Intel and AMD.

Example of 'chipset' command output for an AMD platform

Project Structure

The project is divided as follows:

  • PlatboxDrv: kernel drivers used for Linux and Windows.
  • PlatboxLib: the usermode component that loads the kernel driver and provides access to all the previously listed features.
  • PlatboxCli: a console client that uses the library.
  • Pocs: an example of a program using features from the libary.

Compilation Steps

Windows

Release Build
cmake -G "Visual Studio 17 2022" -A x64 -S .. -B "build64" 
cmake --build build64/ --target platbox_cli --config Release


hardCIDR - Linux Bash Script To Discover The Netblocks, Or Ranges, Owned By The Target Organization

By: Zion3R


A Linux Bash script to discover the netblocks, or ranges, (in CIDR notation) owned by the target organization during the intelligence gathering phase of a penetration test. This information is maintained by the five Regional Internet Registries (RIRs):

ARIN (North America)
RIPE (Europe/Asia/Middle East)
APNIC (Asia/Pacific)
LACNIC (Latin America)
AfriNIC (Africa)

In addition to netblocks and IP addresses, Autonomous System Numbers (ASNs) are also of interest. ASNs are used as part of the Border Gateway Protocol (BGP) for uniquely identifying each network on the Internet. Target organizations may have their own ASNs due to the size of their network or as a result of redundant service paths from peered service providers. These ASNs will reveal additional netblocks owned by the organization.


Requirements

ipcalc (for RIPE, APNIC, LACNIC, AfriNIC queries)

LACNIC

A note on LACNIC before diving into the usage. LACNIC only allows query of either network range, ASN, Org Handle, or PoC Handle. This does not help us in locating these values based upon the organization name. They do however publish a list of all assigned ranges on a publically accessible FTP server, along with their rate-limiting thresholds. So, there is an accompanying data file, which the script checks for, used to perform LACNIC queries locally. The script includes an update option -r, that can be used to update this data on an interval of your choosing. Approximate run time is just shy of 28 hours.

Usage

The script with no specified options will query ARIN and a pool of BGP route servers. The route server is selected at random at runtime. The -h option lists the help:

The options may be used in any combination, all, or none. Unfortunately, none of the β€œother” RIRs note the actual CIDR notation of the range, so ipcalc is used to perform this function. If it is not installed on your system, the script will install it for you.

At the prompts, enter the organization name, the email domain, and whether country codes are used as part of the email. If answered Y to country codes, you will be prompted as to whether they precede the domain name or are appended to the TLD. A directory will be created for the output files in /tmp/. If the directory is found to exist, you will be prompted whether to overwrite. If answered N, a time stamp will be appended to the directory name.

The script queries each RIR, as well as a BGP route server, prompting along the way as to whether records were located. Upon completion, three files will be generated: a CSV based on Org Handle, a CSV based on PoC Handle, and a line delimited file of all located raanges in CIDR notation.

Cancelling the script at any time will remove any temporary working files and the directory created for the resultant output files.

It should be noted that, due to similarity in some organization names, you could get back results not related to the target. The CSV files will provide the associated handles and URLs for further validation where necessary. It is also possible that employees of the target organization used their corporate email address to register their own domains. These will be found within the results as well.

Running with Docker

docker build -t hardcidr .

Building the hardcidr image

docker run -v $(pwd):/tmp -it hardcidr

Running the container. Output will be saved to current directory

Additional Information

For more information, check out the blog post on the TrustedSec website: Classy Inter-Domain Routing Enumeration



Kali Linux 2023.1 - Penetration Testing and Ethical Hacking Linux Distribution


Time for another Kali Linux release! – Kali Linux 2023.1. This release has various impressive updates.

he changelog summary since the 2022.4 release from December:


More info here.


❌