KnowsMore officially supports Python 3.8+.
knowsmore --stats
This command will produce several statistics about the passwords like the output bellow
KnowsMore v0.1.4 by Helvio Junior
Active Directory, BloodHound, NTDS hashes and Password Cracks correlation tool
https://github.com/helviojunior/knowsmore
[+] Startup parameters
command line: knowsmore --stats
module: stats
database file: knowsmore.db
[+] start time 2023-01-11 03:59:20
[?] General Statistics
+-------+----------------+-------+
| top | description | qty |
|-------+----------------+-------|
| 1 | Total Users | 95369 |
| 2 | Unique Hashes | 74299 |
| 3 | Cracked Hashes | 23177 |
| 4 | Cracked Users | 35078 |
+-------+----------------+-------+
[?] General Top 10 passwords
+-------+-------------+-------+
| top | password | qty |
|-------+-------------+-------|
| 1 | password | 1111 |
| 2 | 123456 | 824 |
| 3 | 123456789 | 815 |
| 4 | guest | 553 |
| 5 | qwerty | 329 |
| 6 | 12345678 | 277 |
| 7 | 111111 | 268 |
| 8 | 12345 | 202 |
| 9 | secret | 170 |
| 10 | sec4us | 165 |
+-------+-------------+-------+
[?] Top 10 weak passwords by company name similarity
+-------+--------------+---------+----------------------+-------+
| top | password | score | company_similarity | qty |
|-------+--------------+---------+----------------------+-------|
| 1 | company123 | 7024 | 80 | 1111 |
| 2 | Company123 | 5209 | 80 | 824 |
| 3 | company | 3674 | 100 | 553 |
| 4 | Company@10 | 2080 | 80 | 329 |
| 5 | company10 | 1722 | 86 | 268 |
| 6 | Company@2022 | 1242 | 71 | 202 |
| 7 | Company@2024 | 1015 | 71 | 165 |
| 8 | Company2022 | 978 | 75 | 157 |
| 9 | Company10 | 745 | 86 | 116 |
| 10 | Company21 | 707 | 86 | 110 |
+-------+--------------+---------+----------------------+-------+
pip3 install --upgrade knowsmore
Note: If you face problem with dependency version Check the Virtual ENV file
There is no an obligation order to import data, but to get better correlation data we suggest the following execution flow:
All data are stored in a SQLite Database
knowsmore --create-db
We can import all full BloodHound files into KnowsMore, correlate data, and sync it to Neo4J BloodHound Database. So you can use only KnowsMore to import JSON files directly into Neo4j database instead of use extremely slow BloodHound User Interface
# Bloodhound ZIP File
knowsmore --bloodhound --import-data ~/Desktop/client.zip
# Bloodhound JSON File
knowsmore --bloodhound --import-data ~/Desktop/20220912105336_users.json
Note: The KnowsMore is capable to import BloodHound ZIP File and JSON files, but we recommend to use ZIP file, because the KnowsMore will automatically order the files to better data correlation.
# Bloodhound ZIP File
knowsmore --bloodhound --sync 10.10.10.10:7687 -d neo4j -u neo4j -p 12345678
Note: The KnowsMore implementation of bloodhount-importer was inpired from Fox-It BloodHound Import implementation. We implemented several changes to save all data in KnowsMore SQLite database and after that do an incremental sync to Neo4J database. With this strategy we have several benefits such as at least 10x faster them original BloodHound User interface.
Note: Import hashes and clear-text passwords directly from NTDS.dit and SYSTEM registry
knowsmore --secrets-dump -target LOCAL -ntds ~/Desktop/ntds.dit -system ~/Desktop/SYSTEM
Note: First use the secretsdump to extract ntds hashes with the command bellow
secretsdump.py -ntds ntds.dit -system system.reg -hashes lmhash:ntlmhash LOCAL -outputfile ~/Desktop/client_name
After that import
knowsmore --ntlm-hash --import-ntds ~/Desktop/client_name.ntds
knowsmore --word-list -o "~/Desktop/Wordlist/my_custom_wordlist.txt" --batch --name company_name
First extract all hashes to a txt file
# Extract NTLM hashes to file
nowsmore --ntlm-hash --export-hashes "~/Desktop/ntlm_hash.txt"
# Or, extract NTLM hashes from NTDS file
cat ~/Desktop/client_name.ntds | cut -d ':' -f4 > ntlm_hashes.txt
In order to crack the hashes, I usually use hashcat
with the command bellow
# Wordlist attack
hashcat -m 1000 -a 0 -O -o "~/Desktop/cracked.txt" --remove "~/Desktop/ntlm_hash.txt" "~/Desktop/Wordlist/*"
# Mask attack
hashcat -m 1000 -a 3 -O --increment --increment-min 4 -o "~/Desktop/cracked.txt" --remove "~/Desktop/ntlm_hash.txt" ?a?a?a?a?a?a?a?a
knowsmore --ntlm-hash --company clientCompanyName --import-cracked ~/Desktop/cracked.txt
Note: Change clientCompanyName to name of your company
As the passwords and his hashes are extremely sensitive data, there is a module to replace the clear text passwords and respective hashes.
Note: This command will keep all generated statistics and imported user data.
knowsmore --wipe
During the assessment you can find (in a several ways) users password, so you can add this to the Knowsmore database
knowsmore --user-pass --username administrator --password Sec4US@2023
# or adding the company name
knowsmore --user-pass --username administrator --password Sec4US@2023 --company sec4us
Integrate all credentials cracked to Neo4j Bloodhound database
knowsmore --bloodhound --mark-owned 10.10.10.10 -d neo4j -u neo4j -p 123456
To remote connection make sure that Neo4j database server is accepting remote connection. Change the line bellow at the config file /etc/neo4j/neo4j.conf and restart the service.
server.bolt.listen_address=0.0.0.0:7687
ICMP Packet Sniffer is a Python program that allows you to capture and analyze ICMP (Internet Control Message Protocol) packets on a network interface. It provides detailed information about the captured packets, including source and destination IP addresses, MAC addresses, ICMP type, payload data, and more. The program can also store the captured packets in a SQLite database and save them in a pcap format.
git clone https://github.com/HalilDeniz/ICMPWatch.git
pip install -r requirements.txt
python ICMPWatch.py [-h] [-v] [-t TIMEOUT] [-f FILTER] [-o OUTPUT] [--type {0,8}] [--src-ip SRC_IP] [--dst-ip DST_IP] -i INTERFACE [-db] [-c CAPTURE]
-v
or --verbose
: Show verbose packet details.-t
or --timeout
: Sniffing timeout in seconds (default is 300 seconds).-f
or --filter
: BPF filter for packet sniffing (default is "icmp").-o
or --output
: Output file to save captured packets.--type
: ICMP packet type to filter (0: Echo Reply, 8: Echo Request).--src-ip
: Source IP address to filter.--dst-ip
: Destination IP address to filter.-i
or --interface
: Network interface to capture packets (required).-db
or --database
: Store captured packets in an SQLite database.-c
or --capture
: Capture file to save packets in pcap format.Press Ctrl+C
to stop the sniffing process.
python icmpwatch.py -i eth0
python dnssnif.py -i eth0 -o icmp_results.txt
python icmpwatch.py -i eth0 --src-ip 192.168.1.10 --dst-ip 192.168.1.20
python icmpwatch.py -i eth0 --type 8
python icmpwatch.py -i eth0 -c captured_packets.pcap
Grepmarx is a web application providing a single platform to quickly understand, analyze and identify vulnerabilities in possibly large and unknown code bases.
SAST (Static Analysis Security Testing) capabilities:
SCA (Software Composition Analysis) capabilities:
Extra
Scan customization | Analysis workbench | Rule pack edition |
---|---|---|
![]() |
![]() |
![]() |
Grepmarx is provided with a configuration to be executed in Docker and Gunicorn.
Make sure you have docker-composer installed on the system, and the docker daemon is running. The application can then be easily executed in a docker container. The steps:
Get the code
$ git clone https://github.com/Orange-Cyberdefense/grepmarx.git
$ cd grepmarx
Start the app in Docker
$ sudo docker-compose pull && sudo docker-compose build && sudo docker-compose up -d
Visit http://localhost:5000
in your browser. The app should be up & running.
Note: a default user account is created on first launch (user=admin / password=admin). Change the default password immediately.
Gunicorn 'Green Unicorn' is a Python WSGI HTTP Server for UNIX. A supervisor configuration file is provided to start it along with the required Celery worker (used for security scans queuing).
Install using pip
$ pip install gunicorn supervisor
Start the app using gunicorn binary
$ supervisord -c supervisord.conf
Visit http://localhost:8001
in your browser. The app should be up & running.
Note: a default user account is created on first launch (user=admin / password=admin). Change the default password immediately.
Get the code
$ git clone https://github.com/Orange-Cyberdefense/grepmarx.git
$ cd grepmarx
Install virtualenv modules
$ virtualenv env
$ source env/bin/activate
Install Python modules
$ # SQLite Database (Development)
$ pip3 install -r requirements.txt
$ # OR with PostgreSQL connector (Production)
$ # pip install -r requirements-pgsql.txt
Install additionnal requirements
# Dependency scan (cdxgen / depscan) requirements
$ sudo apt install npm openjdk-17-jdk maven gradle golang composer
$ sudo npm install -g @cyclonedx/cdxgen
$ pip install appthreat-depscan
A Redis server is required to queue security scans. Install the
redis
package with your favorite distro package manager, then:
$ redis-server
Set the FLASK_APP environment variable
$ export FLASK_APP=run.py
$ # Set up the DEBUG environment
$ # export FLASK_ENV=development
Start the celery worker process
$ celery -A app.celery_worker.celery worker --pool=prefork --loglevel=info --detach
Start the application (development mode)
$ # --host=0.0.0.0 - expose the app on all network interfaces (default 127.0.0.1)
$ # --port=5000 - specify the app port (default 5000)
$ flask run --host=0.0.0.0 --port=5000
Access grepmarx in browser: http://127.0.0.1:5000/
Note: a default user account is created on first launch (user=admin / password=admin). Change the default password immediately.
Grepmarx - Provided by Orange Cyberdefense.