FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayTools

SubGPT - Find Subdomains With GPT, For Free

By: Unknown


SubGPT looks at subdomains you have already discovered for a domain and uses BingGPT to find more. Best part? It's free!

The following subdomains were found by this tool with these 30 subdomains as input.

call-prompts-staging.example.com
dclb02-dca1.prod.example.com
activedirectory-sjc1.example.com
iadm-staging.example.com
elevatenetwork-c.example.com

If you like my work, you can support me with as little as $1, here :)


Install & Configuration

Installation

  • with pip (recommended): pip install subgpt
  • from github: git clone https://github.com/s0md3v/SubGPT && cd SubGPT && python setup.py install

Getting Bing Cookie

  1. Install the cookie editor extension (Chrome, Firefox)
  2. Visit bing.com, make sure you are logged in.
  3. Open the extension and copy your cookie using the "export" button
  4. Paste it in a file e.g. cookies.json
  5. All set!

Note: Any issues regarding BingGPT itself should be reported EdgeGPT, not here.

Using SubGPT

It is supposed to be used after you have discovered some subdomains using all other methods. The standard way to run SubGPT is as follows:

subgpt -i input.txt -o output.txt -c /path/to/cookies.json

If you don't specify an output file, the output will be shown in your terminal (stdout) instead.

To generate subdomains and not resolve them, use the --dont-resolve option. It's a great way to see all subdomains generated by SubGPT and/or use your own resolver on them.

Important

  1. Make sure your subdomains list only has subdomains from one domain. Each line in your file should contain one subdomain and nothing else.
  2. Sometimes your cookie will expire if you visit bing.com often. In that case, just export and save it again.
  3. SubGPT looks at A/CNAME records to determine whether a subdomain exists. It can also detect wildcard on first-level subdomains and handle it automatically. You can go through the code to see how its implemented if it concerns you.
  4. It can't replace traditional sub-generators like gotator, alterx, dnsgen etc. However, being powered by AI helps it to generate subdomains that these traditional tools can't.
  5. It is slow for obvious reasons. It takes like 45 seconds for every 80 subdomains.
  6. It is subject to Bing's daily limit. Selectively run this tool, don't run it blindly.


Ashok - A OSINT Recon Tool, A.K.A Swiss Army Knife

By: Unknown


Reconnaissance is the first phase of penetration testing which means gathering information before any real attacks are planned So Ashok is an Incredible fast recon tool for penetration tester which is specially designed for Reconnaissance" title="Reconnaissance">Reconnaissance phase. And in Ashok-v1.1 you can find the advanced google dorker and wayback crawling machine.



Main Features

- Wayback Crawler Machine
- Google Dorking without limits
- Github Information Grabbing
- Subdomain Identifier
- Cms/Technology Detector With Custom Headers

Installation

~> git clone https://github.com/ankitdobhal/Ashok
~> cd Ashok
~> python3.7 -m pip3 install -r requirements.txt

How to use Ashok?

A detailed usage guide is available on Usage section of the Wiki.

But Some index of options is given below:

Docker

Ashok can be launched using a lightweight Python3.8-Alpine Docker image.

$ docker pull powerexploit/ashok-v1.2
$ docker container run -it powerexploit/ashok-v1.2 --help


    Credits



    HardeningMeter - Open-Source Python Tool Carefully Designed To Comprehensively Assess The Security Hardening Of Binaries And Systems

    By: Zion3R


    HardeningMeter is an open-source Python tool carefully designed to comprehensively assess the security hardening of binaries and systems. Its robust capabilities include thorough checks of various binary exploitation protection mechanisms, including Stack Canary, RELRO, randomizations (ASLR, PIC, PIE), None Exec Stack, Fortify, ASAN, NX bit. This tool is suitable for all types of binaries and provides accurate information about the hardening status of each binary, identifying those that deserve attention and those with robust security measures. Hardening Meter supports all Linux distributions and machine-readable output, the results can be printed to the screen a table format or be exported to a csv. (For more information see Documentation.md file)


    Execute Scanning Example

    Scan the '/usr/bin' directory, the '/usr/sbin/newusers' file, the system and export the results to a csv file.

    python3 HardeningMeter.py -f /bin/cp -s

    Installation Requirements

    Before installing HardeningMeter, make sure your machine has the following: 1. readelf and file commands 2. python version 3 3. pip 4. tabulate

    pip install tabulate

    Install HardeningMeter

    The very latest developments can be obtained via git.

    Clone or download the project files (no compilation nor installation is required)

    git clone https://github.com/OfriOuzan/HardeningMeter

    Arguments

    -f --file

    Specify the files you want to scan, the argument can get more than one file seperated by spaces.

    -d --directory

    Specify the directory you want to scan, the argument retrieves one directory and scan all ELF files recursively.

    -e --external

    Specify whether you want to add external checks (False by default).

    -m --show_missing

    Prints according to the order, only those files that are missing security hardening mechanisms and need extra attention.

    -s --system

    Specify if you want to scan the system hardening methods.

    -c --csv_format'

    Specify if you want to save the results to csv file (results are printed as a table to stdout by default).

    Results

    HardeningMeter's results are printed as a table and consisted of 3 different states: - (X) - This state indicates that the binary hardening mechanism is disabled. - (V) - This state indicates that the binary hardening mechanism is enabled. - (-) - This state indicates that the binary hardening mechanism is not relevant in this particular case.

    Notes

    When the default language on Linux is not English make sure to add "LC_ALL=C" before calling the script.



    Porch-Pirate - The Most Comprehensive Postman Recon / OSINT Client And Framework That Facilitates The Automated Discovery And Exploitation Of API Endpoints And Secrets Committed To Workspaces, Collections, Requests, Users And Teams

    By: Zion3R


    Porch Pirate started as a tool to quickly uncover Postman secrets, and has slowly begun to evolve into a multi-purpose reconaissance / OSINT framework for Postman. While existing tools are great proof of concepts, they only attempt to identify very specific keywords as "secrets", and in very limited locations, with no consideration to recon beyond secrets. We realized we required capabilities that were "secret-agnostic", and had enough flexibility to capture false-positives that still provided offensive value.

    Porch Pirate enumerates and presents sensitive results (global secrets, unique headers, endpoints, query parameters, authorization, etc), from publicly accessible Postman entities, such as:

    • Workspaces
    • Collections
    • Requests
    • Users
    • Teams

    Installation

    python3 -m pip install porch-pirate

    Using the client

    The Porch Pirate client can be used to nearly fully conduct reviews on public Postman entities in a quick and simple fashion. There are intended workflows and particular keywords to be used that can typically maximize results. These methodologies can be located on our blog: Plundering Postman with Porch Pirate.

    Porch Pirate supports the following arguments to be performed on collections, workspaces, or users.

    • --globals
    • --collections
    • --requests
    • --urls
    • --dump
    • --raw
    • --curl

    Simple Search

    porch-pirate -s "coca-cola.com"

    Get Workspace Globals

    By default, Porch Pirate will display globals from all active and inactive environments if they are defined in the workspace. Provide a -w argument with the workspace ID (found by performing a simple search, or automatic search dump) to extract the workspace's globals, along with other information.

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8

    Dump Workspace

    When an interesting result has been found with a simple search, we can provide the workspace ID to the -w argument with the --dump command to begin extracting information from the workspace and its collections.

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --dump

    Automatic Search and Globals Extraction

    Porch Pirate can be supplied a simple search term, following the --globals argument. Porch Pirate will dump all relevant workspaces tied to the results discovered in the simple search, but only if there are globals defined. This is particularly useful for quickly identifying potentially interesting workspaces to dig into further.

    porch-pirate -s "shopify" --globals

    Automatic Search Dump

    Porch Pirate can be supplied a simple search term, following the --dump argument. Porch Pirate will dump all relevant workspaces and collections tied to the results discovered in the simple search. This is particularly useful for quickly sifting through potentially interesting results.

    porch-pirate -s "coca-cola.com" --dump

    Extract URLs from Workspace

    A particularly useful way to use Porch Pirate is to extract all URLs from a workspace and export them to another tool for fuzzing.

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --urls

    Automatic URL Extraction

    Porch Pirate will recursively extract all URLs from workspaces and their collections related to a simple search term.

    porch-pirate -s "coca-cola.com" --urls

    Show Collections in a Workspace

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --collections

    Show Workspace Requests

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --requests

    Show raw JSON

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --raw

    Show Entity Information

    porch-pirate -w WORKSPACE_ID
    porch-pirate -c COLLECTION_ID
    porch-pirate -r REQUEST_ID
    porch-pirate -u USERNAME/TEAMNAME

    Convert Request to Curl

    Porch Pirate can build curl requests when provided with a request ID for easier testing.

    porch-pirate -r 11055256-b1529390-18d2-4dce-812f-ee4d33bffd38 --curl

    Use a proxy

    porch-pirate -s coca-cola.com --proxy 127.0.0.1:8080

    Using as a library

    Searching

    p = porchpirate()
    print(p.search('coca-cola.com'))

    Get Workspace Collections

    p = porchpirate()
    print(p.collections('4127fdda-08be-4f34-af0e-a8bdc06efaba'))

    Dumping a Workspace

    p = porchpirate()
    collections = json.loads(p.collections('4127fdda-08be-4f34-af0e-a8bdc06efaba'))
    for collection in collections['data']:
    requests = collection['requests']
    for r in requests:
    request_data = p.request(r['id'])
    print(request_data)

    Grabbing a Workspace's Globals

    p = porchpirate()
    print(p.workspace_globals('4127fdda-08be-4f34-af0e-a8bdc06efaba'))

    Other Examples

    Other library usage examples can be located in the examples directory, which contains the following examples:

    • dump_workspace.py
    • format_search_results.py
    • format_workspace_collections.py
    • format_workspace_globals.py
    • get_collection.py
    • get_collections.py
    • get_profile.py
    • get_request.py
    • get_statistics.py
    • get_team.py
    • get_user.py
    • get_workspace.py
    • recursive_globals_from_search.py
    • request_to_curl.py
    • search.py
    • search_by_page.py
    • workspace_collections.py


    CloudGrappler - A purpose-built tool designed for effortless querying of high-fidelity and single-event detections related to well-known threat actors in popular cloud environments such as AWS and Azure

    By: Zion3R


    Permiso: https://permiso.io
    Read our release blog: https://permiso.io/blog/cloudgrappler-a-powerful-open-source-threat-detection-tool-for-cloud-environments

    CloudGrappler is a purpose-built tool designed for effortless querying of high-fidelity and single-event detections related to well-known threat actors in popular cloud environments such as AWS and Azure.


    Notes

    To optimize your utilization of CloudGrappler, we recommend using shorter time ranges when querying for results. This approach enhances efficiency and accelerates the retrieval of information, ensuring a more seamless experience with the tool.

    Required Packages

    bash pip3 install -r requirements.txt

    Cloning cloudgrep locally

    To clone the cloudgrep repository locally, run the clone.sh file. Alternatively, you can manually clone the repository into the same directory where CloudGrappler was cloned.

    bash chmod +x clone.sh ./clone.sh

    Input

    This tool offers a CLI (Command Line Interface). As such, here we review its use:

    Example 1 - Running the tool with default queries file

    Define the scanning scope inside data_sources.json file based on your cloud infrastructure configuration. The following example showcases a structured data_sources.json file for both AWS and Azure environments:

    Note

    Modifying the source inside the queries.json file to a wildcard character (*) will scan the corresponding query across both AWS and Azure environments.

    {
    "AWS": [
    {
    "bucket": "cloudtrail-logs-00000000-ffffff",
    "prefix": [
    "testTrails/AWSLogs/00000000/CloudTrail/eu-east-1/2024/03/03",
    "testTrails/AWSLogs/00000000/CloudTrail/us-west-1/2024/03/04"
    ]
    },
    {
    "bucket": "aws-kosova-us-east-1-00000000"
    }

    ],
    "AZURE": [
    {
    "accountname": "logs",
    "container": [
    "cloudgrappler"
    ]
    }
    ]
    }

    Run command

    python3 main.py

    Example 2 - Permiso Intel Use Case

    python3 main.py -p

    [+] Running GetFileDownloadUrls.*secrets_ for AWS 
    [+] Threat Actor: LUCR3
    [+] Severity: MEDIUM
    [+] Description: Review use of CloudShell. Permiso seldom witnesses use of CloudShell outside of known attackers.This however may be a part of your normal business use case.

    Example 3 - Generate report

    python3 main.py -p -jo

    reports
    └── json
    β”œβ”€β”€ AWS
    β”‚Β Β  └── 2024-03-04 01:01 AM
    β”‚Β Β  └── cloudtrail-logs-00000000-ffffff--
    β”‚Β Β  └── testTrails/AWSLogs/00000000/CloudTrail/eu-east-1/2024/03/03
    β”‚Β Β  └── GetFileDownloadUrls.*secrets_.json
    └── AZURE
    └── 2024-03-04 01:01 AM
    └── logs
    └── cloudgrappler
    └── okta_key.json

    Example 4 - Filtering logs based on date or time

    python3 main.py -p -sd 2024-02-15 -ed 2024-02-16

    Example 5 - Manually adding queries and data source types

    python3 main.py -q "GetFileDownloadUrls.*secret", "UpdateAccessKey" -s '*'

    Example 6 - Running the tool with your own queries file

    python3 main.py -f new_file.json

    Running in your Cloud and Authentication cloudgrep

    AWS

    Your system will need access to the S3 bucket. For example, if you are running on your laptop, you will need to configure the AWS CLI. If you are running on an EC2, an Instance Profile is likely the best choice.

    If you run on an EC2 instance in the same region as the S3 bucket with a VPC endpoint for S3 you can avoid egress charges. You can authenticate in a number of ways.

    Azure

    The simplest way to authenticate with Azure is to first run:

    az login

    This will open a browser window and prompt you to login to Azure.



    Sr2T - Converts Scanning Reports To A Tabular Format

    By: Zion3R


    Scanning reports to tabular (sr2t)

    This tool takes a scanning tool's output file, and converts it to a tabular format (CSV, XLSX, or text table). This tool can process output from the following tools:

    1. Nmap (XML);
    2. Nessus (XML);
    3. Nikto (XML);
    4. Dirble (XML);
    5. Testssl (JSON);
    6. Fortify (FPR).

    Rationale

    This tool can offer a human-readable, tabular format which you can tie to any observations you have drafted in your report. Why? Because then your reviewers can tell that you, the pentester, investigated all found open ports, and looked at all scanning reports.

    Dependencies

    1. argparse (dev-python/argparse);
    2. prettytable (dev-python/prettytable);
    3. python (dev-lang/python);
    4. xlsxwriter (dev-python/xlsxwriter).

    Install

    Using Pip:

    pip install --user sr2t

    Usage

    You can use sr2t in two ways:

    • When installed as package, call the installed script: sr2t --help.
    • When Git cloned, call the package directly from the root of the Git repository: python -m src.sr2t --help
    $ sr2t --help
    usage: sr2t [-h] [--nessus NESSUS [NESSUS ...]] [--nmap NMAP [NMAP ...]]
    [--nikto NIKTO [NIKTO ...]] [--dirble DIRBLE [DIRBLE ...]]
    [--testssl TESTSSL [TESTSSL ...]]
    [--fortify FORTIFY [FORTIFY ...]] [--nmap-state NMAP_STATE]
    [--nmap-services] [--no-nessus-autoclassify]
    [--nessus-autoclassify-file NESSUS_AUTOCLASSIFY_FILE]
    [--nessus-tls-file NESSUS_TLS_FILE]
    [--nessus-x509-file NESSUS_X509_FILE]
    [--nessus-http-file NESSUS_HTTP_FILE]
    [--nessus-smb-file NESSUS_SMB_FILE]
    [--nessus-rdp-file NESSUS_RDP_FILE]
    [--nessus-ssh-file NESSUS_SSH_FILE]
    [--nessus-min-severity NESSUS_MIN_SEVERITY]
    [--nessus-plugin-name-width NESSUS_PLUGIN_NAME_WIDTH]
    [--nessus-sort-by NESSUS_SORT_BY]
    [--nikto-description-width NIKTO_DESCRIPTION_WIDTH]< br/> [--fortify-details] [--annotation-width ANNOTATION_WIDTH]
    [-oC OUTPUT_CSV] [-oT OUTPUT_TXT] [-oX OUTPUT_XLSX]
    [-oA OUTPUT_ALL]

    Converting scanning reports to a tabular format

    optional arguments:
    -h, --help show this help message and exit
    --nmap-state NMAP_STATE
    Specify the desired state to filter (e.g.
    open|filtered).
    --nmap-services Specify to ouput a supplemental list of detected
    services.
    --no-nessus-autoclassify
    Specify to not autoclassify Nessus results.
    --nessus-autoclassify-file NESSUS_AUTOCLASSIFY_FILE
    Specify to override a custom Nessus autoclassify YAML
    file.
    --nessus-tls-file NESSUS_TLS_FILE
    Specify to override a custom Nessus TLS findings YAML
    file.
    --nessus-x509-file NESSUS_X509_FILE
    Specify to override a custom Nessus X.509 findings
    YAML file.
    --nessus-http-file NESSUS_HTTP_FILE
    Specify to override a custom Nessus HTTP findings YAML
    file.
    --nessus-smb-file NESSUS_SMB_FILE
    Specify to override a custom Nessus SMB findings YAML
    file.
    --nessus-rdp-file NESSUS_RDP_FILE
    Specify to override a custom Nessus RDP findings YAML
    file.
    --nessus-ssh-file NESSUS_SSH_FILE
    Specify to override a custom Nessus SSH findings YAML
    file.
    --nessus-min-severity NESSUS_MIN_SEVERITY
    Specify the minimum severity to output (e.g. 1).
    --nessus-plugin-name-width NESSUS_PLUGIN_NAME_WIDTH
    Specify the width of the pluginid column (e.g. 30).
    --nessus-sort-by NESSUS_SORT_BY
    Specify to sort output by ip-address, port, plugin-id,
    plugin-name or severity.
    --nikto-description-width NIKTO_DESCRIPTION_WIDTH
    Specify the width of the description column (e.g. 30).
    --fortify-details Specify to include the Fortify abstracts, explanations
    and recommendations for each vulnerability.
    --annotation-width ANNOTATION_WIDTH
    Specify the width of the annotation column (e.g. 30).
    -oC OUTPUT_CSV, --output-csv OUTPUT_CSV
    Specify the output CSV basename (e.g. output).
    -oT OUTPUT_TXT, --output-txt OUTPUT_TXT
    Specify the output TXT file (e.g. output.txt).
    -oX OUTPUT_XLSX, --output-xlsx OUTPUT_XLSX
    Specify the outpu t XLSX file (e.g. output.xlsx). Only
    for Nessus at the moment
    -oA OUTPUT_ALL, --output-all OUTPUT_ALL
    Specify the output basename to output to all formats
    (e.g. output).

    specify at least one:
    --nessus NESSUS [NESSUS ...]
    Specify (multiple) Nessus XML files.
    --nmap NMAP [NMAP ...]
    Specify (multiple) Nmap XML files.
    --nikto NIKTO [NIKTO ...]
    Specify (multiple) Nikto XML files.
    --dirble DIRBLE [DIRBLE ...]
    Specify (multiple) Dirble XML files.
    --testssl TESTSSL [TESTSSL ...]
    Specify (multiple) Testssl JSON files.
    --fortify FORTIFY [FORTIFY ...]
    Specify (multiple) HP Fortify FPR files.

    Example

    A few examples

    Nessus

    To produce an XLSX format:

    $ sr2t --nessus example/nessus.nessus --no-nessus-autoclassify -oX example.xlsx

    To produce an text tabular format to stdout:

    $ sr2t --nessus example/nessus.nessus
    +---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
    | host | port | plugin id | plugin name | severity | annotations |
    +---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+
    | 192.168.142.4 | 3389 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
    | 192.168.142.4 | 443 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
    | 192.168.142.4 | 3389 | 18405 | Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness | 2 | X |
    | 192.168.142.4 | 3389 | 30218 | Terminal Services Encryption Level is not FIPS-140 Compliant | 1 | X |
    | 192.168.142.4 | 3389 | 57690 | Terminal Services Encryption Level is Medium or Low | 2 | X |
    | 192.168.142.4 | 3389 | 58453 | Terminal Services Doesn't Use Network Level Authentication (NLA) Only | 2 | X |
    | 192.168.142.4 | 3389 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
    | 192.168.142.4 | 443 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
    | 192.168.142.4 | 3389 | 35291 | SSL Certificate Signed Using Weak Hashing Algorithm | 2 | X |
    | 192.168.142.4 | 3389 | 57582 | SSL Self-Signed Certificate | 2 | X |
    | 192.168.142.4 | 3389 | 51192 | SSL Certificate Can not Be Trusted | 2 | X |
    | 192.168.142.2 | 3389 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
    | 192.168.142.2 | 443 | 42873 | SSL Medium Strength Cipher Suites Supported (SWEET32) | 2 | X |
    | 192.168.142.2 | 3389 | 18405 | Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness | 2 | X |
    | 192.168.142.2 | 3389 | 30218 | Terminal Services Encryption Level is not FIPS-140 Compliant | 1 | X |
    | 192.168.142.2 | 3389 | 57690 | Terminal Services Encryption Level is Medium or Low | 2 | X |
    | 192.168.142.2 | 3389 | 58453 | Terminal Services Doesn't Use Network Level Authentication (NLA) Only | 2 | X |
    | 192.168.142.2 | 3389 | 45411 | S SL Certificate with Wrong Hostname | 2 | X |
    | 192.168.142.2 | 443 | 45411 | SSL Certificate with Wrong Hostname | 2 | X |
    | 192.168.142.2 | 3389 | 35291 | SSL Certificate Signed Using Weak Hashing Algorithm | 2 | X |
    | 192.168.142.2 | 3389 | 57582 | SSL Self-Signed Certificate | 2 | X |
    | 192.168.142.2 | 3389 | 51192 | SSL Certificate Cannot Be Trusted | 2 | X |
    | 192.168.142.2 | 445 | 57608 | SMB Signing not required | 2 | X |
    +---------------+-------+-----------+-----------------------------------------------------------------------------+----------+-------------+

    Or to output a CSV file:

    $ sr2t --nessus example/nessus.nessus -oC example
    $ cat example_nessus.csv
    host,port,plugin id,plugin name,severity,annotations
    192.168.142.4,3389,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
    192.168.142.4,443,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
    192.168.142.4,3389,18405,Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness,2,X
    192.168.142.4,3389,30218,Terminal Services Encryption Level is not FIPS-140 Compliant,1,X
    192.168.142.4,3389,57690,Terminal Services Encryption Level is Medium or Low,2,X
    192.168.142.4,3389,58453,Terminal Services Doesn't Use Network Level Authentication (NLA) Only,2,X
    192.168.142.4,3389,45411,SSL Certificate with Wrong Hostname,2,X
    192.168.142.4,443,45411,SSL Certificate with Wrong Hostname,2,X
    192.168.142.4,3389,35291,SSL Certificate Signed Using Weak Hashing Algorithm,2,X
    192.168.142.4,3389,57582,SSL Self-Signed Certificate,2,X
    192.168.142.4,3389,51192,SSL Certificate Cannot Be Trusted,2,X
    192.168.142.2,3389,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
    192.168.142.2,443,42873,SSL Medium Strength Cipher Suites Supported (SWEET32),2,X
    192.168.142.2,3389,18405,Microsoft Windows Remote Desktop Protocol Server Man-in-the-Middle Weakness,2,X
    192.168.142.2,3389,30218,Terminal Services Encryption Level is not FIPS-140 Compliant,1,X
    192.168.142.2,3389,57690,Terminal Services Encryption Level is Medium or Low,2,X
    192.168.142.2,3389,58453,Terminal Services Doesn't Use Network Level Authentication (NLA) Only,2,X
    192.168.142.2,3389,45411,SSL Certificate with Wrong Hostname,2,X
    192.168.142.2,443,45411,SSL Certificate with Wrong Hostname,2,X
    192.168.142.2,3389,35291,SSL Certificate Signed Using Weak Hashing Algorithm,2,X
    192.168.142.2,3389,57582,SSL Self-Signed Certificate,2,X
    192.168.142.2,3389,51192,SSL Certificate Cannot Be Trusted,2,X
    192.168.142.2,44 5,57608,SMB Signing not required,2,X

    Nmap

    To produce an XLSX format:

    $ sr2t --nmap example/nmap.xml -oX example.xlsx

    To produce an text tabular format to stdout:

    $ sr2t --nmap example/nmap.xml --nmap-services
    Nmap TCP:
    +-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
    | | 53 | 80 | 88 | 135 | 139 | 389 | 445 | 3389 | 5800 | 5900 |
    +-----------------+----+----+----+-----+-----+-----+-----+------+------+------+
    | 192.168.23.78 | X | | X | X | X | X | X | X | | |
    | 192.168.27.243 | | | | X | X | | X | X | X | X |
    | 192.168.99.164 | | | | X | X | | X | X | X | X |
    | 192.168.228.211 | | X | | | | | | | | |
    | 192.168.171.74 | | | | X | X | | X | X | X | X |
    +-----------------+----+----+----+-----+-----+-----+-----+------+------+------+

    Nmap Services:
    +-----------------+------+-------+---------------+-------+
    | ip address | port | proto | service | state |
    +--------------- --+------+-------+---------------+-------+
    | 192.168.23.78 | 53 | tcp | domain | open |
    | 192.168.23.78 | 88 | tcp | kerberos-sec | open |
    | 192.168.23.78 | 135 | tcp | msrpc | open |
    | 192.168.23.78 | 139 | tcp | netbios-ssn | open |
    | 192.168.23.78 | 389 | tcp | ldap | open |
    | 192.168.23.78 | 445 | tcp | microsoft-ds | open |
    | 192.168.23.78 | 3389 | tcp | ms-wbt-server | open |
    | 192.168.27.243 | 135 | tcp | msrpc | open |
    | 192.168.27.243 | 139 | tcp | netbios-ssn | open |
    | 192.168.27.243 | 445 | tcp | microsoft-ds | open |
    | 192.168.27.243 | 3389 | tcp | ms-wbt-server | open |
    | 192.168.27.243 | 5800 | tcp | vnc-http | open |
    | 192.168.27.243 | 5900 | tcp | vnc | open |
    | 192.168.99.164 | 135 | tcp | msrpc | open |
    | 192.168.99.164 | 139 | tcp | netbios-ssn | open |
    | 192 .168.99.164 | 445 | tcp | microsoft-ds | open |
    | 192.168.99.164 | 3389 | tcp | ms-wbt-server | open |
    | 192.168.99.164 | 5800 | tcp | vnc-http | open |
    | 192.168.99.164 | 5900 | tcp | vnc | open |
    | 192.168.228.211 | 80 | tcp | http | open |
    | 192.168.171.74 | 135 | tcp | msrpc | open |
    | 192.168.171.74 | 139 | tcp | netbios-ssn | open |
    | 192.168.171.74 | 445 | tcp | microsoft-ds | open |
    | 192.168.171.74 | 3389 | tcp | ms-wbt-server | open |
    | 192.168.171.74 | 5800 | tcp | vnc-http | open |
    | 192.168.171.74 | 5900 | tcp | vnc | open |
    +-----------------+------+-------+---------------+-------+

    Or to output a CSV file:

    $ sr2t --nmap example/nmap.xml -oC example
    $ cat example_nmap_tcp.csv
    ip address,53,80,88,135,139,389,445,3389,5800,5900
    192.168.23.78,X,,X,X,X,X,X,X,,
    192.168.27.243,,,,X,X,,X,X,X,X
    192.168.99.164,,,,X,X,,X,X,X,X
    192.168.228.211,,X,,,,,,,,
    192.168.171.74,,,,X,X,,X,X,X,X

    Nikto

    To produce an XLSX format:

    $ sr2t --nikto example/nikto.xml -oX example/nikto.xlsx

    To produce an text tabular format to stdout:

    $ sr2t --nikto example/nikto.xml
    +----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
    | target ip | target hostname | target port | description | annotations |
    +----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+
    | 192.168.178.10 | 192.168.178.10 | 80 | The anti-clickjacking X-Frame-Options header is not present. | X |
    | 192.168.178.10 | 192.168.178.10 | 80 | The X-XSS-Protection header is not defined. This header can hint to the user | X |
    | | | | agent to protect against some forms of XSS | |
    | 192.168.178.10 | 192.168.178.10 | 8 0 | The X-Content-Type-Options header is not set. This could allow the user agent to | X |
    | | | | render the content of the site in a different fashion to the MIME type | |
    +----------------+-----------------+-------------+----------------------------------------------------------------------------------+-------------+

    Or to output a CSV file:

    $ sr2t --nikto example/nikto.xml -oC example
    $ cat example_nikto.csv
    target ip,target hostname,target port,description,annotations
    192.168.178.10,192.168.178.10,80,The anti-clickjacking X-Frame-Options header is not present.,X
    192.168.178.10,192.168.178.10,80,"The X-XSS-Protection header is not defined. This header can hint to the user
    agent to protect against some forms of XSS",X
    192.168.178.10,192.168.178.10,80,"The X-Content-Type-Options header is not set. This could allow the user agent to
    render the content of the site in a different fashion to the MIME type",X

    Dirble

    To produce an XLSX format:

    $ sr2t --dirble example/dirble.xml -oX example.xlsx

    To produce an text tabular format to stdout:

    $ sr2t --dirble example/dirble.xml
    +-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
    | url | code | content len | is directory | is listable | found from listable | redirect url | annotations |
    +-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+
    | http://example.org/flv | 0 | 0 | false | false | false | | X |
    | http://example.org/hire | 0 | 0 | false | false | false | | X |
    | http://example.org/phpSQLiteAdmin | 0 | 0 | false | false | false | | X |
    | http://example.org/print_order | 0 | 0 | false | false | fa lse | | X |
    | http://example.org/putty | 0 | 0 | false | false | false | | X |
    | http://example.org/receipts | 0 | 0 | false | false | false | | X |
    +-----------------------------------+------+-------------+--------------+-------------+---------------------+--------------+-------------+

    Or to output a CSV file:

    $ sr2t --dirble example/dirble.xml -oC example
    $ cat example_dirble.csv
    url,code,content len,is directory,is listable,found from listable,redirect url,annotations
    http://example.org/flv,0,0,false,false,false,,X
    http://example.org/hire,0,0,false,false,false,,X
    http://example.org/phpSQLiteAdmin,0,0,false,false,false,,X
    http://example.org/print_order,0,0,false,false,false,,X
    http://example.org/putty,0,0,false,false,false,,X
    http://example.org/receipts,0,0,false,false,false,,X

    Testssl

    To produce an XLSX format:

    $ sr2t --testssl example/testssl.json -oX example.xlsx

    To produce an text tabular format to stdout:

    $ sr2t --testssl example/testssl.json
    +-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
    | ip address | port | BREACH | No HSTS | No PFS | No TLSv1.3 | RC4 | TLSv1.0 | TLSv1.1 | Wildcard |
    +-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+
    | rc4-md5.badssl.com/104.154.89.105 | 443 | X | X | X | X | X | X | X | X |
    +-----------------------------------+------+--------+---------+--------+------------+-----+---------+---------+----------+

    Or to output a CSV file:

    $ sr2t --testssl example/testssl.json -oC example
    $ cat example_testssl.csv
    ip address,port,BREACH,No HSTS,No PFS,No TLSv1.3,RC4,TLSv1.0,TLSv1.1,Wildcard
    rc4-md5.badssl.com/104.154.89.105,443,X,X,X,X,X,X,X,X

    Fortify

    To produce an XLSX format:

    $ sr2t --fortify example/fortify.fpr -oX example.xlsx

    To produce an text tabular format to stdout:

    $ sr2t --fortify example/fortify.fpr
    +--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
    | | type | subtype | severity | confidence | annotations |
    +--------------------------+-----------------------+-------------------------------+----------+------------+-------------+
    | example1/web.xml:135:135 | J2EE Misconfiguration | Insecure Transport | 3.0 | 5.0 | X |
    | example2/web.xml:150:150 | J2EE Misconfiguration | Insecure Transport | 3.0 | 5.0 | X |
    | example3/web.xml:109:109 | J2EE Misconfiguration | Incomplete Error Handling | 3.0 | 5.0 | X |
    | example4/web.xml:108:108 | J2EE Misconfiguration | Incomplete Error Handling | 3.0 | 5.0 | X |
    | example5/web.xml:166:166 | J2EE Misconfiguration | Inse cure Transport | 3.0 | 5.0 | X |
    | example6/web.xml:2:2 | J2EE Misconfiguration | Excessive Session Timeout | 3.0 | 5.0 | X |
    | example7/web.xml:162:162 | J2EE Misconfiguration | Missing Authentication Method | 3.0 | 5.0 | X |
    +--------------------------+-----------------------+-------------------------------+----------+------------+-------------+

    Or to output a CSV file:

    $ sr2t --fortify example/fortify.fpr -oC example
    $ cat example_fortify.csv
    ,type,subtype,severity,confidence,annotations
    example1/web.xml:135:135,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
    example2/web.xml:150:150,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
    example3/web.xml:109:109,J2EE Misconfiguration,Incomplete Error Handling,3.0,5.0,X
    example4/web.xml:108:108,J2EE Misconfiguration,Incomplete Error Handling,3.0,5.0,X
    example5/web.xml:166:166,J2EE Misconfiguration,Insecure Transport,3.0,5.0,X
    example6/web.xml:2:2,J2EE Misconfiguration,Excessive Session Timeout,3.0,5.0,X
    example7/web.xml:162:162,J2EE Misconfiguration,Missing Authentication Method,3.0,5.0,X

    Donate

    • WOW: WW4L3VCX11zWgKPX51TRw2RENe8STkbCkh5wTV4GuQnbZ1fKYmPFobZhEfS1G9G3vwjBhzioi3vx8JgBx2xLxe4N1gtJee8Mp


    CVE-2024-23897 - Jenkins <= 2.441 & <= LTS 2.426.2 PoC And Scanner

    By: Zion3R


    Exploitation and scanning tool specifically designed for Jenkins versions <= 2.441 & <= LTS 2.426.2. It leverages CVE-2024-23897 to assess and exploit vulnerabilities in Jenkins instances.


    Usage

    Ensure you have the necessary permissions to scan and exploit the target systems. Use this tool responsibly and ethically.

    python CVE-2024-23897.py -t <target> -p <port> -f <file>

    or

    python CVE-2024-23897.py -i <input_file> -f <file>

    Parameters: - -t or --target: Specify the target IP(s). Supports single IP, IP range, comma-separated list, or CIDR block. - -i or --input-file: Path to input file containing hosts in the format of http://1.2.3.4:8080/ (one per line). - -o or --output-file: Export results to file (optional). - -p or --port: Specify the port number. Default is 8080 (optional). - -f or --file: Specify the file to read on the target system.


    Changelog

    [27th January 2024] - Feature Request
    • Added scanning/exploiting via input file with hosts (-i INPUT_FILE).
    • Added export to file (-o OUTPUT_FILE).

    [26th January 2024] - Initial Release
    • Initial release.

    Contributing

    Contributions are welcome. Please feel free to fork, modify, and make pull requests or report issues.


    Author

    Alexander Hagenah - URL - Twitter


    Disclaimer

    This tool is meant for educational and professional purposes only. Unauthorized scanning and exploiting of systems is illegal and unethical. Always ensure you have explicit permission to test and exploit any systems you target.



    RepoReaper - An Automated Tool Crafted To Meticulously Scan And Identify Exposed .Git Repositories Within Specified Domains And Their Subdomains

    By: Zion3R


    RepoReaper is a precision tool designed to automate the identification of exposed .git repositories across a list of domains and subdomains. By processing a user-provided text file with domain names, RepoReaper systematically checks each for publicly accessible .git files. This enables rapid assessment and protection against information leaks, making RepoReaper an essential resource for security teams and web developers.


    Features
    • Automated scanning of domains and subdomains for exposed .git repositories.
    • Streamlines the detection of sensitive data exposures.
    • User-friendly command-line interface.
    • Ideal for security audits and Bug Bounty.

    Installation

    Clone the repository and install the required dependencies:

    git clone https://github.com/YourUsername/RepoReaper.git
    cd RepoReaper
    pip install -r requirements.txt
    chmod +x RepoReaper.py

    Usage

    RepoReaper is executed from the command line and will prompt for the path to a file containing a list of domains or subdomains to be scanned.

    To start RepoReaper, simply run:

    ./RepoReaper.py
    or
    python3 RepoReaper.py

    Upon execution, RepoReaper will ask for the path to the file containing the domains or subdomains: Enter the path of the file containing domains

    Provide the path to your text file when prompted. The file should contain one domain or subdomain per line, like so:

    example.com
    subdomain.example.com
    anotherdomain.com

    RepoReaper will then proceed to scan the provided domains or subdomains for exposed .git repositories and report its findings.Β 


    Disclaimer

    This tool is intended for educational purposes and security research only. The user assumes all responsibility for any damages or misuse resulting from its use.



    SwaggerSpy - Automated OSINT On SwaggerHub

    By: Zion3R


    SwaggerSpy is a tool designed for automated Open Source Intelligence (OSINT) on SwaggerHub. This project aims to streamline the process of gathering intelligence from APIs documented on SwaggerHub, providing valuable insights for security researchers, developers, and IT professionals.


    What is Swagger?

    Swagger is an open-source framework that allows developers to design, build, document, and consume RESTful web services. It simplifies API development by providing a standard way to describe REST APIs using a JSON or YAML format. Swagger enables developers to create interactive documentation for their APIs, making it easier for both developers and non-developers to understand and use the API.


    About SwaggerHub

    SwaggerHub is a collaborative platform for designing, building, and managing APIs using the Swagger framework. It offers a centralized repository for API documentation, version control, and collaboration among team members. SwaggerHub simplifies the API development lifecycle by providing a unified platform for API design and testing.


    Why OSINT on SwaggerHub?

    Performing OSINT on SwaggerHub is crucial because developers, in their pursuit of efficient API documentation and sharing, may inadvertently expose sensitive information. Here are key reasons why OSINT on SwaggerHub is valuable:

    1. Developer Oversights: Developers might unintentionally include secrets, credentials, or sensitive information in API documentation on SwaggerHub. These oversights can lead to security vulnerabilities and unauthorized access if not identified and addressed promptly.

    2. Security Best Practices: OSINT on SwaggerHub helps enforce security best practices. Identifying and rectifying potential security issues early in the development lifecycle is essential to ensure the confidentiality and integrity of APIs.

    3. Preventing Data Leaks: By systematically scanning SwaggerHub for sensitive information, organizations can proactively prevent data leaks. This is especially crucial in today's interconnected digital landscape where APIs play a vital role in data exchange between services.

    4. Risk Mitigation: Understanding that developers might forget to remove or obfuscate sensitive details in API documentation underscores the importance of continuous OSINT on SwaggerHub. This proactive approach mitigates the risk of unintentional exposure of critical information.

    5. Compliance and Privacy: Many industries have stringent compliance requirements regarding the protection of sensitive data. OSINT on SwaggerHub ensures that APIs adhere to these regulations, promoting a culture of compliance and safeguarding user privacy.

    6. Educational Opportunities: Identifying oversights in SwaggerHub documentation provides educational opportunities for developers. It encourages a security-conscious mindset, fostering a culture of awareness and responsible information handling.

    By recognizing that developers can inadvertently expose secrets, OSINT on SwaggerHub becomes an integral part of the overall security strategy, safeguarding against potential threats and promoting a secure API ecosystem.


    How SwaggerSpy Works

    SwaggerSpy obtains information from SwaggerHub and utilizes regular expressions to inspect API documentation for sensitive information, such as secrets and credentials.


    Getting Started

    To use SwaggerSpy, follow these steps:

    1. Installation: Clone the SwaggerSpy repository and install the required dependencies.
    git clone https://github.com/UndeadSec/SwaggerSpy.git
    cd SwaggerSpy
    pip install -r requirements.txt
    1. Usage: Run SwaggerSpy with the target search terms (more accurate with domains).
    python swaggerspy.py searchterm
    1. Results: SwaggerSpy will generate a report containing OSINT findings, including information about the API, endpoints, and secrets.

    Disclaimer

    SwaggerSpy is intended for educational and research purposes only. Users are responsible for ensuring that their use of this tool complies with applicable laws and regulations.


    Contribution

    Contributions to SwaggerSpy are welcome! Feel free to submit issues, feature requests, or pull requests to help improve this tool.


    About the Author

    SwaggerSpy is developed and maintained by Alisson Moretto (UndeadSec)

    I'm a passionate cyber threat intelligence pro who loves sharing insights and crafting cybersecurity tools.


    TODO

    Regular Expressions Enhancement
    • [ ] Review and improve existing regular expressions.
    • [ ] Ensure that regular expressions adhere to best practices.
    • [ ] Check for any potential optimizations in the regex patterns.
    • [ ] Test regular expressions with various input scenarios for accuracy.
    • [ ] Document any complex or non-trivial regex patterns for better understanding.
    • [ ] Explore opportunities to modularize or break down complex patterns.
    • [ ] Verify the regular expressions against the latest specifications or requirements.
    • [ ] Update documentation to reflect any changes made to the regular expressions.

    License

    SwaggerSpy is licensed under the MIT License. See the LICENSE file for details.


    Thanks

    Special thanks to @Liodeus for providing project inspiration through swaggerHole.



    AzSubEnum - Azure Service Subdomain Enumeration

    By: Zion3R


    AzSubEnum is a specialized subdomain enumeration tool tailored for Azure services. This tool is designed to meticulously search and identify subdomains associated with various Azure services. Through a combination of techniques and queries, AzSubEnum delves into the Azure domain structure, systematically probing and collecting subdomains related to a diverse range of Azure services.


    How it works?

    AzSubEnum operates by leveraging DNS resolution techniques and systematic permutation methods to unveil subdomains associated with Azure services such as Azure App Services, Storage Accounts, Azure Databases (including MSSQL, Cosmos DB, and Redis), Key Vaults, CDN, Email, SharePoint, Azure Container Registry, and more. Its functionality extends to comprehensively scanning different Azure service domains to identify associated subdomains.

    With this tool, users can conduct thorough subdomain enumeration within Azure environments, aiding security professionals, researchers, and administrators in gaining insights into the expansive landscape of Azure services and their corresponding subdomains.


    Why i create this?

    During my learning journey on Azure AD exploitation, I discovered that the Azure subdomain tool, Invoke-EnumerateAzureSubDomains from NetSPI, was unable to run on my Debian PowerShell. Consequently, I created a crude implementation of that tool in Python.


    Usage
    ➜  AzSubEnum git:(main) βœ— python3 azsubenum.py --help
    usage: azsubenum.py [-h] -b BASE [-v] [-t THREADS] [-p PERMUTATIONS]

    Azure Subdomain Enumeration

    options:
    -h, --help show this help message and exit
    -b BASE, --base BASE Base name to use
    -v, --verbose Show verbose output
    -t THREADS, --threads THREADS
    Number of threads for concurrent execution
    -p PERMUTATIONS, --permutations PERMUTATIONS
    File containing permutations

    Basic enumeration:

    python3 azsubenum.py -b retailcorp --thread 10

    Using permutation wordlists:

    python3 azsubenum.py -b retailcorp --thread 10 --permutation permutations.txt

    With verbose output:

    python3 azsubenum.py -b retailcorp --thread 10 --permutation permutations.txt --verbose




    SqliSniper - Advanced Time-based Blind SQL Injection Fuzzer For HTTP Headers

    By: Zion3R


    SqliSniper is a robust Python tool designed to detect time-based blind SQL injections in HTTP request headers. It enhances the security assessment process by rapidly scanning and identifying potential vulnerabilities using multi-threaded, ensuring speed and efficiency. Unlike other scanners, SqliSniper is designed to eliminates false positives through and send alerts upon detection, with the built-in Discord notification functionality.


    Key Features

    • Time-Based Blind SQL Injection Detection: Pinpoints potential SQL injection vulnerabilities in HTTP headers.
    • Multi-Threaded Scanning: Offers faster scanning capabilities through concurrent processing.
    • Discord Notifications: Sends alerts via Discord webhook for detected vulnerabilities.
    • False Positive Checks: Implements response time analysis to differentiate between true positives and false alarms.
    • Custom Payload and Headers Support: Allows users to define custom payloads and headers for targeted scanning.

    Installation

    git clone https://github.com/danialhalo/SqliSniper.git
    cd SqliSniper
    chmod +x sqlisniper.py
    pip3 install -r requirements.txt

    Usage

    This will display help for the tool. Here are all the options it supports.

    ubuntu:~/sqlisniper$ ./sqlisniper.py -h


    β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•—β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—
    β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—
    β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•
    β•šβ•β•β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–„β–„ β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘ β•šβ•β•β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•β• β–ˆβ–ˆβ•”β•β•β• β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—
    β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β•šβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•‘
    β•šβ•β•β•β•β•β•β• β•šβ•β•β–€β–€β•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•β•β•β•šβ•β•β•šβ•β• β•šβ•β•β•β•β•β•β•β•šβ•β• β•šβ•β•

    -: By Muhammad Danial :-

    usage: sqlisniper.py [-h] [-u URL] [-r URLS_FILE] [-p] [--proxy PROXY] [--payload PA YLOAD] [--single-payload SINGLE_PAYLOAD] [--discord DISCORD] [--headers HEADERS]
    [--threads THREADS]

    Detect SQL injection by sending malicious queries

    options:
    -h, --help show this help message and exit
    -u URL, --url URL Single URL for the target
    -r URLS_FILE, --urls_file URLS_FILE
    File containing a list of URLs
    -p, --pipeline Read from pipeline
    --proxy PROXY Proxy for intercepting requests (e.g., http://127.0.0.1:8080)
    --payload PAYLOAD File containing malicious payloads (default is payloads.txt)
    --single-payload SINGLE_PAYLOAD
    Single payload for testing
    --discord DISCORD Discord Webhook URL
    --headers HEADERS File containing headers (default is headers.txt)
    --threads THREADS Number of threads

    Running SqliSniper

    Single Url Scan

    The url can be provided with -u flag for single site scan

    ./sqlisniper.py -u http://example.com

    File Input

    The -r flag allows SqliSniper to read a file containing multiple URLs for simultaneous scanning.

    ./sqlisniper.py -r url.txt

    piping URLs

    The SqliSniper can also worked with the pipeline input with -p flag

    cat url.txt | ./sqlisniper.py -p

    The pipeline feature facilitates seamless integration with other tools. For instance, you can utilize tools like subfinder and httpx, and then pipe their output to SqliSniper for mass scanning.

    subfinder -silent -d google.com | sort -u | httpx -silent | ./sqlisniper.py -p

    Scanning with custom payloads

    By default the SqliSniper use the payloads.txt file. However --payload flag can be used for providing custom payloads file.

    ./sqlisniper.py -u http://example.com --payload mssql_payloads.txt

    While using the custom payloads file, ensure that you substitute the sleep time with %__TIME_OUT__%. SqliSniper dynamically adjusts the sleep time iteratively to mitigate potential false positives. The payloads file should look like this.

    ubuntu:~/sqlisniper$ cat payloads.txt 
    0\"XOR(if(now()=sysdate(),sleep(%__TIME_OUT__%),0))XOR\"Z
    "0"XOR(if(now()=sysdate()%2Csleep(%__TIME_OUT__%)%2C0))XOR"Z"
    0'XOR(if(now()=sysdate(),sleep(%__TIME_OUT__%),0))XOR'Z

    Scanning with Single Payloads

    If you want to only test with the single payload --single-payload flag can be used. Make sure to replace the sleep time with %__TIME_OUT__%

    ./sqlisniper.py -r url.txt --single-payload "0'XOR(if(now()=sysdate(),sleep(%__TIME_OUT__%),0))XOR'Z"

    Scanning Custom Header

    Headers are saved in the file headers.txt for scanning custom header save the custom HTTP Request Header in headers.txt file.

    ubuntu:~/sqlisniper$ cat headers.txt 
    User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
    X-Forwarded-For: 127.0.0.1

    Sending Discord Alert Notifications

    SqliSniper also offers Discord alert notifications, enhancing its functionality by providing real-time alerts through Discord webhooks. This feature proves invaluable during large-scale scans, allowing prompt notifications upon detection.

    ./sqlisniper.py -r url.txt --discord <web_hookurl>

    Multi-Threading

    Threads can be defined with --threads flag

     ./sqlisniper.py -r url.txt --threads 10

    Note: It is crucial to consider that employing a higher number of threads might lead to potential false positives or overlooking valid issues. Due to the nature of time-based SQL injection it is recommended to use lower thread for more accurate detection.


    SqliSniper is made inΒ  pythonΒ with lots of <3 by @Muhammad Danial.



    BucketLoot - An Automated S3-compatible Bucket Inspector

    By: Zion3R


    BucketLoot is an automated S3-compatible Bucket inspector that can help users extract assets, flag secret exposures and even search for custom keywords as well as Regular Expressions from publicly-exposed storage buckets by scanning files that store data in plain-text.

    The tool can scan for buckets deployed on Amazon Web Services (AWS), Google Cloud Storage (GCS), DigitalOcean Spaces and even custom domains/URLs which could be connected to these platforms. It returns the output in a JSON format, thus enabling users to parse it according to their liking or forward it to any other tool for further processing.

    BucketLoot comes with a guest mode by default, which means a user doesn't needs to specify any API tokens / Access Keys initially in order to run the scan. The tool will scrape a maximum of 1000 files that are returned in the XML response and if the storage bucket contains more than 1000 entries which the user would like to run the scanner on, they can provide platform credentials to run a complete scan. If you'd like to know more about the tool, make sure to check out our blog.

    Features

    Secret Scanning

    Scans for over 80+ unique RegEx signatures that can help in uncovering secret exposures tagged with their severity from the misconfigured storage bucket. Users have the ability to modify or add their own signatures in the regexes.json file. If you believe you have any cool signatures which might be helpful for others too and could be flagged at scale, go ahead and make a PR!

    Sensitive File Checks

    Accidental sensitive file leakages are a big problem that affects the security posture of individuals and organisations. BucketLoot comes with a 80+ unique regEx signatures list in vulnFiles.json which allows users to flag these sensitive files based on file names or extensions.

    Dig Mode

    Want to quickly check if any target website is using a misconfigured bucket that is leaking secrets or any other sensitive data? Dig Mode allows you to pass non-S3 targets and let the tool scrape URLs from response body for scanning.

    Asset Extraction

    Interested in stepping up your asset discovery game? BucketLoot extracts all the URLs/Subdomains and Domains that could be present in an exposed storage bucket, enabling you to have a chance of discovering hidden endpoints, thus giving you an edge over the other traditional recon tools.

    Searching

    The tool goes beyond just asset discovery and secret exposure scanning by letting users search for custom keywords and even Regular Expression queries which may help them find exactly what they are looking for.

    To know more about our Attack Surface Management platform, check out NVADR.



    CATSploit - An Automated Penetration Testing Tool Using Cyber Attack Techniques Scoring

    By: Zion3R


    CATSploit is an automated penetration testing tool using Cyber Attack Techniques Scoring (CATS) method that can be used without pentester. Currently, pentesters implicitly made the selection of suitable attack techniques for target systems to be attacked. CATSploit uses system configuration information such as OS, open ports, software version collected by scanner and calculates a score value for capture eVc and detectability eVd of each attack techniques for target system. By selecting the highest score values, it is possible to select the most appropriate attack technique for the target system without hack knack(professional pentester’s skill) .

    CATSploit automatically performs penetration tests in the following sequence:

    1. Information gathering and prior information input First, gathering information of target systems. CATSploit supports nmap and OpenVAS to gather information of target systems. CATSploit also supports prior information of target systems if you have.

    2. Calculating score value of attack techniques Using information obtained in the previous phase and attack techniques database, evaluation values of capture (eVc) and detectability (eVd) of each attack techniques are calculated. For each target computer, the values of each attack technique are calculated.

    3. Selection of attack techniques by using scores and make attack scenario Select attack techniques and create attack scenarios according to pre-defined policies. For example, for a policy that prioritized hard-to-detect, the attack techniques with the lowest eVd(Detectable Score) will be selected.

    4. Execution of attack scenario CATSploit executes the attack techniques according to attack scenario constructed in the previous phase. CATSploit uses Metasploit as a framework and Metasploit API to execute actual attacks.


    Prerequisities

    CATSploit has the following prerequisites:

    • Kali Linux 2023.2a

    Installation

    For Metasploit, Nmap and OpenVAS, it is assumed to be installed with the Kali Distribution.

    Installing CATSploit

    To install the latest version of CATSploit, please use the following commands:

    Cloneing and setup
    $ git clone https://github.com/catsploit/catsploit.git
    $ cd catsploit
    $ git clone https://github.com/catsploit/cats-helper.git
    $ sudo ./setup.sh

    Editing configuration file

    CATSploit is a server-client configuration, and the server reads the configuration JSON file at startup. In config.json, the following fields should be modified for your environment.

    • DBMS
      • dbname: database name created for CATSploit
      • user: username of PostgreSQL
      • password: password of PostgrSQL
      • host: If you are using a database on a remote host, specify the IP address of the host
    • SCENARIO
      • generator.maxscenarios: Maximum number of scenarios to calculate (*)
    • ATTACKPF
      • msfpassword: password of MSFRPCD
      • openvas.user: username of PostgreSQL
      • openvas.password: password of PostgreSQL
      • openvas.maxhosts: Maximum number of hosts to be test at the same time (*)
      • openvas.maxchecks: Maximum number of test items to be test at the same time (*)
    • ATTACKDB
      • attack_db_dir: Path to the folder where AtackSteps are stored

    (*) Adjust the number according to the specs of your machine.

    Usage

    To start the server, execute the following command:

    $ python cats_server.py -c [CONFIG_FILE]

    Next, prepare another console, start the client program, and initiate a connection to the server.

    $ python catsploit.py -s [SOCKET_PATH]

    After successfully connecting to the server and initializing it, the session will start.

       _________  ___________       __      _ __
    / ____/ |/_ __/ ___/____ / /___ (_) /_
    / / / /| | / / \__ \/ __ \/ / __ \/ / __/
    / /___/ ___ |/ / ___/ / /_/ / / /_/ / / /_
    \____/_/ |_/_/ /____/ .___/_/\____/_/\__/
    /_/

    [*] Connecting to cats-server
    [*] Done.
    [*] Initializing server
    [*] Done.
    catsploit>

    The client can execute a variety of commands. Each command can be executed with -h option to display the format of its arguments.

    usage: [-h] {host,scenario,scan,plan,attack,post,reset,help,exit} ...

    positional arguments:
    {host,scenario,scan,plan,attack,post,reset,help,exit}

    options:
    -h, --help show this help message and exit

    I've posted the commands and options below as well for reference.

    host list:
    show information about the hosts
    usage: host list [-h]
    options:
    -h, --help show this help message and exit

    host detail:
    show more information about one host
    usage: host detail [-h] host_id
    positional arguments:
    host_id ID of the host for which you want to show information
    options:
    -h, --help show this help message and exit

    scenario list:
    show information about the scenarios
    usage: scenario list [-h]
    options:
    -h, --help show this help message and exit

    scenario detail:
    show more information about one scenario
    usage: scenario detail [-h] scenario_id
    positional arguments:
    scenario_id ID of the scenario for which you want to show information
    options:
    -h, --help show this help message and exit

    scan:
    run network-scan and security-scan
    usage: scan [-h] [--port PORT] targe t_host [target_host ...]
    positional arguments:
    target_host IP address to be scanned
    options:
    -h, --help show this help message and exit
    --port PORT ports to be scanned

    plan:
    planning attack scenarios
    usage: plan [-h] src_host_id dst_host_id
    positional arguments:
    src_host_id originating host
    dst_host_id target host
    options:
    -h, --help show this help message and exit

    attack:
    execute attack scenario
    usage: attack [-h] scenario_id
    positional arguments:
    scenario_id ID of the scenario you want to execute

    options:
    -h, --help show this help message and exit

    post find-secret:
    find confidential information files that can be performed on the pwned host
    usage: post find-secret [-h] host_id
    positional arguments:
    host_id ID of the host for which you want to find confidential information
    op tions:
    -h, --help show this help message and exit

    reset:
    reset data on the server
    usage: reset [-h] {system} ...
    positional arguments:
    {system} reset system
    options:
    -h, --help show this help message and exit

    exit:
    exit CATSploit
    usage: exit [-h]
    options:
    -h, --help show this help message and exit

    Examples

    In this example, we use CATSploit to scan network, plan the attack scenario, and execute the attack.

    catsploit> scan 192.168.0.0/24
    Network Scanning ... 100%
    [*] Total 2 hosts were discovered.
    Vulnerability Scanning ... 100%
    [*] Total 14 vulnerabilities were discovered.
    catsploit> host list
    ┏━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┓
    ┃ hostID ┃ IP ┃ Hostname ┃ Platform ┃ Pwned ┃
    ┑━━━━━━ ━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━┩
    β”‚ attacker β”‚ 0.0.0.0 β”‚ kali β”‚ kali 2022.4 β”‚ True β”‚
    β”‚ h_exbiy6 β”‚ 192.168.0.10 β”‚ β”‚ Linux 3.10 - 4.11 β”‚ False β”‚
    β”‚ h_nhqyfq β”‚ 192.168.0.20 β”‚ β”‚ Microsoft Windows 7 SP1 β”‚ False β”‚
    └──────────┴ β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜


    catsploit> host detail h_exbiy6
    ┏━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━┓
    ┃ hostID ┃ IP ┃ Hostname ┃ Platform ┃ Pwned ┃
    ┑━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━┩
    β”‚ h_exbiy6 β”‚ 192.168.0.10 β”‚ ubuntu β”‚ ubuntu 14.04 β”‚ False β”‚
    └──────────┴──────────────┴──────────┴──────────────┴─ β”€β”€β”€β”€β”€β”˜

    [IP address]
    ┏━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━┳━━━━━━━━━━━━┓
    ┃ ipv4 ┃ ipv4mask ┃ ipv6 ┃ ipv6prefix ┃
    ┑━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━╇━━━━━━━━━━━━┩
    β”‚ 192.168.0.10 β”‚ β”‚ β”‚ β”‚
    └──────────── β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    [Open ports]
    ┏━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
    ┃ ip ┃ proto ┃ port ┃ service ┃ product ┃ version ┃
    ┑━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 21 β”‚ ftp β”‚ ProFTPD β”‚ 1.3.5 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 22 β”‚ ssh β”‚ OpenSSH β”‚ 6.6.1p1 Ubuntu 2ubuntu2.10 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ http β”‚ Apache httpd β”‚ 2.4.7 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 445 β”‚ netbios-ssn β”‚ Samba smbd β”‚ 3.X - 4.X β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 631 β”‚ ipp β”‚ CUPS β”‚ 1.7 β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    [Vulnerabilities]
    ┏━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
    ┃ ip ┃ proto ┃ port ┃ vuln_name ┃ cve ┃
    ┑━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 0 β”‚ TCP Timestamps Information Disclosure β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 21 β”‚ FTP Unencrypted Cleartext Login β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 22 β”‚ Weak MAC Algorithm(s) Supported (SSH) β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 22 β”‚ Weak Encryption Algorithm(s) Supported (SSH) β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 22 β”‚ Weak Host Key Algorithm(s) (SSH) β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 22 β”‚ Weak Key Exchange (KEX) Algorithm(s) Supported (SSH) β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Test HTTP dangerous methods β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Drupal Core SQLi Vulnerability (SA-CORE-2014-005) - Active Check β”‚ CVE-2014-3704 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Drupal Coder RCE Vulnerability (SA-CONTRIB-2016-039) - Active Check β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Sensitive File Disclosure (HTTP) β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Unprotected Web App / Device Installers (HTTP) β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Cleartext Transmission of Sensitive Information via HTTP β”‚ N/A β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ jQuery < 1.9.0 XSS Vulnerability β”‚ CVE-2012-6708 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ jQuery < 1.6.3 XSS Vulnerability β”‚ CVE-2011-4969 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 80 β”‚ Drupal 7.0 Information Disclosure Vulnerability - Active Check β”‚ CVE-2011-3730 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 631 β”‚ SSL/TLS: Report Vulnerable Cipher Suites for HTTPS β”‚ CVE-2016-2183 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 631 β”‚ SSL/TLS: Report Vulnerable Cipher Suites for HTTPS β”‚ CVE-2016-6329 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 631 β”‚ SSL/TLS: Report Vulnerable Cipher Suites for HTTPS β”‚ CVE-2020-12872 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 631 β”‚ SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection β”‚ CVE-2011-3389 β”‚
    β”‚ 192.168.0.10 β”‚ tcp β”‚ 631 β”‚ SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection β”‚ CVE-2015-0204 β”‚
    └──────────────┴───────┴──────┴─────────────────────────────────────────────────────────────────────┴───& #9472;β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    [Users]
    ┏━━━━━━━━━━━┳━━━━━━━┓
    ┃ user name ┃ group ┃
    ┑━━━━━━━━━━━╇━━━━━━━┩
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜


    catsploit> plan attacker h_exbiy6
    Planning attack scenario...100%
    [*] Done. 15 scenarios was planned.
    [*] To check each scenario, try 'scenario list' and/or 'scenario detail'.
    catsploit> scenario list
    ┏━━━━━━━━━━━━━┳━━━━━ ━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
    ┃ scenario id ┃ src host ip ┃ target host ip ┃ eVc ┃ eVd ┃ steps ┃ first attack step ┃
    ┑━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━&#947 3;━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
    β”‚ 3d3ivc β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 1.0 β”‚ 32.0 β”‚ 1 β”‚ exploit/multi/http/jenkins_s… β”‚
    β”‚ 5gnsvh β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 1.0 β”‚ 53.76 β”‚ 2 β”‚ exploit/multi/http/jenkins_s… β”‚
    β”‚ 6nlxyc β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 0.0 β”‚ 48.32 β”‚ 2 β”‚ exploit/multi/http/jenkins_s… β”‚
    β”‚ 8jos4z β”‚ 0.0.0.0 β”‚ 192.168.0.1 0 β”‚ 0.7 β”‚ 72.8 β”‚ 2 β”‚ exploit/multi/http/jenkins_s… β”‚
    β”‚ 8kmmts β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 0.0 β”‚ 32.0 β”‚ 1 β”‚ exploit/multi/elasticsearch/… β”‚
    β”‚ agjmma β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 0.0 β”‚ 24.0 β”‚ 1 β”‚ exploit/windows/http/managee… β”‚
    β”‚ joglhf β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 70.0 β”‚ 60.0 β”‚ 1 β”‚ auxiliary/scanner/ssh/ssh_lo… β”‚
    β”‚ rmgrof β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 100.0 β”‚ 32.0 β”‚ 1 β”‚ exploit/multi/http/drupal_dr… β”‚
    β”‚ xuowzk β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 0.0 β”‚ 24.0 β”‚ 1 β”‚ exploit/multi/http/struts_dm… β”‚
    β”‚ yttv51 β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 0.01 β”‚ 53.76 β”‚ 2 β”‚ exploit/multi/http/jenkins_s… β”‚
    β”‚ znv76x β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 0.01 β”‚ 53.76 β”‚ 2 β”‚ exploit/multi/http/jenkins_s… β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    catsploit> scenario detail rmgrof
    ┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━┓
    ┃ src host ip ┃ target host ip ┃ eVc ┃ eVd ┃
    ┑━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━┩
    β”‚ 0.0.0.0 β”‚ 192.168.0.10 β”‚ 100.0 β”‚ 32.0 β”‚
    └─────────────┴──────── β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜

    [Steps]
    ┏━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┓
    ┃ # ┃ step ┃ params ┃
    ┑━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━┩
    β”‚ 1 β”‚ exploit/multi/http/drupal_drupageddon β”‚ RHOSTS: 192.168.0.10 β”‚
    β”‚ β”‚ β”‚ LHOST: 192.168.10.100 β”‚
    β””β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜


    catsploit> attack rmgrof
    > ~> ~
    > Metasploit Console Log
    > ~
    > ~
    [+] Attack scenario succeeded!


    catsploit> exit
    Bye.

    Disclaimer

    All informations and codes are provided solely for educational purposes and/or testing your own systems.

    Contact

    For any inquiry, please contact the email address as follows:

    catsploit@nk.MitsubishiElectric.co.jp



    BlueBunny - BLE Based C2 For Hak5's Bash Bunny

    By: Zion3R


    C2 solution that communicates directly over Bluetooth-Low-Energy with your Bash Bunny Mark II.
    Send your Bash Bunny all the instructions it needs just over the air.

    Overview

    Structure


    Installation & Start

    1. Install required dependencies
    pip install pygatt "pygatt[GATTTOOL]"

    Make sure BlueZ is installed and gatttool is usable

    sudo apt install bluez
    1. Download BlueBunny's repository (and switch into the correct folder)
    git clone https://github.com/90N45-d3v/BlueBunny
    cd BlueBunny/C2
    1. Start the C2 server
    sudo python c2-server.py
    1. Plug your Bash Bunny with the BlueBunny payload into the target machine (payload at: BlueBunny/payload.txt).
    2. Visit your C2 server from your browser on localhost:1472 and connect your Bash Bunny (Your Bash Bunny will light up green when it's ready to pair).

    Manual communication with the Bash Bunny through Python

    You can use BlueBunny's BLE backend and communicate with your Bash Bunny manually.

    Example Code

    # Import the backend (BlueBunny/C2/BunnyLE.py)
    import BunnyLE

    # Define the data to send
    data = "QUACK STRING I love my Bash Bunny"
    # Define the type of the data to send ("cmd" or "payload") (payload data will be temporary written to a file, to execute multiple commands like in a payload script file)
    d_type = "cmd"

    # Initialize BunnyLE
    BunnyLE.init()

    # Connect to your Bash Bunny
    bb = BunnyLE.connect()

    # Send the data and let it execute
    BunnyLE.send(bb, data, d_type)

    Troubleshooting

    Connecting your Bash Bunny doesn't work? Try the following instructions:

    • Try connecting a few more times
    • Check if your bluetooth adapter is available
    • Restart the system your C2 server is running on
    • Check if your Bash Bunny is running the BlueBunny payload properly
    • How far away from your Bash Bunny are you? Is the environment (distance, interferences etc.) still sustainable for typical BLE connections?

    Bugs within BlueZ

    The Bluetooth stack used is well known, but also very buggy. If starting the connection with your Bash Bunny does not work, it is probably a temporary problem due to BlueZ. Here are some kind of errors that can be caused by temporary bugs. These usually disappear at the latest after rebooting the C2's operating system, so don't be surprised and calm down if they show up.

    • Timeout after 5.0 seconds
    • Unknown error while scanning for BLE devices

    Working on...

    • Remote shell access
    • BLE exfiltration channel
    • Improved connecting process

    Additional information

    As I said, BlueZ, the base for the bluetooth part used in BlueBunny, is somewhat bug prone. If you encounter any non-temporary bugs when connecting to Bash Bunny as well as any other bugs/difficulties in the whole BlueBunny project, you are always welcome to contact me. Be it a problem, an idea/solution or just a nice feedback.



    Porch-Pirate - The Most Comprehensive Postman Recon / OSINT Client And Framework That Facilitates The Automated Discovery And Exploitation Of API Endpoints And Secrets Committed To Workspaces, Collections, Requests, Users And Teams

    By: Zion3R


    Porch Pirate started as a tool to quickly uncover Postman secrets, and has slowly begun to evolve into a multi-purpose reconaissance / OSINT framework for Postman. While existing tools are great proof of concepts, they only attempt to identify very specific keywords as "secrets", and in very limited locations, with no consideration to recon beyond secrets. We realized we required capabilities that were "secret-agnostic", and had enough flexibility to capture false-positives that still provided offensive value.

    Porch Pirate enumerates and presents sensitive results (global secrets, unique headers, endpoints, query parameters, authorization, etc), from publicly accessible Postman entities, such as:

    • Workspaces
    • Collections
    • Requests
    • Users
    • Teams

    Installation

    python3 -m pip install porch-pirate

    Using the client

    The Porch Pirate client can be used to nearly fully conduct reviews on public Postman entities in a quick and simple fashion. There are intended workflows and particular keywords to be used that can typically maximize results. These methodologies can be located on our blog: Plundering Postman with Porch Pirate.

    Porch Pirate supports the following arguments to be performed on collections, workspaces, or users.

    • --globals
    • --collections
    • --requests
    • --urls
    • --dump
    • --raw
    • --curl

    Simple Search

    porch-pirate -s "coca-cola.com"

    Get Workspace Globals

    By default, Porch Pirate will display globals from all active and inactive environments if they are defined in the workspace. Provide a -w argument with the workspace ID (found by performing a simple search, or automatic search dump) to extract the workspace's globals, along with other information.

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8

    Dump Workspace

    When an interesting result has been found with a simple search, we can provide the workspace ID to the -w argument with the --dump command to begin extracting information from the workspace and its collections.

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --dump

    Automatic Search and Globals Extraction

    Porch Pirate can be supplied a simple search term, following the --globals argument. Porch Pirate will dump all relevant workspaces tied to the results discovered in the simple search, but only if there are globals defined. This is particularly useful for quickly identifying potentially interesting workspaces to dig into further.

    porch-pirate -s "shopify" --globals

    Automatic Search Dump

    Porch Pirate can be supplied a simple search term, following the --dump argument. Porch Pirate will dump all relevant workspaces and collections tied to the results discovered in the simple search. This is particularly useful for quickly sifting through potentially interesting results.

    porch-pirate -s "coca-cola.com" --dump

    Extract URLs from Workspace

    A particularly useful way to use Porch Pirate is to extract all URLs from a workspace and export them to another tool for fuzzing.

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --urls

    Automatic URL Extraction

    Porch Pirate will recursively extract all URLs from workspaces and their collections related to a simple search term.

    porch-pirate -s "coca-cola.com" --urls

    Show Collections in a Workspace

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --collections

    Show Workspace Requests

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --requests

    Show raw JSON

    porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --raw

    Show Entity Information

    porch-pirate -w WORKSPACE_ID
    porch-pirate -c COLLECTION_ID
    porch-pirate -r REQUEST_ID
    porch-pirate -u USERNAME/TEAMNAME

    Convert Request to Curl

    Porch Pirate can build curl requests when provided with a request ID for easier testing.

    porch-pirate -r 11055256-b1529390-18d2-4dce-812f-ee4d33bffd38 --curl

    Use a proxy

    porch-pirate -s coca-cola.com --proxy 127.0.0.1:8080

    Using as a library

    Searching

    p = porchpirate()
    print(p.search('coca-cola.com'))

    Get Workspace Collections

    p = porchpirate()
    print(p.collections('4127fdda-08be-4f34-af0e-a8bdc06efaba'))

    Dumping a Workspace

    p = porchpirate()
    collections = json.loads(p.collections('4127fdda-08be-4f34-af0e-a8bdc06efaba'))
    for collection in collections['data']:
    requests = collection['requests']
    for r in requests:
    request_data = p.request(r['id'])
    print(request_data)

    Grabbing a Workspace's Globals

    p = porchpirate()
    print(p.workspace_globals('4127fdda-08be-4f34-af0e-a8bdc06efaba'))

    Other Examples

    Other library usage examples can be located in the examples directory, which contains the following examples:

    • dump_workspace.py
    • format_search_results.py
    • format_workspace_collections.py
    • format_workspace_globals.py
    • get_collection.py
    • get_collections.py
    • get_profile.py
    • get_request.py
    • get_statistics.py
    • get_team.py
    • get_user.py
    • get_workspace.py
    • recursive_globals_from_search.py
    • request_to_curl.py
    • search.py
    • search_by_page.py
    • workspace_collections.py


    Iac-Scan-Runner - Service That Scans Your Infrastructure As Code For Common Vulnerabilities

    By: Zion3R


    Service that scans your Infrastructure as Code for common vulnerabilities.

    Aspect Information
    Tool name IaC Scan Runner
    Docker image xscanner/runner
    PyPI package iac-scan-runner
    Documentation docs
    Contact us xopera@xlab.si

    Purpose and description

    The IaC Scan Runner is a REST API service used to scan IaC (Infrastructure as Code) package and perform various code checks in order to find possible vulnerabilities and improvements. Explore the docs for more info.

    Running

    This section explains how to run the REST API.

    Run with Docker

    You can run the REST API using a public xscanner/runner Docker image as follows:

    # run IaC Scan Runner REST API in a Docker container and 
    # navigate to localhost:8080/swagger or localhost:8080/redoc
    $ docker run --name iac-scan-runner -p 8080:80 xscanner/runner

    Or you can build the image locally and run it as follows:

    # build Docker container (it will take some time) 
    $ docker build -t iac-scan-runner .
    # run IaC Scan Runner REST API in a Docker container and
    # navigate to localhost:8080/swagger or localhost:8080/redoc
    $ docker run --name iac-scan-runner -p 8080:80 iac-scan-runner

    Run from CLI

    To run using the IaC Scan Runner CLI:

    # install the CLI
    $ python3 -m venv .venv && . .venv/bin/activate
    (.venv) $ pip install iac-scan-runner
    # print OpenAPI specification
    (.venv) $ iac-scan-runner openapi
    # install prerequisites
    (.venv) $ iac-scan-runner install
    # run IaC Scan Runner REST API
    (.venv) $ iac-scan-runner run

    Run from source

    To run locally from source:

    # Export env variables 
    export MONGODB_CONNECTION_STRING=mongodb://localhost:27017
    export SCAN_PERSISTENCE=enabled
    export USER_MANAGEMENT=enabled

    # Setup MongoDB
    $ docker run --name mongodb -p 27017:27017 mongo

    # install prerequisites
    $ python3 -m venv .venv && . .venv/bin/activate
    (.venv) $ pip install -r requirements.txt
    (.venv) $ ./install-checks.sh
    # run IaC Scan Runner REST API (add --reload flag to apply code changes on the way)
    (.venv) $ uvicorn src.iac_scan_runner.api:app

    Usage and examples

    This part will show one of the possible deployments and short examples on how to use API calls.

    Firstly we will clone the iac scan runner repository and run the API.

    $ git clone https://github.com/xlab-si/iac-scan-runner.git
    $ docker compose up

    After this is done you can use different API endpoints by calling localhost:8000. You can also navigate to localhost:8000/swagger or localhost:8000/redoc and test all the API endpoints there. In this example, we will use curl for calling API endpoints.

    1. Lets create a project named test.
    curl -X 'POST' \
    'http://0.0.0.0/project?creator_id=test' \
    -H 'accept: application/json' \
    -d ''

    project id will be returned to us. For this example project id is 1e7b2a91-2896-40fd-8d53-83db56088026.

    1. For example, let say we want to initiate all check expect ansible-lint. Let's disable it.
    curl -X 'PUT' \
    'http://0.0.0.0:8000/projects/1e7b2a91-2896-40fd-8d53-83db56088026/checks/ansible-lint/disable' \
    -H 'accept: application/json'
    1. Now when project is configured, we can simply choose files that we want to scan and zip them. For IaC-Scan-Runner to work files are expected to be a compressed archives (usually zip files). In this case response type will be json , but it is possible to change it to html.Please change YOUR.zip to path of your file.
    curl -X 'POST' \
    'http://0.0.0.0:8000/projects/1e7b2a91-2896-40fd-8d53-83db56088026/scan?scan_response_type=json' \
    -H 'accept: application/json' \
    -H 'Content-Type: multipart/form-data' \
    -F 'iac=@YOUR.zip;type=application/zip'

    That is it.

    Extending the scan workflow with new check tools

    At certain point, it might be required to include new check tools within the scan workflow, with aim to provide wider coverage of IaC standards and project types. Therefore, in this subsection, a sequence of required steps for that purpose is identified and described. However, the steps have to be performed manually as it will be described, but it is planned to automatize this procedure in future via API and provide user-friendly interface that will aid the user while importing new tools that will become part of the available catalogue that makes the scan workflow. Figure 16 depicts the required steps which have to be taken in order to extend the scan workflow with a new tool.

    Step 1 – Adding tool-specific class to checks directory First, it is required to add a new tool-specific Python class to the checks directory inside IaC Scan Runner’s source code: iac-scan-runner/src/iac_scan_runner/checks/new_tool.py
    The class of a new tool inherits the existing Check class, which provides generalization of scan workflow tools. Moreover, it is necessary to provide implementation of the following methods:

    1. def configure(self, config_filename: Optional[str], secret: Optional[SecretStr])
    2. def run(self, directory: str) While the first one aims to provide the necessary tool-specific parameters in order to set it up (such as passwords, client ids and tokens), another one specifies how the tool itself is invoked via API or CLI and its raw output returned.

    Step 2 – Adding the check tool class instance within ScanRunner constructor Once the new class derived from Check is added to the IaC Scan Runner’s source code, it is also required to modify the source code of its main class, called ScanRunner. When it comes to modifications of this class, it is required first to import the tool-specific class, create a new check tool-specific class instance and adding it to the dictionary of IaC checks inside def init_checks(self). A. Importing the check tool class from iac_scan_runner.checks.tfsec import TfsecCheck B. Creating new instance of check tool object inside init_checks """Initiate predefined check objects""" new_tool = NewToolCheck() C. Adding it to self.iac_checks dictionary inside init_checks

        self.iac_checks = {
    new_tool.name: new_tool,
    …
    }

    Step 3 – Adding the check tool to the compatibility matrix inside Compatibility class On the other side, inside file src/iac_scan_runner/compatibility.py, the dictionary which represents compatibility matrix should be extended as well. There are two possible cases: a) new file type should be added as a key, together with list of relevant tools as value b) new tool should be added to the compatibility list for the existing file type.

        compatibility_matrix = {
    "new_type": ["new_tool_1", "new_tool_2"],
    …
    "old_typeK": ["tool_1", … "tool_N", "new_tool_3"]
    }

    Step 4 – Providing the support for result summarization Finally, the last step in sequence of required modifications for scan workflow extension is to modify class ResultsSummary (src/iac_scan_runner/results_summary.py). Precisely, it is required to append a part of the code to its method summarize_outcome that will look for specific strings which are tool-specific and can be used to identify whether the check passed or failed. Inside the loop that traverses the compatible checks, for each new tool the following structure of if-else should be included:

            if check == "new_tool":
    if outcome.find("Check pass string") > -1:
    self.outcomes[check]["status"] = "Passed"
    return "Passed"
    else:
    self.outcomes[check]["status"] = "Problems"
    return "Problems"

    Contact

    You can contact the xOpera team by sending an email to xopera@xlab.si.

    Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 101000162 (PIACERE).



    Deepsecrets - Secrets Scanner That Understands Code

    By: Zion3R


    Yet another tool - why?

    Existing tools don't really "understand" code. Instead, they mostly parse texts.

    DeepSecrets expands classic regex-search approaches with semantic analysis, dangerous variable detection, and more efficient usage of entropy analysis. Code understanding supports 500+ languages and formats and is achieved by lexing and parsing - techniques commonly used in SAST tools.

    DeepSecrets also introduces a new way to find secrets: just use hashed values of your known secrets and get them found plain in your code.

    Under the hood story is in articles here: https://hackernoon.com/modernizing-secrets-scanning-part-1-the-problem


    Mini-FAQ after release :)

    Pff, is it still regex-based?

    Yes and no. Of course, it uses regexes and finds typed secrets like any other tool. But language understanding (the lexing stage) and variable detection also use regexes under the hood. So regexes is an instrument, not a problem.

    Why don't you build true abstract syntax trees? It's academically more correct!

    DeepSecrets tries to keep a balance between complexity and effectiveness. Building a true AST is a pretty complex thing and simply an overkill for our specific task. So the tool still follows the generic SAST-way of code analysis but optimizes the AST part using a different approach.

    I'd like to build my own semantic rules. How do I do that?

    Only through the code by the moment. Formalizing the rules and moving them into a flexible and user-controlled ruleset is in the plans.

    I still have a question

    Feel free to communicate with the maintainer

    Installation

    From Github via pip

    $ pip install git+https://github.com/avito-tech/deepsecrets.git

    From PyPi

    $ pip install deepsecrets

    Scanning

    The easiest way:

    $ deepsecrets --target-dir /path/to/your/code --outfile report.json

    This will run a scan against /path/to/your/code using the default configuration:

    • Regex checks by the built-in ruleset
    • Semantic checks (variable detection, entropy checks)

    Report will be saved to report.json

    Fine-tuning

    Run deepsecrets --help for details.

    Basically, you can use your own ruleset by specifying --regex-rules. Paths to be excluded from scanning can be set via --excluded-paths.

    Building rulesets

    Regex

    The built-in ruleset for regex checks is located in /deepsecrets/rules/regexes.json. You're free to follow the format and create a custom ruleset.

    HashedSecret

    Example ruleset for regex checks is located in /deepsecrets/rules/regexes.json. You're free to follow the format and create a custom ruleset.

    Contributing

    Under the hood

    There are several core concepts:

    • File
    • Tokenizer
    • Token
    • Engine
    • Finding
    • ScanMode

    File

    Just a pythonic representation of a file with all needed methods for management.

    Tokenizer

    A component able to break the content of a file into pieces - Tokens - by its logic. There are four types of tokenizers available:

    • FullContentTokenizer: treats all content as a single token. Useful for regex-based search.
    • PerWordTokenizer: breaks given content by words and line breaks.
    • LexerTokenizer: uses language-specific smarts to break code into semantically correct pieces with additional context for each token.

    Token

    A string with additional information about its semantic role, corresponding file, and location inside it.

    Engine

    A component performing secrets search for a single token by its own logic. Returns a set of Findings. There are three engines available:

    • RegexEngine: checks tokens' values through a special ruleset
    • SemanticEngine: checks tokens produced by the LexerTokenizer using additional context - variable names and values
    • HashedSecretEngine: checks tokens' values by hashing them and trying to find coinciding hashes inside a special ruleset

    Finding

    This is a data structure representing a problem detected inside code. Features information about the precise location inside a file and a rule that found it.

    ScanMode

    This component is responsible for the scan process.

    • Defines the scope of analysis for a given work directory respecting exceptions
    • Allows declaring a PerFileAnalyzer - the method called against each file, returning a list of findings. The primary usage is to initialize necessary engines, tokenizers, and rulesets.
    • Runs the scan: a multiprocessing pool analyzes every file in parallel.
    • Prepares results for output and outputs them.

    The current implementation has a CliScanMode built by the user-provided config through the cli args.

    Local development

    The project is supposed to be developed using VSCode and 'Remote containers' feature.

    Steps:

    1. Clone the repository
    2. Open the cloned folder with VSCode
    3. Agree with 'Reopen in container'
    4. Wait until the container is built and necessary extensions are installed
    5. You're ready


    MemTracer - Memory Scaner

    By: Zion3R


    MemTracer is a tool that offers live memory analysis capabilities, allowing digital forensic practitioners to discover and investigate stealthy attack traces hidden in memory. The MemTracer is implemented in Python language, aiming to detect reflectively loaded native .NET framework Dynamic-Link Library (DLL). This is achieved by looking for the following abnormal memory region’s characteristics:

    • The state of memory pages flags in each memory region. Specifically, the MEM_COMMIT flag which is used to reserve memory pages for virtual memory use.
    • The type of pages in the region. The MEM_MAPPED page type indicates that the memory pages within the region are mapped into the view of a section.
    • The memory protection for the region. The PAGE_READWRITE protection to indicate that the memory region is readable and writable, which happens if Assembly.Load(byte[]) method is used to load a module into memory.
    • The memory region contains a PE header.

    The tool starts by scanning the running processes, and by analyzing the allocated memory regions characteristics to detect reflective DLL loading symptoms. Suspicious memory regions which are identified as DLL modules are dumped for further analysis and investigation.
    Furthermore, the tool features the following options:

    • Dump the compromised process.
    • Export a JSON file that provides information about the compromised process, such as the process name, ID, path, size, and base address.
    • Search for specific loaded module by name.

    Example

    python.exe memScanner.py [-h] [-r] [-m MODULE]
    -h, --help show this help message and exit
    -r, --reflectiveScan Looking for reflective DLL loading
    -m MODULE, --module MODULE Looking for spcefic loaded DLL

    The script needs administrator privileges in order incepect all processes.



    DakshSCRA - Source Code Review Assist

    By: Zion3R


    Daksh SCRA (Source Code Review Assist) tool is built to enhance the efficiency of the source code review process, providing a well-structured and organized approach for code reviewers.

    Rather than indiscriminately flagging everything as a potential issue, Daksh SCRA promotes thoughtful analysis, urging the investigation and confirmation of potential problems. This approach mitigates the scramble to tag every potential concern as a bug, cutting back on the confusion and wasted time spent on false positives.

    What sets Daksh SCRA apart is its emphasis on avoiding unnecessary bug tagging. Unlike conventional methods, it advocates for thorough investigation and confirmation of potential issues before tagging them as bugs. This approach helps mitigate the issue of false positives, which often consume valuable time and resources, thereby fostering a more productive and efficient code review process.


    Debut

    Daksh SCRA was initially introduced during a source code review training session I conducted at Black Hat USA 2022 (August 6 - 9), where it was subtly presented to a specific audience. However, this introduction was carried out with a low-profile approach, avoiding any major announcements.

    While this tool was quietly published on GitHub after the 2022 training, its official public debut took place at Black Hat USA 2023 in Las Vegas.

    Features and Functionalities

    Distinctive Features (Multiple World’s First)

    • Identifies Areas of Interest in Source Code: Encourage focused investigation and confirmation rather than indiscriminately labeling everything as a bug.

    • Identifies Areas of Interest in File Paths (World’s First): Recognises patterns in file paths to pinpoint relevant sections for review.

    • Software-Level Reconnaissance to Identify Technologies Utilised: Identifies project technologies, enabling code reviewers to conduct precise scans with appropriate rules.

    • Automated Scientific Effort Estimation for Code Review (World’s First): Providing a measurable approach for estimating efforts required for a code review process.

    Although this tool has progressed beyond its early stages, it has reached a functional state that is quite usable and delivers on its promised capabilities. Nevertheless, active enhancements are currently underway, and there are multiple new features and improvements expected to be added in the upcoming months.

    Additionally, the tool offers the following functionalities:

    • Options to use platform-specific rules specific for finding areas of interests
    • Options to extend or add new rules for any new or existing languages
    • Generates report in text, HTML and PDF format for inspection

    Refer to the wiki for the tool setup and usage details - https://github.com/coffeeandsecurity/DakshSCRA/wiki

    Feel free to contribute towards updating or adding new rules and future development.

    If you find any bugs, report them to d3basis.m0hanty@gmail.com.

    Tool Setup

    Pre-requisites

    Python3 and all the libraries listed in requirements.txt

    Setting up environment to run this tool

    1. Setup a virtual environment

    $ pip install virtualenv

    $ virtualenv -p python3 {name-of-virtual-env} // Create a virtualenv
    Example: virtualenv -p python3 venv

    $ source {name-of-virtual-env}/bin/activate // To activate virtual environment you just created
    Example: source venv/bin/activate

    After running the activate command you should see the name of your virtual env at the beginning of your terminal like this: (venv) $

    2. Ensure all required libraries are installed within the virtual environment

    You must run the below command after activating the virtual environment as mentioned in the previous steps.

    pip install -r requirements.txt

    Once the above step successfully installs all the required libraries, refer to the following tool usage commands to run the tool.

    Tool Usage

    $ python3 dakshscra.py -h // To view avaialble options and arguments

    usage: dakshscra.py [-h] [-r RULE_FILE] [-f FILE_TYPES] [-v] [-t TARGET_DIR] [-l {R,RF}] [-recon] [-estimate]

    options:
    -h, --help show this help message and exit
    -r RULE_FILE Specify platform specific rule name
    -f FILE_TYPES Specify file types to scan
    -v Specify verbosity level {'-v', '-vv', '-vvv'}
    -t TARGET_DIR Specify target directory path
    -l {R,RF}, --list {R,RF}
    List rules [R] OR rules and filetypes [RF]
    -recon Detects platform, framework and programming language used
    -estimate Estimate efforts required for code review

    Example Usage

    $ python3 dakshscra.py // To view tool usage along with examples

    Examples:
    # '-f' is optional. If not specified, it will default to the corresponding filetypes of the selected rule.
    dakshsca.py -r php -t /source_dir_path

    # To override default settings, other filetypes can be specified with '-f' option.
    dakshsca.py -r php -f dotnet -t /path_to_source_dir
    dakshsca.py -r php -f custom -t /path_to_source_dir

    # Perform reconnaissance and rule based scanning if '-recon' used with '-r' option.
    dakshsca.py -recon -r php -t /path_to_source_dir

    # Perform only reconnaissance if '-recon' used without the '-r' option.
    dakshsca.py -recon -t /path_to_source_dir

    # Verbosity: '-v' is default, '-vvv' will display all rules check within each rule category.
    dakshsca.py -r php -vv -t /path_to_source_dir


    Supported RULE_FILE: dotnet, java, php, javascript
    Supported FILE_TY PES: dotnet, php, java, custom, allfiles

    Reports

    The tool generates reports in three formats: HTML, PDF, and TEXT. Although the HTML and PDF reports are still being improved, they are currently in a reasonably good state. With each subsequent iteration, these reports will continue to be refined and improved even further.

    Scanning (Areas of Security Concerns) Report

    HTML Report:
    • DakshSCRA/reports/html/report.html
    PDF Report:
    • DakshSCRA/reports/html/report.pdf
    RAW TEXT Based Reports:
    • Areas of Interest - Identified Patterns : DakshSCRA/reports/text/areas_of_interest.txt
    • Areas of Interest - Project Files: DakshSCRA/reports/text/filepaths_aoi.txt
    • Identified Project Files: DakshSCRA/runtime/filepaths.txt

    Reconnaissance (Recon) Report

    • Reconnaissance Summary: /reports/text/recon.txt

    Note: Currently, the reconnaissance report is created in a text format. However, in upcoming releases, the plan is to incorporate it into the vulnerability scanning report, which will be available in both HTML and PDF formats.

    Code Review Effort Estimation Report

    • Effort estimation report: /reports/html/estimation.html

    Note: At present, the effort estimation for the source code review is in its early stages. It is considered experimental and will be developed and refined through several iterations. Improvements will be made over multiple releases, as the formula and the concept are new and require time to be honed to achieve accuracy or reasonable estimation.

    Currently, the report is generated in HTML format. However, in future releases, there are plans to also provide it in PDF format.



    Golddigger - Search Files For Gold

    By: Zion3R


    Gold Digger is a simple tool used to help quickly discover sensitive information in files recursively. Originally written to assist in rapidly searching files obtained during a penetration test.


    Installation

    Gold Digger requires Python3.

    virtualenv -p python3 .
    source bin/activate
    python dig.py --help

    Usage

    Directory to search for gold -r RECURSIVE, --recursive RECURSIVE Search directory recursively? -l LOG, --log LOG Log file to save output" dir="auto">
    usage: dig.py [-h] [-e EXCLUDE] [-g GOLD] -d DIRECTORY [-r RECURSIVE] [-l LOG]

    optional arguments:
    -h, --help show this help message and exit
    -e EXCLUDE, --exclude EXCLUDE
    JSON file containing extension exclusions
    -g GOLD, --gold GOLD JSON file containing the gold to search for
    -d DIRECTORY, --directory DIRECTORY
    Directory to search for gold
    -r RECURSIVE, --recursive RECURSIVE
    Search directory recursively?
    -l LOG, --log LOG Log file to save output

    Example Usage

    Gold Digger will recursively go through all folders and files in search of content matching items listed in the gold.json file. Additionally, you can leverage an exclusion file called exclusions.json for skipping files matching specific extensions. Provide the root folder as the --directory flag.

    An example structure could be:

    ~/Engagements/CustomerName/data/randomfiles/
    ~/Engagements/CustomerName/data/randomfiles2/
    ~/Engagements/CustomerName/data/code/

    You would provide the following command to parse all 3 account reports:

    python dig.py --gold gold.json --exclude exclusions.json --directory ~/Engagements/CustomerName/data/ --log Customer_2022-123_gold.log

    Results

    The tool will create a log file containg the scanning results. Due to the nature of using regular expressions, there may be numerous false positives. Despite this, the tool has been proven to increase productivity when processing thousands of files.

    Shout-outs

    Shout out to @d1vious for releasing git-wild-hunt https://github.com/d1vious/git-wild-hunt! Most of the regex in GoldDigger was used from this amazing project.



    Kubestroyer - Kubernetes Exploitation Tool

    By: Zion3R

    Kubestroyer

    Kubestroyer aims to exploit Kubernetes clusters misconfigurations and be the swiss army knife of your Kubernetes pentests


    About The Project

    Kubestroyer is a Golang exploitation tool that aims to take advantage of Kubernetes clusters misconfigurations.

    The tool is scanning known Kubernetes ports that can be exposed as well as exploiting them.

    Getting Started

    To get a local copy up and running, follow these simple example steps.

    Prerequisites

    • Go 1.19
      wget https://go.dev/dl/go1.19.4.linux-amd64.tar.gz
      tar -C /usr/local -xzf go1.19.4.linux-amd64.tar.gz

    Installation

    Use prebuilt binary

    or

    Using go install command :

    $ go install github.com/Rolix44/Kubestroyer@latest

    or

    build from source:

    1. Clone the repo
      $ git clone https://github.com/Rolix44/Kubestroyer.git
    2. build the binary
      $ go build -o Kubestroyer cmd/kubestroyer/main.go 

    Usage

    Parameter Description Mand/opt Example
    -t / --target Target (IP, domain or file) Mandatory -t localhost,127.0.0.1 / -t ./domain.txt
    --node-scan Enable node port scanning (port 30000 to 32767) Optionnal -t localhost --node-scan
    --anon-rce RCE using Kubelet API anonymous auth Optionnal -t localhost --anon-rce
    -x Command to execute when using RCE (display service account token by default) Optionnal -t localhost --anon-rce -x "ls -al"

    Currently supported features

    • Target

      • List of multiple targets
      • Input file as target
    • Scanning

      • Known ports scan
      • Node port scan (30000 to 32767)
      • Port description
    • Vulnerabilities

      • Annon RCE on Kubelet
        • Choose command to execute

    Roadmap

    • Choose the pod for anon RCE
    • Etcd exploit
    • Kubelet read-only API parsing for information disclosure

    See the open issues for a full list of proposed features (and known issues).

    Contributing

    Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

    If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

    1. Fork the Project
    2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
    3. Commit your Changes (git commit -m 'Add some AmazingFeature')
    4. Push to the Branch (git push origin feature/AmazingFeature)
    5. Open a Pull Request

    License

    Distributed under the MIT License. See LICENSE.txt for more information.

    Contact

    Rolix - @Rolix_cy - rolixcy@protonmail.com

    Project Link: https://github.com/Rolix44/Kubestroyer



    ❌