Bugsy is a command-line interface (CLI) tool that provides automatic security vulnerability remediation for your code. It is the community edition version of Mobb, the first vendor-agnostic automated security vulnerability remediation tool. Bugsy is designed to help developers quickly identify and fix security vulnerabilities in their code.
Mobb is the first vendor-agnostic automatic security vulnerability remediation tool. It ingests SAST results from Checkmarx, CodeQL (GitHub Advanced Security), OpenText Fortify, and Snyk and produces code fixes for developers to review and commit to their code.
Bugsy has two modes - Scan (no SAST report needed) & Analyze (the user needs to provide a pre-generated SAST report from one of the supported SAST tools).
Scan
Analyze
This is a community edition version that only analyzes public GitHub repositories. Analyzing private repositories is allowed for a limited amount of time. Bugsy does not detect any vulnerabilities in your code, it uses findings detected by the SAST tools mentioned above.
You can simply run Bugsy from the command line, using npx:
Daksh SCRA (Source Code Review Assist) tool is built to enhance the efficiency of the source code review process, providing a well-structured and organized approach for code reviewers.
Rather than indiscriminately flagging everything as a potential issue, Daksh SCRA promotes thoughtful analysis, urging the investigation and confirmation of potential problems. This approach mitigates the scramble to tag every potential concern as a bug, cutting back on the confusion and wasted time spent on false positives.
What sets Daksh SCRA apart is its emphasis on avoiding unnecessary bug tagging. Unlike conventional methods, it advocates for thorough investigation and confirmation of potential issues before tagging them as bugs. This approach helps mitigate the issue of false positives, which often consume valuable time and resources, thereby fostering a more productive and efficient code review process.
Daksh SCRA was initially introduced during a source code review training session I conducted at Black Hat USA 2022 (August 6 - 9), where it was subtly presented to a specific audience. However, this introduction was carried out with a low-profile approach, avoiding any major announcements.
While this tool was quietly published on GitHub after the 2022 training, its official public debut took place at Black Hat USA 2023 in Las Vegas.
Identifies Areas of Interest in Source Code: Encourage focused investigation and confirmation rather than indiscriminately labeling everything as a bug.
Identifies Areas of Interest in File Paths (Worldβs First): Recognises patterns in file paths to pinpoint relevant sections for review.
Software-Level Reconnaissance to Identify Technologies Utilised: Identifies project technologies, enabling code reviewers to conduct precise scans with appropriate rules.
Automated Scientific Effort Estimation for Code Review (Worldβs First): Providing a measurable approach for estimating efforts required for a code review process.
Although this tool has progressed beyond its early stages, it has reached a functional state that is quite usable and delivers on its promised capabilities. Nevertheless, active enhancements are currently underway, and there are multiple new features and improvements expected to be added in the upcoming months.
Additionally, the tool offers the following functionalities:
Refer to the wiki for the tool setup and usage details - https://github.com/coffeeandsecurity/DakshSCRA/wiki
Feel free to contribute towards updating or adding new rules and future development.
If you find any bugs, report them to d3basis.m0hanty@gmail.com.
Python3 and all the libraries listed in requirements.txt
$ pip install virtualenv
$ virtualenv -p python3 {name-of-virtual-env} // Create a virtualenv
Example: virtualenv -p python3 venv
$ source {name-of-virtual-env}/bin/activate // To activate virtual environment you just created
Example: source venv/bin/activate
After running the activate command you should see the name of your virtual env at the beginning of your terminal like this: (venv) $
You must run the below command after activating the virtual environment as mentioned in the previous steps.
pip install -r requirements.txt
Once the above step successfully installs all the required libraries, refer to the following tool usage commands to run the tool.
$ python3 dakshscra.py -h // To view avaialble options and arguments
usage: dakshscra.py [-h] [-r RULE_FILE] [-f FILE_TYPES] [-v] [-t TARGET_DIR] [-l {R,RF}] [-recon] [-estimate]
options:
-h, --help show this help message and exit
-r RULE_FILE Specify platform specific rule name
-f FILE_TYPES Specify file types to scan
-v Specify verbosity level {'-v', '-vv', '-vvv'}
-t TARGET_DIR Specify target directory path
-l {R,RF}, --list {R,RF}
List rules [R] OR rules and filetypes [RF]
-recon Detects platform, framework and programming language used
-estimate Estimate efforts required for code review
$ python3 dakshscra.py // To view tool usage along with examples
Examples:
# '-f' is optional. If not specified, it will default to the corresponding filetypes of the selected rule.
dakshsca.py -r php -t /source_dir_path
# To override default settings, other filetypes can be specified with '-f' option.
dakshsca.py -r php -f dotnet -t /path_to_source_dir
dakshsca.py -r php -f custom -t /path_to_source_dir
# Perform reconnaissance and rule based scanning if '-recon' used with '-r' option.
dakshsca.py -recon -r php -t /path_to_source_dir
# Perform only reconnaissance if '-recon' used without the '-r' option.
dakshsca.py -recon -t /path_to_source_dir
# Verbosity: '-v' is default, '-vvv' will display all rules check within each rule category.
dakshsca.py -r php -vv -t /path_to_source_dir
Supported RULE_FILE: dotnet, java, php, javascript
Supported FILE_TY PES: dotnet, php, java, custom, allfiles
The tool generates reports in three formats: HTML, PDF, and TEXT. Although the HTML and PDF reports are still being improved, they are currently in a reasonably good state. With each subsequent iteration, these reports will continue to be refined and improved even further.
Note: Currently, the reconnaissance report is created in a text format. However, in upcoming releases, the plan is to incorporate it into the vulnerability scanning report, which will be available in both HTML and PDF formats.
Note: At present, the effort estimation for the source code review is in its early stages. It is considered experimental and will be developed and refined through several iterations. Improvements will be made over multiple releases, as the formula and the concept are new and require time to be honed to achieve accuracy or reasonable estimation.
Currently, the report is generated in HTML format. However, in future releases, there are plans to also provide it in PDF format.
This tool is a simple PoC of how to hide memory artifacts using a ROP chain in combination with hardware breakpoints. The ROP chain will change the main module memory page's protections to N/A while sleeping (i.e. when the function Sleep is called). For more detailed information about this memory scanning evasion technique check out the original project Gargoyle. x64 only.
The idea is to set up a hardware breakpoint in kernel32!Sleep and a new top-level filter to handle the exception. When Sleep is called, the exception filter function set before is triggered, allowing us to call the ROP chain without the need of using classic function hooks. This way, we avoid leaving weird and unusual private memory regions in the process related to well known dlls.
The ROP chain simply calls VirtualProtect() to set the current memory page to N/A, then calls SleepEx and finally restores the RX memory protection.
The overview of the process is as follows:
This process repeats indefinitely.
As it can be seen in the image, the main module's memory protection is changed to N/A while sleeping, which avoids memory scans looking for pages with execution permission.
Since we are using LITCRYPT plugin to obfuscate string literals, it is required to set up the environment variable LITCRYPT_ENCRYPT_KEY before compiling the code:
C:\Users\User\Desktop\RustChain> set LITCRYPT_ENCRYPT_KEY="yoursupersecretkey"
After that, simply compile the code and run the tool:
C:\Users\User\Desktop\RustChain> cargo build
C:\Users\User\Desktop\RustChain\target\debug> rustchain.exe
This tool is just a PoC and some extra features should be implemented in order to be fully functional. The main purpose of the project was to learn how to implement a ROP chain and integrate it within Rust. Because of that, this tool will only work if you use it as it is, and failures are expected if you try to use it in other ways (for example, compiling it to a dll and trying to reflectively load and execute it).