FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayTools

Galah - An LLM-powered Web Honeypot Using The OpenAI API

By: Zion3R


TL;DR: Galah (/ɡəˈlɑː/ - pronounced 'guh-laa') is an LLM (Large Language Model) powered web honeypot, currently compatible with the OpenAI API, that is able to mimic various applications and dynamically respond to arbitrary HTTP requests.


Description

Named after the clever Australian parrot known for its mimicry, Galah mirrors this trait in its functionality. Unlike traditional web honeypots that rely on a manual and limiting method of emulating numerous web applications or vulnerabilities, Galah adopts a novel approach. This LLM-powered honeypot mimics various web applications by dynamically crafting relevant (and occasionally foolish) responses, including HTTP headers and body content, to arbitrary HTTP requests. Fun fact: in Aussie English, Galah also means fool!

I've deployed a cache for the LLM-generated responses (the cache duration can be customized in the config file) to avoid generating multiple responses for the same request and to reduce the cost of the OpenAI API. The cache stores responses per port, meaning if you probe a specific port of the honeypot, the generated response won't be returned for the same request on a different port.

The prompt is the most crucial part of this honeypot! You can update the prompt in the config file, but be sure not to change the part that instructs the LLM to generate the response in the specified JSON format.

Note: Galah was a fun weekend project I created to evaluate the capabilities of LLMs in generating HTTP messages, and it is not intended for production use. The honeypot may be fingerprinted based on its response time, non-standard, or sometimes weird responses, and other network-based techniques. Use this tool at your own risk, and be sure to set usage limits for your OpenAI API.

Future Enhancements

  • Rule-Based Response: The new version of Galah will employ a dynamic, rule-based approach, adding more control over response generation. This will further reduce OpenAI API costs and increase the accuracy of the generated responses.

  • Response Database: It will enable you to generate and import a response database. This ensures the honeypot only turns to the OpenAI API for unknown or new requests. I'm also working on cleaning up and sharing my own database.

  • Support for Other LLMs.

Getting Started

  • Ensure you have Go version 1.20+ installed.
  • Create an OpenAI API key from here.
  • If you want to serve over HTTPS, generate TLS certificates.
  • Clone the repo and install the dependencies.
  • Update the config.yaml file.
  • Build and run the Go binary!
% git clone git@github.com:0x4D31/galah.git
% cd galah
% go mod download
% go build
% ./galah -i en0 -v

██████ █████ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██
██ ███ ███████ ██ ███████ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██ ██ ███████ ██ ██ ██ ██
llm-based web honeypot // version 1.0
author: Adel "0x4D31" Karimi

2024/01/01 04:29:10 Starting HTTP server on port 8080
2024/01/01 04:29:10 Starting HTTP server on port 8888
2024/01/01 04:29:10 Starting HTTPS server on port 8443 with TLS profile: profile1_selfsigned
2024/01/01 04:29:10 Starting HTTPS server on port 443 with TLS profile: profile1_selfsigned

2024/01/01 04:35:57 Received a request for "/.git/config" from [::1]:65434
2024/01/01 04:35:57 Request cache miss for "/.git/config": Not found in cache
2024/01/01 04:35:59 Generated HTTP response: {"Headers": {"Content-Type": "text/plain", "Server": "Apache/2.4.41 (Ubuntu)", "Status": "403 Forbidden"}, "Body": "Forbidden\nYou don't have permission to access this resource."}
2024/01/01 04:35:59 Sending the crafted response to [::1]:65434

^C2024/01/01 04:39:27 Received shutdown signal. Shutting down servers...
2024/01/01 04:39:27 All servers shut down gracefully.

Example Responses

Here are some example responses:

Example 1

% curl http://localhost:8080/login.php
<!DOCTYPE html><html><head><title>Login Page</title></head><body><form action='/submit.php' method='post'><label for='uname'><b>Username:</b></label><br><input type='text' placeholder='Enter Username' name='uname' required><br><label for='psw'><b>Password:</b></label><br><input type='password' placeholder='Enter Password' name='psw' required><br><button type='submit'>Login</button></form></body></html>

JSON log record:

{"timestamp":"2024-01-01T05:38:08.854878","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"51978","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/login.php","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Content-Type":"text/html","Server":"Apache/2.4.38"},"body":"\u003c!DOCTYPE html\u003e\u003chtml\u003e\u003chead\u003e\u003ctitle\u003eLogin Page\u003c/title\u003e\u003c/head\u003e\u003cbody\u003e\u003cform action='/submit.php' method='post'\u003e\u003clabel for='uname'\u003e\u003cb\u003eUsername:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='text' placeholder='Enter Username' name='uname' required\u003e\u003cbr\u003e\u003clabel for='psw'\u003e\u003cb\u003ePassword:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='password' placeholder='Enter Password' name='psw' required\u003e\u003cbr\u003e\u003cbutton type='submit'\u003eLogin\u003c/button\u003e\u003c/form\u003e\u003c/body\u003e\u003c/html\u003e"}}

Example 2

% curl http://localhost:8080/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
region = us-west-2

JSON log record:

{"timestamp":"2024-01-01T05:40:34.167361","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"65311","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/.aws/credentials","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Encoding":"gzip","Content-Length":"126","Content-Type":"text/plain","Server":"Apache/2.4.51 (Unix)"},"body":"[default]\naws_access_key_id = AKIAIOSFODNN7EXAMPLE\naws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\nregion = us-west-2"}}

Okay, that was impressive!

Example 3

Now, let's do some sort of adversarial testing!

% curl http://localhost:8888/are-you-a-honeypot
No, I am a server.`

JSON log record:

{"timestamp":"2024-01-01T05:50:43.792479","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"61982","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/are-you-a-honeypot","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Length":"20","Content-Type":"text/plain","Server":"Apache/2.4.41 (Ubuntu)"},"body":"No, I am a server."}}

😑

% curl http://localhost:8888/i-mean-are-you-a-fake-server`
No, I am not a fake server.

JSON log record:

{"timestamp":"2024-01-01T05:51:40.812831","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"62205","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/i-mean-are-you-a-fake-server","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Type":"text/plain","Server":"LocalHost/1.0"},"body":"No, I am not a fake server."}}

You're a galah, mate!



Cloud_Enum - Multi-cloud OSINT Tool. Enumerate Public Resources In AWS, Azure, And Google Cloud

By: Zion3R


Multi-cloud OSINT tool. Enumerate public resources in AWS, Azure, and Google Cloud.

Currently enumerates the following:

Amazon Web Services: - Open / Protected S3 Buckets - awsapps (WorkMail, WorkDocs, Connect, etc.)

Microsoft Azure: - Storage Accounts - Open Blob Storage Containers - Hosted Databases - Virtual Machines - Web Apps

Google Cloud Platform - Open / Protected GCP Buckets - Open / Protected Firebase Realtime Databases - Google App Engine sites - Cloud Functions (enumerates project/regions with existing functions, then brute forces actual function names) - Open Firebase Apps


See it in action in Codingo's video demo here.


Usage

Setup

Several non-standard libaries are required to support threaded HTTP requests and dns lookups. You'll need to install the requirements as follows:

pip3 install -r ./requirements.txt

Running

The only required argument is at least one keyword. You can use the built-in fuzzing strings, but you will get better results if you supply your own with -m and/or -b.

You can provide multiple keywords by specifying the -k argument multiple times.

Keywords are mutated automatically using strings from enum_tools/fuzz.txt or a file you provide with the -m flag. Services that require a second-level of brute forcing (Azure Containers and GCP Functions) will also use fuzz.txt by default or a file you provide with the -b flag.

Let's say you were researching "somecompany" whose website is "somecompany.io" that makes a product called "blockchaindoohickey". You could run the tool like this:

./cloud_enum.py -k somecompany -k somecompany.io -k blockchaindoohickey

HTTP scraping and DNS lookups use 5 threads each by default. You can try increasing this, but eventually the cloud providers will rate limit you. Here is an example to increase to 10.

./cloud_enum.py -k keyword -t 10

IMPORTANT: Some resources (Azure Containers, GCP Functions) are discovered per-region. To save time scanning, there is a "REGIONS" variable defined in cloudenum/azure_regions.py and cloudenum/gcp_regions.py that is set by default to use only 1 region. You may want to look at these files and edit them to be relevant to your own work.

Complete Usage Details

usage: cloud_enum.py [-h] -k KEYWORD [-m MUTATIONS] [-b BRUTE]

Multi-cloud enumeration utility. All hail OSINT!

optional arguments:
-h, --help show this help message and exit
-k KEYWORD, --keyword KEYWORD
Keyword. Can use argument multiple times.
-kf KEYFILE, --keyfile KEYFILE
Input file with a single keyword per line.
-m MUTATIONS, --mutations MUTATIONS
Mutations. Default: enum_tools/fuzz.txt
-b BRUTE, --brute BRUTE
List to brute-force Azure container names. Default: enum_tools/fuzz.txt
-t THREADS, --threads THREADS
Threads for HTTP brute-force. Default = 5
-ns NAMESERVER, --nameserver NAMESERVER
DNS server to use in brute-force.
-l LOGFILE, --logfile LOGFILE
Will APPEND found items to specified file.
-f FORMAT, --format FORMAT
Format for log file (text,json,csv - defaults to text)
--disable-aws Disable Amazon checks.
--disable-azure Disable Azure checks.
--disable-gcp Disable Google checks.
-qs, --quickscan Disable all mutations and second-level scans

Thanks

So far, I have borrowed from: - Some of the permutations from GCPBucketBrute



Pentest-Muse-Cli - AI Assistant Tailored For Cybersecurity Professionals

By: Zion3R


Pentest Muse is an AI assistant tailored for cybersecurity professionals. It can help penetration testers brainstorm ideas, write payloads, analyze code, and perform reconnaissance. It can also take actions, execute command line codes, and iteratively solve complex tasks.


Pentest Muse Web App

In addition to this command-line tool, we are excited to introduce the Pentest Muse Web Application! The web app has access to the latest online information, and would be a good AI assistant for your pentesting job.

Disclaimer

This tool is intended for legal and ethical use only. It should only be used for authorized security testing and educational purposes. The developers assume no liability and are not responsible for any misuse or damage caused by this program.

Requirements

  • Python 3.12 or later
  • Necessary Python packages as listed in requirements.txt

Setup

Standard Setup

  1. Clone the repository:

git clone https://github.com/pentestmuse-ai/PentestMuse cd PentestMuse

  1. Install the required packages:

pip install -r requirements.txt

Alternative Setup (Package Installation)

Install Pentest Muse as a Python Package:

pip install .

Running the Application

Chat Mode (Default)

In the chat mode, you can chat with pentest muse and ask it to help you brainstorm ideas, write payloads, and analyze code. Run the application with:

python run_app.py

or

pmuse

Agent Mode (Experimental)

You can also give Pentest Muse more control by asking it to take actions for you with the agent mode. In this mode, Pentest Muse can help you finish a simple task (e.g., 'help me do sql injection test on url xxx'). To start the program with agent model, you can use:

python run_app.py agent

or

pmuse agent

Selection of Language Models

Managed APIs

You can use Pentest Muse with our managed APIs after signing up at www.pentestmuse.ai/signup. After creating an account, you can simply start the pentest muse cli, and the program will prompt you to login.

OpenAI API keys

Alternatively, you can also choose to use your own OpenAI API keys. To do this, you can simply add argument --openai-api-key=[your openai api key] when starting the program.

Contact

For any feedback or suggestions regarding Pentest Muse, feel free to reach out to us at contact@pentestmuse.ai or join our discord. Your input is invaluable in helping us improve and evolve.



BloodHound - Six Degrees Of Domain Admin

By: Zion3R


BloodHound is a monolithic web application composed of an embedded React frontend with Sigma.js and a Go based REST API backend. It is deployed with a Postgresql application database and a Neo4j graph database, and is fed by the SharpHound and AzureHound data collectors.

BloodHound uses graph theory to reveal the hidden and often unintended relationships within an Active Directory or Azure environment. Attackers can use BloodHound to easily identify highly complex attack paths that would otherwise be impossible to identify quickly. Defenders can use BloodHound to identify and eliminate those same attack paths. Both blue and red teams can use BloodHound to easily gain a deeper understanding of privilege relationships in an Active Directory or Azure environment.

BloodHound CE is created and maintained by the BloodHound Enterprise Team. The original BloodHound was created by @_wald0, @CptJesus, and @harmj0y.


Running BloodHound Community Edition

The easiest way to get up and running is to use our pre-configured Docker Compose setup. The following steps will get BloodHound CE up and running with the least amount of effort.

  1. Install Docker Compose and ensure Docker is running. This should be included with the Docker Desktop installation
  2. Run curl -L https://ghst.ly/getbhce | docker compose -f - up
  3. Locate the randomly generated password in the terminal output of Docker Compose
  4. In a browser, navigate to http://localhost:8080/ui/login. Login with a username of admin and the randomly generated password from the logs

NOTE: going forward, the default docker-compose.yml example binds only to localhost (127.0.0.1). If you want to access BloodHound outside of localhost, you'll need to follow the instructions in examples/docker-compose/README.md to configure the host binding for the container.


Installation Error Handling
  • If you encounter a "failed to get console mode for stdin: The handle is invalid." ensure Docker Desktop (and associated Engine is running). Docker Desktop does not automatically register as a startup entry.

  • If you encounter an "Error response from daemon: Ports are not available: exposing port TCP 127.0.0.1:7474 -> 0.0.0.0:0: listen tcp 127.0.0.1:7474: bind: Only one usage of each socket address (protocol/network address/port) is normally permitted." this is normally attributed to the "Neo4J Graph Database - neo4j" service already running on your local system. Please stop or delete the service to continue.
# Verify if Docker Engine is Running
docker info

# Attempt to stop Neo4j Service if running (on Windows)
Stop-Service "Neo4j" -ErrorAction SilentlyContinue
  • A successful installation of BloodHound CE would look like the below:

https://github.com/SpecterOps/BloodHound/assets/12970156/ea9dc042-1866-4ccb-9839-933140cc38b9


Useful Links

Contact

Please check out the Contact page in our wiki for details on how to reach out with questions and suggestions.



Gssapi-Abuse - A Tool For Enumerating Potential Hosts That Are Open To GSSAPI Abuse Within Active Directory Networks

By: Zion3R


gssapi-abuse was released as part of my DEF CON 31 talk. A full write up on the abuse vector can be found here: A Broken Marriage: Abusing Mixed Vendor Kerberos Stacks

The tool has two features. The first is the ability to enumerate non Windows hosts that are joined to Active Directory that offer GSSAPI authentication over SSH.

The second feature is the ability to perform dynamic DNS updates for GSSAPI abusable hosts that do not have the correct forward and/or reverse lookup DNS entries. GSSAPI based authentication is strict when it comes to matching service principals, therefore DNS entries should match the service principal name both by hostname and IP address.


Prerequisites

gssapi-abuse requires a working krb5 stack along with a correctly configured krb5.conf.

Windows

On Windows hosts, the MIT Kerberos software should be installed in addition to the python modules listed in requirements.txt, this can be obtained at the MIT Kerberos Distribution Page. Windows krb5.conf can be found at C:\ProgramData\MIT\Kerberos5\krb5.conf

Linux

The libkrb5-dev package needs to be installed prior to installing python requirements

All

Once the requirements are satisfied, you can install the python dependencies via pip/pip3 tool

pip install -r requirements.txt

Enumeration Mode

The enumeration mode will connect to Active Directory and perform an LDAP search for all computers that do not have the word Windows within the Operating System attribute.

Once the list of non Windows machines has been obtained, gssapi-abuse will then attempt to connect to each host over SSH and determine if GSSAPI based authentication is permitted.

Example

python .\gssapi-abuse.py -d ad.ginge.com enum -u john.doe -p SuperSecret!
[=] Found 2 non Windows machines registered within AD
[!] Host ubuntu.ad.ginge.com does not have GSSAPI enabled over SSH, ignoring
[+] Host centos.ad.ginge.com has GSSAPI enabled over SSH

DNS Mode

DNS mode utilises Kerberos and dnspython to perform an authenticated DNS update over port 53 using the DNS-TSIG protocol. Currently dns mode relies on a working krb5 configuration with a valid TGT or DNS service ticket targetting a specific domain controller, e.g. DNS/dc1.victim.local.

Examples

Adding a DNS A record for host ahost.ad.ginge.com

python .\gssapi-abuse.py -d ad.ginge.com dns -t ahost -a add --type A --data 192.168.128.50
[+] Successfully authenticated to DNS server win-af8ki8e5414.ad.ginge.com
[=] Adding A record for target ahost using data 192.168.128.50
[+] Applied 1 updates successfully

Adding a reverse PTR record for host ahost.ad.ginge.com. Notice that the data argument is terminated with a ., this is important or the record becomes a relative record to the zone, which we do not want. We also need to specify the target zone to update, since PTR records are stored in different zones to A records.

python .\gssapi-abuse.py -d ad.ginge.com dns --zone 128.168.192.in-addr.arpa -t 50 -a add --type PTR --data ahost.ad.ginge.com.
[+] Successfully authenticated to DNS server win-af8ki8e5414.ad.ginge.com
[=] Adding PTR record for target 50 using data ahost.ad.ginge.com.
[+] Applied 1 updates successfully

Forward and reverse DNS lookup results after execution

nslookup ahost.ad.ginge.com
Server: WIN-AF8KI8E5414.ad.ginge.com
Address: 192.168.128.1

Name: ahost.ad.ginge.com
Address: 192.168.128.50
nslookup 192.168.128.50
Server: WIN-AF8KI8E5414.ad.ginge.com
Address: 192.168.128.1

Name: ahost.ad.ginge.com
Address: 192.168.128.50


Pantheon - Insecure Camera Parser

By: Zion3R


Pantheon is a GUI application that allows users to display information regarding network cameras in various countries as well as an integrated live-feed for non-protected cameras.

Functionalities

Pantheon allows users to execute an API crawler. There was original functionality without the use of any API's (like Insecam), but Google TOS kept getting in the way of the original scraping mechanism.


Installation

  1. git clone https://github.com/josh0xA/Pantheon.git
  2. cd Pantheon
  3. pip3 install -r requirements.txt
    Execution: python3 pantheon.py
  • Note: I will later add a GUI installer to make it fully indepenent of a CLI

Windows

  • You can just follow the steps above or download the official package here.
  • Note, the PE binary of Pantheon was put together using pyinstaller, so Windows Defender might get a bit upset.

Ubuntu

  • First, complete steps 1, 2 and 3 listed above.
  • chmod +x distros/ubuntu_install.sh
  • ./distros/ubuntu_install.sh

Debian and Kali Linux

  • First, complete steps 1, 2 and 3 listed above.
  • chmod +x distros/debian-kali_install.sh
  • ./distros/debian-kali_install.sh

MacOS

  • The regular installation steps above should suffice. If not, open up an issue.

Usage

(Enter) on a selected IP:Port to establish a Pantheon webview of the camera. (Use this at your own risk)

(Left-click) on a selected IP:Port to view the geolocation of the camera.
(Right-click) on a selected IP:Port to view the HTTP data of the camera (Ctrl+Left-click for Mac).

Adjust the map as you please to see the markers.

  • Also note that this app is far from perfect and not every link that shows up is a live-feed, some are login pages (Do NOT attempt to login).

Ethical Notice

The developer of this program, Josh Schiavone, is not resposible for misuse of this data gathering tool. Pantheon simply provides information that can be indexed by any modern search engine. Do not try to establish unauthorized access to live feeds that are password protected - that is illegal. Furthermore, if you do choose to use Pantheon to view a live-feed, do so at your own risk. Pantheon was developed for educational purposes only. For further information, please visit: https://joshschiavone.com/panth_info/panth_ethical_notice.html

Licence

MIT License
Copyright (c) Josh Schiavone



APIDetector - Efficiently Scan For Exposed Swagger Endpoints Across Web Domains And Subdomains

By: Zion3R


APIDetector is a powerful and efficient tool designed for testing exposed Swagger endpoints in various subdomains with unique smart capabilities to detect false-positives. It's particularly useful for security professionals and developers who are engaged in API testing and vulnerability scanning.


Features

  • Flexible Input: Accepts a single domain or a list of subdomains from a file.
  • Multiple Protocols: Option to test endpoints over both HTTP and HTTPS.
  • Concurrency: Utilizes multi-threading for faster scanning.
  • Customizable Output: Save results to a file or print to stdout.
  • Verbose and Quiet Modes: Default verbose mode for detailed logs, with an option for quiet mode.
  • Custom User-Agent: Ability to specify a custom User-Agent for requests.
  • Smart Detection of False-Positives: Ability to detect most false-positives.

Getting Started

Prerequisites

Before running APIDetector, ensure you have Python 3.x and pip installed on your system. You can download Python here.

Installation

Clone the APIDetector repository to your local machine using:

git clone https://github.com/brinhosa/apidetector.git
cd apidetector
pip install requests

Usage

Run APIDetector using the command line. Here are some usage examples:

  • Common usage, scan with 30 threads a list of subdomains using a Chrome user-agent and save the results in a file:

    python apidetector.py -i list_of_company_subdomains.txt -o results_file.txt -t 30 -ua "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"
  • To scan a single domain:

    python apidetector.py -d example.com
  • To scan multiple domains from a file:

    python apidetector.py -i input_file.txt
  • To specify an output file:

    python apidetector.py -i input_file.txt -o output_file.txt
  • To use a specific number of threads:

    python apidetector.py -i input_file.txt -t 20
  • To scan with both HTTP and HTTPS protocols:

    python apidetector.py -m -d example.com
  • To run the script in quiet mode (suppress verbose output):

    python apidetector.py -q -d example.com
  • To run the script with a custom user-agent:

    python apidetector.py -d example.com -ua "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"

Options

  • -d, --domain: Single domain to test.
  • -i, --input: Input file containing subdomains to test.
  • -o, --output: Output file to write valid URLs to.
  • -t, --threads: Number of threads to use for scanning (default is 10).
  • -m, --mixed-mode: Test both HTTP and HTTPS protocols.
  • -q, --quiet: Disable verbose output (default mode is verbose).
  • -ua, --user-agent: Custom User-Agent string for requests.

RISK DETAILS OF EACH ENDPOINT APIDETECTOR FINDS

Exposing Swagger or OpenAPI documentation endpoints can present various risks, primarily related to information disclosure. Here's an ordered list based on potential risk levels, with similar endpoints grouped together APIDetector scans:

1. High-Risk Endpoints (Direct API Documentation):

  • Endpoints:
    • '/swagger-ui.html', '/swagger-ui/', '/swagger-ui/index.html', '/api/swagger-ui.html', '/documentation/swagger-ui.html', '/swagger/index.html', '/api/docs', '/docs', '/api/swagger-ui', '/documentation/swagger-ui'
  • Risk:
    • These endpoints typically serve the Swagger UI interface, which provides a complete overview of all API endpoints, including request formats, query parameters, and sometimes even example requests and responses.
    • Risk Level: High. Exposing these gives potential attackers detailed insights into your API structure and potential attack vectors.

2. Medium-High Risk Endpoints (API Schema/Specification):

  • Endpoints:
    • '/openapi.json', '/swagger.json', '/api/swagger.json', '/swagger.yaml', '/swagger.yml', '/api/swagger.yaml', '/api/swagger.yml', '/api.json', '/api.yaml', '/api.yml', '/documentation/swagger.json', '/documentation/swagger.yaml', '/documentation/swagger.yml'
  • Risk:
    • These endpoints provide raw Swagger/OpenAPI specification files. They contain detailed information about the API endpoints, including paths, parameters, and sometimes authentication methods.
    • Risk Level: Medium-High. While they require more interpretation than the UI interfaces, they still reveal extensive information about the API.

3. Medium Risk Endpoints (API Documentation Versions):

  • Endpoints:
    • '/v2/api-docs', '/v3/api-docs', '/api/v2/swagger.json', '/api/v3/swagger.json', '/api/v1/documentation', '/api/v2/documentation', '/api/v3/documentation', '/api/v1/api-docs', '/api/v2/api-docs', '/api/v3/api-docs', '/swagger/v2/api-docs', '/swagger/v3/api-docs', '/swagger-ui.html/v2/api-docs', '/swagger-ui.html/v3/api-docs', '/api/swagger/v2/api-docs', '/api/swagger/v3/api-docs'
  • Risk:
    • These endpoints often refer to version-specific documentation or API descriptions. They reveal information about the API's structure and capabilities, which could aid an attacker in understanding the API's functionality and potential weaknesses.
    • Risk Level: Medium. These might not be as detailed as the complete documentation or schema files, but they still provide useful information for attackers.

4. Lower Risk Endpoints (Configuration and Resources):

  • Endpoints:
    • '/swagger-resources', '/swagger-resources/configuration/ui', '/swagger-resources/configuration/security', '/api/swagger-resources', '/api.html'
  • Risk:
    • These endpoints often provide auxiliary information, configuration details, or resources related to the API documentation setup.
    • Risk Level: Lower. They may not directly reveal API endpoint details but can give insights into the configuration and setup of the API documentation.

Summary:

  • Highest Risk: Directly exposing interactive API documentation interfaces.
  • Medium-High Risk: Exposing raw API schema/specification files.
  • Medium Risk: Version-specific API documentation.
  • Lower Risk: Configuration and resource files for API documentation.

Recommendations:

  • Access Control: Ensure that these endpoints are not publicly accessible or are at least protected by authentication mechanisms.
  • Environment-Specific Exposure: Consider exposing detailed API documentation only in development or staging environments, not in production.
  • Monitoring and Logging: Monitor access to these endpoints and set up alerts for unusual access patterns.

Contributing

Contributions to APIDetector are welcome! Feel free to fork the repository, make changes, and submit pull requests.

Legal Disclaimer

The use of APIDetector should be limited to testing and educational purposes only. The developers of APIDetector assume no liability and are not responsible for any misuse or damage caused by this tool. It is the end user's responsibility to obey all applicable local, state, and federal laws. Developers assume no responsibility for unauthorized or illegal use of this tool. Before using APIDetector, ensure you have permission to test the network or systems you intend to scan.

License

This project is licensed under the MIT License.

Acknowledgments



Dynmx - Signature-based Detection Of Malware Features Based On Windows API Call Sequences

By: Zion3R


dynmx (spoken dynamics) is a signature-based detection approach for behavioural malware features based on Windows API call sequences. In a simplified way, you can think of dynmx as a sort of YARA for API call traces (so called function logs) originating from malware sandboxes. Hence, the data basis for the detection approach are not the malware samples themselves which are analyzed statically but data that is generated during a dynamic analysis of the malware sample in a malware sandbox. Currently, dynmx supports function logs of the following malware sandboxes:

  • VMRay (function log, text-based and XML format)
  • CAPEv2 (report.json file)
  • Cuckoo (report.json file)

The detection approach is described in detail in the master thesis Signature-Based Detection of Behavioural Malware Features with Windows API Calls. This project is the prototype implementation of this approach and was developed in the course of the master thesis. The signatures are manually defined by malware analysts in the dynmx signature DSL and can be detected in function logs with the help of this tool. Features and syntax of the dynmx signature DSL can also be found in the master thesis. Furthermore, you can find sample dynmx signatures in the repository dynmx-signatures. In addition to detecting malware features based on API calls, dynmx can extract OS resources that are used by the malware (a so called Access Activity Model). These resources are extracted by examining the API calls and reconstructing operations on OS resources. Currently, OS resources of the categories filesystem, registry and network are considered in the model.


Example

In the following section, examples are shown for the detection of malware features and for the extraction of resources.

Detection

For this example, we choose the malware sample with the SHA-256 hash sum c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3. According to MalwareBazaar, the sample belongs to the malware family Amadey. There is a public VMRay analysis report of this sample available which also provides the function log traced by VMRay. This function log will be our data basis which we will use for the detection.

If we would like to know if the malware sample uses an injection technique called Process Hollowing, we can try to detect the following dynmx signature in the function log.

dynmx_signature:
meta:
name: process_hollow
title: Process Hollowing
description: Detection of Process hollowing malware feature
detection:
proc_hollow:
# Create legit process in suspended mode
- api_call: ["CreateProcess[AW]", "CreateProcessInternal[AW]"]
with:
- argument: "dwCreationFlags"
operation: "flag is set"
value: 0x4
- return_value: "return"
operation: "is not"
value: 0
store:
- name: "hProcess"
as: "proc_handle"
- name: "hThread"
as: "thread_handle"
# Injection of malicious code into memory of previously created process
- variant:
- path:
# Allocate memory with read, write, execute permission
- api_call: ["VirtualAllocE x", "VirtualAlloc", "(Nt|Zw)AllocateVirtualMemory"]
with:
- argument: ["hProcess", "ProcessHandle"]
operation: "is"
value: "$(proc_handle)"
- argument: ["flProtect", "Protect"]
operation: "is"
value: 0x40
- api_call: ["WriteProcessMemory"]
with:
- argument: "hProcess"
operation: "is"
value: "$(proc_handle)"
- api_call: ["SetThreadContext", "(Nt|Zw)SetContextThread"]
with:
- argument: "hThread"
operation: "is"
value: "$(thread_handle)"
- path:
# Map memory section with read, write, execute permission
- api_call: "(Nt|Zw)MapViewOfSection"
with:
- argument: "ProcessHandle"
operation: "is"
value: "$(proc_handle)"
- argument: "AccessProtection"
operation: "is"
value: 0x40
# Resume thread to run injected malicious code
- api_call: ["ResumeThread", "(Nt|Zw)ResumeThread"]
with:
- argument: ["hThread", "ThreadHandle"]
operation: "is"
value: "$(thread_handle)"
condition: proc_hollow as sequence

Based on the signature, we can find some DSL features that make dynmx powerful:

  • Definition of API call sequences with alternative paths
  • Matching of API call function names with regular expressions
  • Matching of argument and return values with several operators
  • Storage of variables, e.g. in order to track handles in the API call sequence
  • Definition of a detection condition with boolean operators (AND, OR, NOT)

If we run dynmx with the signature shown above against the function of the sample c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3, we get the following output indicating that the signature was detected.

$ python3 dynmx.py detect -i 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json -s process_hollow.yml


|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Parsing 1 function log(s)
[+] Loaded 1 dynmx signature(s)
[+] Starting detection process with 1 worker(s). This probably takes some time...

[+] Result
process_hollow c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3.txt

We can get into more detail by setting the output format to detail. Now, we can see the exact API call sequence that was detected in the function log. Furthermore, we can see that the signature was detected in the process 51f0.exe.

$ python3 dynmx.py -f detail detect -i 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json -s process_hollow.yml


|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Parsing 1 function log(s)
[+] Loaded 1 dynmx signature(s)
[+] Starting detection process with 1 worker(s). This probably takes some time...

[+] Result
Function log: c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3.txt
Signature: process_hollow
Process: 51f0.exe (PID: 3768)
Number of Findings: 1
Finding 0
proc_hollow : API Call CreateProcessA (Function log line 20560, index 938)
proc_hollow : API Call VirtualAllocEx (Function log line 20566, index 944)
proc_hollow : API Call WriteProcessMemory (Function log line 20573, index 951)
proc_hollow : API Call SetThreadContext (Function log line 20574, index 952)
proc_hollow : API Call ResumeThread (Function log line 20575, index 953)

Resources

In order to extract the accessed OS resources from a function log, we can simply run the dynmx command resources against the function log. An example of the detailed output is shown below for the sample with the SHA-256 hash sum 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9. This is a CAPE sandbox report which is part of the Avast-CTU Public CAPEv2 Dataset.

$ python3 dynmx.py -f detail resources --input 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json


|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Parsing 1 function log(s)
[+] Processing function log(s) with the command 'resources'...

[+] Result
Function log: 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json (/Users/sijansen/Documents/dev/dynmx_flogs/cape/Public_Avast_CTU_CAPEv2_Dataset_Full/extracted/601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json)
Process: 601941F00B194587C9E5.exe (PID: 2008)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32. dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\SourcePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DevicePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\DisableImprovedZoneCheck (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings\Security_HKLM_only (READ)
Process: 601941F00B194587C9E5.exe (PID: 1800)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
[...]
C:\Users\comp\AppData\Local\vscmouse (READ)
C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe:Zone.Identifier (DELETE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
[...]
Process: vscmouse.exe (PID: 900)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\C urrentVersion\Setup (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\SourcePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DevicePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\DisableImprovedZoneCheck (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings\Security_HKLM_only (READ)
Process: vscmouse.exe (PID: 3036)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
C:\ (READ)
C:\Windows\System32\uxtheme.dll (EXECUTE)
dwmapi.dll (EXECUTE)
advapi32.dll (EXECUTE)
shell32.dll (EXECUTE)
C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe (CREATE,READ)
C:\Users\comp\AppData\Local\iproppass\iproppass.exe (DELETE)
crypt32.dll (EXECUTE)
urlmon.dll (EXECUTE)
userenv.dll (EXECUTE)
wininet.dll (EXECUTE)
wtsapi32.dll (EXECUTE)
CRYPTSP.dll (EXECUTE)
CRYPTBASE.dll (EXECUTE)
ole32.dll (EXECUTE)
OLEAUT32.dll (EXECUTE)
C:\Windows\SysWOW64\oleaut32.dll (EXECUTE)
IPHLPAPI.DLL (EXECUTE)
DHCPCSVC.DLL (EXECUTE)
C:\Users\comp\AppData\Roaming\Microsoft\Network\Connections\Pbk\_hiddenPbk\ (CREATE)
C:\Users\comp\AppData\Roaming\Microsoft\Network\Connections\Pbk\_hiddenPbk\rasphone.pbk (CREATE,READ)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ )
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
[...]
Network:
24.151.31.150:465 (READ)
http://24.151.31.150:465 (READ,WRITE)
107.10.49.252:80 (READ)
http://107.10.49.252:80 (READ,WRITE)

Based on the shown output and the accessed resources, we can deduce some malware features:

  • Within the process 601941F00B194587C9E5.exe (PID 1800), the Zone Identifier of the file C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe is deleted
  • Some DLLs are loaded dynamically
  • The process vscmouse.exe (PID: 3036) connects to the network endpoints http://24.151.31.150:465 and http://107.10.49.252:80

The accessed resources are interesting for identifying host- and network-based detection indicators. In addition, resources can be used in dynmx signatures. A popular example is the detection of persistence mechanisms in the Registry.

Installation

In order to use the software Python 3.9 must be available on the target system. In addition, the following Python packages need to be installed:

  • anytree,
  • lxml,
  • pyparsing,
  • PyYAML,
  • six and
  • stringcase

To install the packages run the pip3 command shown below. It is recommended to use a Python virtual environment instead of installing the packages system-wide.

pip3 install -r requirements.txt

Usage

To use the prototype, simply run the main entry point dynmx.py. The usage information can be viewed with the -h command line parameter as shown below.

$ python3 dynmx.py -h
usage: dynmx.py [-h] [--format {overview,detail}] [--show-log] [--log LOG] [--log-level {debug,info,error}] [--worker N] {detect,check,convert,stats,resources} ...

Detect dynmx signatures in dynamic program execution information (function logs)

optional arguments:
-h, --help show this help message and exit
--format {overview,detail}, -f {overview,detail}
Output format
--show-log Show all log output on stdout
--log LOG, -l LOG log file
--log-level {debug,info,error}
Log level (default: info)
--worker N, -w N Number of workers to spawn (default: number of processors - 2)

sub-commands:
task to perform

{detect,check,convert,stats,resources}
detect Detects a dynmx signature
check Checks the syntax of dynmx signature(s)
convert Converts function logs to the dynmx generic function log format
stats Statistics of function logs
resources Resource activity derived from function log

In general, as shown in the output, several command line parameters regarding the log handling, the output format for results or multiprocessing can be defined. Furthermore, a command needs be chosen to run a specific task. Please note, that the number of workers only affects commands that make use of multiprocessing. Currently, these are the commands detect and convert.

The commands have specific command line parameters that can be explored by giving the parameter -h to the command, e.g. for the detect command as shown below.

$ python3 dynmx.py detect -h
usage: dynmx.py detect [-h] --sig SIG [SIG ...] --input INPUT [INPUT ...] [--recursive] [--json-result JSON_RESULT] [--runtime-result RUNTIME_RESULT] [--detect-all]

optional arguments:
-h, --help show this help message and exit
--recursive, -r Search for input files recursively
--json-result JSON_RESULT
JSON formatted result file
--runtime-result RUNTIME_RESULT
Runtime statistics file formatted in CSV
--detect-all Detect signature in all processes and do not stop after the first detection

required arguments:
--sig SIG [SIG ...], -s SIG [SIG ...]
dynmx signature(s) to detect
--input INPUT [INPUT ...], -i INPUT [INPUT ...]
Input files

As a user of dynmx, you can decide how the output is structured. If you choose to show the log on the console by defining the parameter --show-log, the output consists of two sections (see listing below). The log is shown first and afterwards the results of the used command. By default, the log is neither shown in the console nor written to a log file (which can be defined using the --log parameter). Due to multiprocessing, the entries in the log file are not necessarily in chronological order.



|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Log output
2023-06-27 19:07:38,068+0000 [INFO] (__main__) [PID: 13315] []: Start of dynmx run
[...]
[+] End of log output

[+] Result
[...]

The level of detail of the result output can be defined using the command line parameter --output-format which can be set to overview for a high-level result or to detail for a detailed result. For example, if you define the output format to detail, detection results shown in the console will contain the exact API calls and resources that caused the detection. The overview output format will just indicate what signature was detected in which function log.

Example Command Lines

Detection of a dynmx signature in a function log with one worker process

python3 dynmx.py -w 1 detect -i "flog.txt" -s dynmx_signature.yml

Conversion of a function log to the dynmx generic function log format

python3 dynmx.py convert -i "flog.txt" -o /tmp/

Check a signature (only basic sanity checks)

python3 dynmx.py check -s dynmx_signature.yml

Get a detailed list of used resources used by a malware sample based on the function log (access activity model)

python3 dynmx.py -f detail resources -i "flog.txt"

Troubleshooting

Please consider that this tool is a proof-of-concept which was developed besides writing the master thesis. Hence, the code quality is not always the best and there may be bugs and errors. I tried to make the tool as robust as possible in the given time frame.

The best way to troubleshoot errors is to enable logging (on the console and/or to a log file) and set the log level to debug. Exception handlers should write detailed errors to the log which can help troubleshooting.



Tiny_Tracer - A Pin Tool For Tracing API Calls Etc

By: Zion3R


A Pin Tool for tracing:


Bypasses the anti-tracing check based on RDTSC.

Generates a report in a .tag format (which can be loaded into other analysis tools):

RVA;traced event

i.e.

345c2;section: .text
58069;called: C:\Windows\SysWOW64\kernel32.dll.IsProcessorFeaturePresent
3976d;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
3983c;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
3999d;called: C:\Windows\SysWOW64\KernelBase.dll.InitializeCriticalSectionEx
398ac;called: C:\Windows\SysWOW64\KernelBase.dll.FlsAlloc
3995d;called: C:\Windows\SysWOW64\KernelBase.dll.FlsSetValue
49275;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
4934b;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
...

How to build

On Windows

To compile the prepared project you need to use Visual Studio >= 2012. It was tested with Intel Pin 3.28.
Clone this repo into \source\tools that is inside your Pin root directory. Open the project in Visual Studio and build. Detailed description available here.
To build with Intel Pin < 3.26 on Windows, use the appropriate legacy Visual Studio project.

On Linux

For now the support for Linux is experimental. Yet it is possible to build and use Tiny Tracer on Linux as well. Please refer tiny_runner.sh for more information. Detailed description available here.

Usage

 Details about the usage you will find on the project's Wiki.

WARNINGS

  • In order for Pin to work correctly, Kernel Debugging must be DISABLED.
  • In install32_64 you can find a utility that checks if Kernel Debugger is disabled (kdb_check.exe, source), and it is used by the Tiny Tracer's .bat scripts. This utilty sometimes gets flagged as a malware by Windows Defender (it is a known false positive). If you encounter this issue, you may need to exclude the installation directory from Windows Defender scans.
  • Since the version 3.20 Pin has dropped a support for old versions of Windows. If you need to use the tool on Windows < 8, try to compile it with Pin 3.19.


Questions? Ideas? Join Discussions!



Noir - An Attack Surface Detector Form Source Code

By: Zion3R


Noir is an attack surface detector form source code.

Key Features

  • Automatically identify language and framework from source code.
  • Find API endpoints and web pages through code analysis.
  • Load results quickly through interactions with proxy tools such as ZAP, Burpsuite, Caido and More Proxy tools.
  • That provides structured data such as JSON and HAR for identified Attack Surfaces to enable seamless interaction with other tools. Also provides command line samples to easily integrate and collaborate with other tools, such as curls or httpie.

Available Support Scope

Endpoint's Entities

  • Path
  • Method
  • Param
  • Header
  • Protocol (e.g ws)

Languages and Frameworks

Language Framework URL Method Param Header WS
Go Echo
X X X
Python Django
X X X X
Python Flask X X X X
Ruby Rails
X X
Ruby Sinatra
X X
Php
X X
Java Spring
X X X
Java Jsp X X X X X
Crystal Kemal
X
JS Express
X X X
JS Next X X X X X

Specification

Specification Format URL Method Param Header WS
Swagger JSON
X X
Swagger YAML
X X

Installation

Homebrew (macOS)

brew tap hahwul/noir
brew install noir

From Sources

# Install Crystal-lang
# https://crystal-lang.org/install/

# Clone this repo
git clone https://github.com/hahwul/noir
cd noir

# Install Dependencies
shards install

# Build
shards build --release --no-debug

# Copy binary
cp ./bin/noir /usr/bin/

Docker (GHCR)

docker pull ghcr.io/hahwul/noir:main

Usage

Usage: noir <flags>
Basic:
-b PATH, --base-path ./app (Required) Set base path
-u URL, --url http://.. Set base url for endpoints
-s SCOPE, --scope url,param Set scope for detection

Output:
-f FORMAT, --format json Set output format [plain/json/markdown-table/curl/httpie]
-o PATH, --output out.txt Write result to file
--set-pvalue VALUE Specifies the value of the identified parameter
--no-color Disable color output
--no-log Displaying only the results

Deliver:
--send-req Send the results to the web request
--send-proxy http://proxy.. Send the results to the web request via http proxy

Technologies:
-t TECHS, --techs rails,php Set technologies to use
--exclude-techs rails,php Specify the technologies to be excluded
--list-techs Show all technologies

Others:
-d, --debug Show debug messages
-v, --version Show version
-h, --help Show help

Example

noir -b . -u https://testapp.internal.domains

JSON Result

noir -b . -u https://testapp.internal.domains -f json
[
...
{
"headers": [],
"method": "POST",
"params": [
{
"name": "article_slug",
"param_type": "json",
"value": ""
},
{
"name": "body",
"param_type": "json",
"value": ""
},
{
"name": "id",
"param_type": "json",
"value": ""
}
],
"protocol": "http",
"url": "https://testapp.internal.domains/comments"
}
]



Evil QR - Proof-of-concept To Demonstrate Dynamic QR Swap Phishing Attacks In Practice

By: Zion3R


Toolkit demonstrating another approach of a QRLJacking attack, allowing to perform remote account takeover, through sign-in QR code phishing.

It consists of a browser extension used by the attacker to extract the sign-in QR code and a server application, which retrieves the sign-in QR codes to display them on the hosted phishing pages.

Watch the demo video:

Read more about it on my blog: https://breakdev.org/evilqr-phishing


Configuration

The parameters used by Evil QR are hardcoded into extension and server source code, so it is important to change them to use custom values, before you build and deploy the toolkit.

parameter description default value
API_TOKEN API token used to authenticate with REST API endpoints hosted on the server 00000000-0000-0000-0000-000000000000
QRCODE_ID QR code ID used to bind the extracted QR code with the one displayed on the phishing page 11111111-1111-1111-1111-111111111111
BIND_ADDRESS IP address with port the HTTP server will be listening on 127.0.0.1:35000
API_URL External URL pointing to the server, where the phishing page will be hosted http://127.0.0.1:35000

Here are all the places in the source code, where the values should be modified:

server/core/config.go:

server/templates/index.html:
extension/background.js:
Installation

Extension

You can load the extension in Chrome, through Load unpacked feature: https://developer.chrome.com/docs/extensions/mv3/getstarted/development-basics/#load-unpacked

Once the extension is installed, make sure to pin its icon in Chrome's extension toolbar, so that the icon is always visible.

Server

Make sure you have Go installed version at least 1.20.

To build go to /server directory and run the command:

Windows:

build_run.bat

Linux:

chmod 700 build.sh
./build.sh

Built server binaries will be placed in the ./build/ directory.

Usage

  1. Run the server by running the built server binary: ./server/build/evilqr-server
  2. Open any of the supported websites in your Chrome browser, with installed Evil QR extension:
https://discord.com/login
https://web.telegram.org/k/
https://whatsapp.com
https://store.steampowered.com/login/
https://accounts.binance.com/en/login
https://www.tiktok.com/login
  1. Make sure the sign-in QR code is visible and click the Evil QR extension icon in the toolbar. If the QR code is recognized, the icon should light up with colors.
  2. Open the server's phishing page URL: http://127.0.0.1:35000 (default)

License

Evil QR is made by Kuba Gretzky (@mrgretzky) and it's released under MIT license.



AiCEF - An AI-assisted cyber exercise content generation framework using named entity recognition

By: Zion3R


AiCEF is a tool implementing the accompanying framework [1] in order to harness the intelligence that is available from online resources, as well as threat groups' activities, arsenal (eg. MITRE), to create relevant and timely cybersecurity exercise content. This way, we abstract the events from the reports in a machine-readable form. The produced graphs can be infused with additional intelligence, e.g. the threat actor profile from MITRE, also mapped in our ontology. While this may fill gaps that would be missing from a report, one can also manipulate the graph to create custom and unique models. Finally, we exploit transformer-based language models like GPT to convert the graph into text that can serve as the scenario of a cybersecurity exercise. We have tested and validated AiCEF with a group of experts in cybersecurity exercises, and the results clearly show that AiCEF significantly augments the capabilities in creating timely and relevant cybersecurity exercises in terms of both quality and time.

We used Python to create a machine-learning-powered Exercise Generation Framework and developed a set of tools to perform a set of individual tasks which would help an exercise planner (EP) to create a timely and targeted Cybersecurity Exercise Scenario, regardless of her experience.


Problems an Exercise Planner faces:

  • Constant table-top research to have fresh content
  • Realistic CSE scenario creation can be difficult and time-consuming
  • Meeting objectives but also keeping it appealing for the target audience
  • Is the relevance and timeliness aspects considered?
  • Can all the above be automated?

Our Main Objective: Build an AI powered tool that can generate relevant and up-to-date Cyber Exercise Content in a few steps with little technical expertise from the user.

Release Roadmap

The updated project, AiCEF v.2.0 is planned to be publicly released by the end of 2023, pending heavy code review and functionality updates. Submodules with reduced functinality will start being release by early June 2023. Thank you for your patience.

Installation

The most convenient way to install AiCEF is by using the docker-compose command. For production deployment, we advise you deploy MySQL manually in a dedicated environment and then to start the other components using Docker.

First, make sure you have docker-compose installed in your environment:

Linux:

$ sudo apt-get install docker-compose

Then, clone the repository:

$ git clone https://github.com/grazvan/AiCEF/docker.git /<choose-a-path>/AiCEF-docker
$ cd /<choose-a-path>/AiCEF-docker

Configure the environment settings

Import the MySQL file in your

$ mysql -u <your_username> –-password=<your_password> AiCEF_db < AiCEF_db.sql 

Before running the docker-compose command, settings must be configured. Copy the sample settings file and change it accordingly to your needs.

$ cp .env.sample .env

Run AiCEF

Note: Make sure you have an OpenAI API key available. Load the environment setttings (including your MySQL connection details):

set -a ; source .env

Finally, run docker-compose in detached (-d) mode:

$ sudo docker-compose up -d

Usage

A common usage flow consists of generating a Trend Report to analyze patterns over time, parsing relevant articles and converting them into Incident Breadcrumbs using MLTP module and storing them in a knowledge database called KDb. Incidents are then generated using IncGen component and can be enhanced using the Graph Enhancer module to simulate known APT activity. The incidents come with injects that can be edited on the fly. The CSE scenario is then created using CEGen, which defines various attributes like CSE name, number of Events, and Incidents. MLCESO is a crucial step in the methodology where dedicated ML models are trained to extract information from the collected articles with over 80% accuracy. The Incident Generation & Enhancer (IncGen) workflow can be automated, generating a variety of incidents based on filtering parameters and the existing database. The knowledge database (KDB) consists of almost 3000 articles classified into six categories that can be augmented using APT Enhancer by using the activity of known APT groups from MITRE or manually.

Find below some sample usage screenshots:

Features

  • An AI-powered Cyber Exercise Generation Framework
  • Developed in Python & EEL
  • Open source library Stixview
  • Stores data in MYSQL
  • API to Text Synthesis Models (ex. GPT-3.5)
  • Can create incidents based on TTPs of 125 known APT actors
  • Models Cyber Exercise Content in machine readable STIX2.1 [2] (.json) and human readable format (.pdf)

Authors

AiCEF is a product designed and developed by Alex Zacharis, Razvan Gavrila and Constantinos Patsakis.

References

[1] https://link.springer.com/article/10.1007/s10207-023-00693-z

[2] https://oasis-open.github.io/cti-documentation/stix/intro.html

Contributing

Contributions are welcome! If you'd like to contribute to AiCEF v2.0, please follow these steps:

  1. Fork this repository
  2. Create a new branch (git checkout -b feature/your-branch-name)
  3. Make your changes and commit them (git commit -m 'Add some feature')
  4. Push to the branch (git push origin feature/your-branch-name)
  5. Open a new pull request

License

AiCEF is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. See for more information.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.



VX-API - Collection Of Various Malicious Functionality To Aid In Malware Development

By: Zion3R

 


The VX-API is a collection of malicious functionality to aid in malware development. It is recommended you clone and/or download this entire repo then open the Visual Studio solution file to easily explore functionality and concepts.

Some functions may be dependent on other functions present within the solution file. Using the solution file provided here will make it easier to identify which other functionality and/or header data is required.

You're free to use this in any manner you please. You do not need to use this entire solution for your malware proof-of-concepts or Red Team engagements. Strip, copy, paste, delete, or edit this projects contents as much as you'd like.


List of features

Anti-debug

Function Name Original Author
AdfCloseHandleOnInvalidAddress Checkpoint Research
AdfIsCreateProcessDebugEventCodeSet Checkpoint Research
AdfOpenProcessOnCsrss Checkpoint Research
CheckRemoteDebuggerPresent2 ReactOS
IsDebuggerPresentEx smelly__vx
IsIntelHardwareBreakpointPresent Checkpoint Research

Cryptography Related

Function Name Original Author
HashStringDjb2 Dan Bernstein
HashStringFowlerNollVoVariant1a Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo
HashStringJenkinsOneAtATime32Bit Bob Jenkins
HashStringLoseLose Brian Kernighan and Dennis Ritchie
HashStringRotr32 T. Oshiba (1972)
HashStringSdbm Ozan Yigit
HashStringSuperFastHash Paul Hsieh
HashStringUnknownGenericHash1A Unknown
HashStringSipHash RistBS
HashStringMurmur RistBS
CreateMd5HashFromFilePath Microsoft
CreatePseudoRandomInteger Apple (c) 1999
CreatePseudoRandomString smelly__vx
HashFileByMsiFileHashTable smelly__vx
CreatePseudoRandomIntegerFromNtdll smelly__vx
LzMaximumCompressBuffer smelly__vx
LzMaximumDecompressBuffer smelly__vx
LzStandardCompressBuffer smelly__vx
LzStandardDecompressBuffer smelly__vx
XpressHuffMaximumCompressBuffer smelly__vx
XpressHuffMaximumDecompressBuffer smelly__vx
XpressHuffStandardCompressBuffer smelly__vx
XpressHuffStandardDecompressBuffer smelly__vx
XpressMaximumCompressBuffer smelly__vx
XpressMaximumDecompressBuffer smelly__vx
XpressStandardCompressBuffer smelly__vx
XpressStandardDecompressBuffer smelly__vx
ExtractFilesFromCabIntoTarget smelly__vx

Error Handling

Function Name Original Author
GetLastErrorFromTeb smelly__vx
GetLastNtStatusFromTeb smelly__vx
RtlNtStatusToDosErrorViaImport ReactOS
GetLastErrorFromTeb smelly__vx
SetLastErrorInTeb smelly__vx
SetLastNtStatusInTeb smelly__vx
Win32FromHResult Raymond Chen

Evasion

Function Name Original Author
AmsiBypassViaPatternScan ZeroMemoryEx
DelayedExecutionExecuteOnDisplayOff am0nsec and smelly__vx
HookEngineRestoreHeapFree rad9800
MasqueradePebAsExplorer smelly__vx
RemoveDllFromPeb rad9800
RemoveRegisterDllNotification Rad98, Peter Winter-Smith
SleepObfuscationViaVirtualProtect 5pider
RtlSetBaseUnicodeCommandLine TheWover

Fingerprinting

Function Name Original Author
GetCurrentLocaleFromTeb 3xp0rt
GetNumberOfLinkedDlls smelly__vx
GetOsBuildNumberFromPeb smelly__vx
GetOsMajorVersionFromPeb smelly__vx
GetOsMinorVersionFromPeb smelly__vx
GetOsPlatformIdFromPeb smelly__vx
IsNvidiaGraphicsCardPresent smelly__vx
IsProcessRunning smelly__vx
IsProcessRunningAsAdmin Vimal Shekar
GetPidFromNtQuerySystemInformation smelly__vx
GetPidFromWindowsTerminalService modexp
GetPidFromWmiComInterface aalimian and modexp
GetPidFromEnumProcesses smelly__vx
GetPidFromPidBruteForcing modexp
GetPidFromNtQueryFileInformation modexp, Lloyd Davies, Jonas Lyk
GetPidFromPidBruteForcingExW smelly__vx, LLoyd Davies, Jonas Lyk, modexp

Helper Functions

Function Name Original Author
CreateLocalAppDataObjectPath smelly__vx
CreateWindowsObjectPath smelly__vx
GetCurrentDirectoryFromUserProcessParameters smelly__vx
GetCurrentProcessIdFromTeb ReactOS
GetCurrentUserSid Giovanni Dicanio
GetCurrentWindowTextFromUserProcessParameter smelly__vx
GetFileSizeFromPath smelly__vx
GetProcessHeapFromTeb smelly__vx
GetProcessPathFromLoaderLoadModule smelly__vx
GetProcessPathFromUserProcessParameters smelly__vx
GetSystemWindowsDirectory Geoff Chappell
IsPathValid smelly__vx
RecursiveFindFile Luke
SetProcessPrivilegeToken Microsoft
IsDllLoaded smelly__vx
TryLoadDllMultiMethod smelly__vx
CreateThreadAndWaitForCompletion smelly__vx
GetProcessBinaryNameFromHwndW smelly__vx
GetByteArrayFromFile smelly__vx
Ex_GetHandleOnDeviceHttpCommunication x86matthew
IsRegistryKeyValid smelly__vx
FastcallExecuteBinaryShellExecuteEx smelly__vx
GetCurrentProcessIdFromOffset RistBS
GetPeBaseAddress smelly__vx
LdrLoadGetProcedureAddress c5pider
IsPeSection smelly__vx
AddSectionToPeFile smelly__vx
WriteDataToPeSection smelly__vx
GetPeSectionSizeInByte smelly__vx
ReadDataFromPeSection smelly__vx
GetCurrentProcessNoForward ReactOS
GetCurrentThreadNoForward ReactOS

Library Loading

Function Name Original Author
GetKUserSharedData Geoff Chappell
GetModuleHandleEx2 smelly__vx
GetPeb 29a
GetPebFromTeb ReactOS
GetProcAddress 29a Volume 2, c5pider
GetProcAddressDjb2 smelly__vx
GetProcAddressFowlerNollVoVariant1a smelly__vx
GetProcAddressJenkinsOneAtATime32Bit smelly__vx
GetProcAddressLoseLose smelly__vx
GetProcAddressRotr32 smelly__vx
GetProcAddressSdbm smelly__vx
GetProcAddressSuperFastHash smelly__vx
GetProcAddressUnknownGenericHash1 smelly__vx
GetProcAddressSipHash RistBS
GetProcAddressMurmur RistBS
GetRtlUserProcessParameters ReactOS
GetTeb ReactOS
RtlLoadPeHeaders smelly__vx
ProxyWorkItemLoadLibrary Rad98, Peter Winter-Smith
ProxyRegisterWaitLoadLibrary Rad98, Peter Winter-Smith

Lsass Dumping

Function Name Original Author
MpfGetLsaPidFromServiceManager modexp
MpfGetLsaPidFromRegistry modexp
MpfGetLsaPidFromNamedPipe modexp

Network Connectivity

Function Name Original Author
UrlDownloadToFileSynchronous Hans Passant
ConvertIPv4IpAddressStructureToString smelly__vx
ConvertIPv4StringToUnsignedLong smelly__vx
SendIcmpEchoMessageToIPv4Host smelly__vx
ConvertIPv4IpAddressUnsignedLongToString smelly__vx
DnsGetDomainNameIPv4AddressAsString smelly__vx
DnsGetDomainNameIPv4AddressUnsignedLong smelly__vx
GetDomainNameFromUnsignedLongIPV4Address smelly__vx
GetDomainNameFromIPV4AddressAsString smelly__vx

Other

Function Name Original Author
OleGetClipboardData Microsoft
MpfComVssDeleteShadowVolumeBackups am0nsec
MpfComModifyShortcutTarget Unknown
MpfComMonitorChromeSessionOnce smelly__vx
MpfExtractMaliciousPayloadFromZipFileNoPassword Codu

Process Creation

Function Name Original Author
CreateProcessFromIHxHelpPaneServer James Forshaw
CreateProcessFromIHxInteractiveUser James Forshaw
CreateProcessFromIShellDispatchInvoke Mohamed Fakroud
CreateProcessFromShellExecuteInExplorerProcess Microsoft
CreateProcessViaNtCreateUserProcess CaptMeelo
CreateProcessWithCfGuard smelly__vx and Adam Chester
CreateProcessByWindowsRHotKey smelly__vx
CreateProcessByWindowsRHotKeyEx smelly__vx
CreateProcessFromINFSectionInstallStringNoCab smelly__vx
CreateProcessFromINFSetupCommand smelly__vx
CreateProcessFromINFSectionInstallStringNoCab2 smelly__vx
CreateProcessFromIeFrameOpenUrl smelly__vx
CreateProcessFromPcwUtil smelly__vx
CreateProcessFromShdocVwOpenUrl smelly__vx
CreateProcessFromShell32ShellExecRun smelly__vx
MpfExecute64bitPeBinaryInMemoryFromByteArrayNoReloc aaaddress1
CreateProcessFromWmiWin32_ProcessW CIA
CreateProcessFromZipfldrRouteCall smelly__vx
CreateProcessFromUrlFileProtocolHandler smelly__vx
CreateProcessFromUrlOpenUrl smelly__vx
CreateProcessFromMsHTMLW smelly__vx

Process Injection

Function Name Original Author
MpfPiControlInjection SafeBreach Labs
MpfPiQueueUserAPCViaAtomBomb SafeBreach Labs
MpfPiWriteProcessMemoryCreateRemoteThread SafeBreach Labs
MpfProcessInjectionViaProcessReflection Deep Instinct

Proxied Functions

Function Name Original Author
IeCreateFile smelly__vx
CopyFileViaSetupCopyFile smelly__vx
CreateFileFromDsCopyFromSharedFile Jonas Lyk
DeleteDirectoryAndSubDataViaDelNode smelly__vx
DeleteFileWithCreateFileFlag smelly__vx
IsProcessRunningAsAdmin2 smelly__vx
IeCreateDirectory smelly__vx
IeDeleteFile smelly__vx
IeFindFirstFile smelly__vx
IEGetFileAttributesEx smelly__vx
IeMoveFileEx smelly__vx
IeRemoveDirectory smelly__vx

Shellcode Execution

Function Name Original Author
MpfSceViaImmEnumInputContext alfarom256, aahmad097
MpfSceViaCertFindChainInStore alfarom256, aahmad097
MpfSceViaEnumPropsExW alfarom256, aahmad097
MpfSceViaCreateThreadpoolWait alfarom256, aahmad097
MpfSceViaCryptEnumOIDInfo alfarom256, aahmad097
MpfSceViaDSA_EnumCallback alfarom256, aahmad097
MpfSceViaCreateTimerQueueTimer alfarom256, aahmad097
MpfSceViaEvtSubscribe alfarom256, aahmad097
MpfSceViaFlsAlloc alfarom256, aahmad097
MpfSceViaInitOnceExecuteOnce alfarom256, aahmad097
MpfSceViaEnumChildWindows alfarom256, aahmad097, wra7h
MpfSceViaCDefFolderMenu_Create2 alfarom256, aahmad097, wra7h
MpfSceViaCertEnumSystemStore alfarom256, aahmad097, wra7h
MpfSceViaCertEnumSystemStoreLocation alfarom256, aahmad097, wra7h
MpfSceViaEnumDateFormatsW alfarom256, aahmad097, wra7h
MpfSceViaEnumDesktopWindows alfarom256, aahmad097, wra7h
MpfSceViaEnumDesktopsW alfarom256, aahmad097, wra7h
MpfSceViaEnumDirTreeW alfarom256, aahmad097, wra7h
MpfSceViaEnumDisplayMonitors alfarom256, aahmad097, wra7h
MpfSceViaEnumFontFamiliesExW alfarom256, aahmad097, wra7h
MpfSceViaEnumFontsW alfarom256, aahmad097, wra7h
MpfSceViaEnumLanguageGroupLocalesW alfarom256, aahmad097, wra7h
MpfSceViaEnumObjects alfarom256, aahmad097, wra7h
MpfSceViaEnumResourceTypesExW alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemCodePagesW alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemGeoID alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemLanguageGroupsW alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemLocalesEx alfarom256, aahmad097, wra7h
MpfSceViaEnumThreadWindows alfarom256, aahmad097, wra7h
MpfSceViaEnumTimeFormatsEx alfarom256, aahmad097, wra7h
MpfSceViaEnumUILanguagesW alfarom256, aahmad097, wra7h
MpfSceViaEnumWindowStationsW alfarom256, aahmad097, wra7h
MpfSceViaEnumWindows alfarom256, aahmad097, wra7h
MpfSceViaEnumerateLoadedModules64 alfarom256, aahmad097, wra7h
MpfSceViaK32EnumPageFilesW alfarom256, aahmad097, wra7h
MpfSceViaEnumPwrSchemes alfarom256, aahmad097, wra7h
MpfSceViaMessageBoxIndirectW alfarom256, aahmad097, wra7h
MpfSceViaChooseColorW alfarom256, aahmad097, wra7h
MpfSceViaClusWorkerCreate alfarom256, aahmad097, wra7h
MpfSceViaSymEnumProcesses alfarom256, aahmad097, wra7h
MpfSceViaImageGetDigestStream alfarom256, aahmad097, wra7h
MpfSceViaVerifierEnumerateResource alfarom256, aahmad097, wra7h
MpfSceViaSymEnumSourceFiles alfarom256, aahmad097, wra7h

String Manipulation

Function Name Original Author
ByteArrayToCharArray smelly__vx
CharArrayToByteArray smelly__vx
ShlwapiCharStringToWCharString smelly__vx
ShlwapiWCharStringToCharString smelly__vx
CharStringToWCharString smelly__vx
WCharStringToCharString smelly__vx
RtlInitEmptyUnicodeString ReactOS
RtlInitUnicodeString ReactOS
CaplockString simonc
CopyMemoryEx ReactOS
SecureStringCopy Apple (c) 1999
StringCompare Apple (c) 1999
StringConcat Apple (c) 1999
StringCopy Apple (c) 1999
StringFindSubstring Apple (c) 1999
StringLength Apple (c) 1999
StringLocateChar Apple (c) 1999
StringRemoveSubstring smelly__vx
StringTerminateStringAtChar smelly__vx
StringToken Apple (c) 1999
ZeroMemoryEx ReactOS
ConvertCharacterStringToIntegerUsingNtdll smelly__vx
MemoryFindMemory KamilCuk

UAC Bypass

Function Name Original Author
UacBypassFodHelperMethod winscripting.blog

Rad98 Hooking Engine

Function Name Original Author
InitHardwareBreakpointEngine rad98
ShutdownHardwareBreakpointEngine rad98
ExceptionHandlerCallbackRoutine rad98
SetHardwareBreakpoint rad98
InsertDescriptorEntry rad98
RemoveDescriptorEntry rad98
SnapshotInsertHardwareBreakpointHookIntoTargetThread rad98

Generic Shellcode

Function Name Original Author
GenericShellcodeHelloWorldMessageBoxA SafeBreach Labs
GenericShellcodeHelloWorldMessageBoxAEbFbLoop SafeBreach Labs
GenericShellcodeOpenCalcExitThread MsfVenom


ReconAIzer - A Burp Suite Extension To Add OpenAI (GPT) On Burp And Help You With Your Bug Bounty Recon To Discover Endpoints, Params, URLs, Subdomains And More!

By: Zion3R


ReconAIzer is a powerful Jython extension for Burp Suite that leverages OpenAI to help bug bounty hunters optimize their recon process. This extension automates various tasks, making it easier and faster for security researchers to identify and exploit vulnerabilities.

Once installed, ReconAIzer add a contextual menu and a dedicated tab to see the results:


Prerequisites

  • Burp Suite
  • Jython Standalone Jar

Installation

Follow these steps to install the ReconAIzer extension on Burp Suite:

Step 1: Download Jython

  1. Download the latest Jython Standalone Jar from the official website: https://www.jython.org/download
  2. Save the Jython Standalone Jar file in a convenient location on your computer.

Step 2: Configure Jython in Burp Suite

  1. Open Burp Suite.
  2. Go to the "Extensions" tab.
  3. Click on the "Extensions settings" sub-tab.
  4. Under "Python Environment," click on the "Select file..." button next to "Location of the Jython standalone JAR file."
  5. Browse to the location where you saved the Jython Standalone Jar file in Step 1 and select it.
  6. Wait for the "Python Environment" status to change to "Jython (version x.x.x) successfully loaded," where x.x.x represents the Jython version.

Step 3: Download and Install ReconAIzer

  1. Download the latest release of ReconAIzer
  2. Open Burp Suite
  3. Go back to the "Extensions" tab in Burp Suite.
  4. Click the "Add" button.
  5. In the "Add extension" dialog, select "Python" as the "Extension type."
  6. Click on the "Select file..." button next to "Extension file" and browse to the location where you saved the ReconAIzer.py file in Step 3.1. Select the file and click "Open."
  7. Make sure the "Load" checkbox is selected and click the "Next" button.
  8. Wait for the extension to be loaded. You should see a message in the "Output" section stating that the ReconAIzer extension has been successfully loaded.

Congratulations! You have successfully installed the ReconAIzer extension in Burp Suite. You can now start using it to enhance your bug bounty hunting experience.

Once it's done, you must configure your OpenAI API key on the "Config" tab under "ReconAIzer" tab.

Feel free to suggest prompts improvements or anything you would like to see on ReconAIzer!

Happy bug hunting!



HardHatC2 - A C# Command And Control Framework

By: Zion3R


A cross-platform, collaborative, Command & Control framework written in C#, designed for red teaming and ease of use.

HardHat is a multiplayer C# .NET-based command and control framework. Designed to aid in red team engagements and penetration testing. HardHat aims to improve the quality of life factors during engagements by providing an easy-to-use but still robust C2 framework.
It contains three primary components, an ASP.NET teamserver, a blazor .NET client, and C# based implants.


Release Tracking

Alpha Release - 3/29/23 NOTE: HardHat is in Alpha release; it will have bugs, missing features, and unexpected things will happen. Thank you for trying it, and please report back any issues or missing features so they can be addressed.

Community

Discord Join the community to talk about HardHat C2, Programming, Red teaming and general cyber security things The discord community is also a great way to request help, submit new features, stay up to date on the latest additions, and submit bugs.

Features

Teamserver & Client

  • Per-operator accounts with account tiers to allow customized access control and features, including view-only guest modes, team-lead opsec approval(WIP), and admin accounts for general operation management.
  • Managers (Listeners)
  • Dynamic Payload Generation (Exe, Dll, shellcode, PowerShell command)
  • Creation & editing of C2 profiles on the fly in the client
  • Customization of payload generation
    • sleep time/jitter
    • kill date
    • working hours
    • type (Exe, Dll, Shellcode, ps command)
    • Included commands(WIP)
    • option to run confuser
  • File upload & Downloads
  • Graph View
  • File Browser GUI
  • Event Log
  • JSON logging for events & tasks
  • Loot tracking (Creds, downloads)
  • IOC tracing
  • Pivot proxies (SOCKS 4a, Port forwards)
  • Cred store
  • Autocomplete command history
  • Detailed help command
  • Interactive bash terminal command if the client is on linux or powershell on windows, this allows automatic parsing and logging of terminal commands like proxychains
  • Persistent database storage of teamserver items (User accounts, Managers, Engineers, Events, tasks, creds, downloads, uploads, etc. )
  • Recon Entity Tracking (track info about users/devices, random metadata as needed)
  • Shared files for some commands (see teamserver page for details)
  • tab-based interact window for command issuing
  • table-based output option for some commands like ls, ps, etc.
  • Auto parsing of output from seatbelt to create "recon entities" and fill entries to reference back to later easily
  • Dark and Light
    theme

Engineers

  • C# .NET framework implant for windows devices, currently only CLR/.NET 4 support
  • atm only one implant, but looking to add others
  • It can be generated as EXE, DLL, shellcode, or PowerShell stager
  • Rc4 encryption of payload memory & heap when sleeping (Exe / DLL only)
  • AES encryption of all network communication
  • ConfuserEx integration for obfuscation
  • HTTP, HTTPS, TCP, SMB communication
    • TCP & SMB can work P2P in a bind or reverse setups
  • Unique per implant key generated at compile time
  • multiple callback URI's depending on the C2 profile
  • P/Invoke & D/Invoke integration for windows API calls
  • SOCKS 4a support
  • Reverse Port Forward & Port Forwards
  • All commands run as async cancellable jobs
    • Option to run commands sync if desired
  • Inline assembly execution & inline shellcode execution
  • DLL Injection
  • Execute assembly & Mimikatz integration
  • Mimikatz is not built into the implant but is pushed when specific commands are issued
  • Various localhost & network enumeration tools
  • Token manipulation commands
    • Steal Token Mask(WIP)
  • Lateral Movement Commands
  • Jump (psexec, wmi, wmi-ps, winrm, dcom)
  • Remote Execution (WIP)
  • AMSI & ETW Patching
  • Unmanaged Powershell
  • Script Store (can load multiple scripts at once if needed)
  • Spawn & Inject
    • Spawn-to is configurable
  • run, shell & execute

Documentation

documentation can be found at docs

Getting Started

Prerequisites

  • Installation of the .net 7 SDK from Microsoft
  • Once installed, the teamserver and client are started with dotnet run

Teamserver

To configure the team server's starting address (where clients will connect), edit the HardHatC2\TeamServer\Properties\LaunchSettings.json changing the "applicationUrl": "https://127.0.0.1:5000" to the desired location and port. start the teamserver with dotnet run from its top-level folder ../HrdHatC2/Teamserver/

HardHat Client

  1. When starting the client to set the target teamserver location, include it in the command line dotnet run https://127.0.0.1:5000 for example
  2. open a web browser and navigate to https://localhost:7096/ if this works, you should see the login page
  3. Log in with the HardHat_Admin user (Password is printed on first TeamServer startup)
  4. Navigate to the settings page & create a new user if successful, a message should appear, then you may log in with that account to access the full client

Contributions & Bug Reports

Code contributions are welcome feel free to submit feature requests, pull requests or send me your ideas on discord.



Burpgpt - A Burp Suite Extension That Integrates OpenAI's GPT To Perform An Additional Passive Scan For Discovering Highly Bespoke Vulnerabilities, And Enables Running Traffic-Based Analysis Of Any Type

By: Zion3R


burpgpt leverages the power of AI to detect security vulnerabilities that traditional scanners might miss. It sends web traffic to an OpenAI model specified by the user, enabling sophisticated analysis within the passive scanner. This extension offers customisable prompts that enable tailored web traffic analysis to meet the specific needs of each user. Check out the Example Use Cases section for inspiration.

The extension generates an automated security report that summarises potential security issues based on the user's prompt and real-time data from Burp-issued requests. By leveraging AI and natural language processing, the extension streamlines the security assessment process and provides security professionals with a higher-level overview of the scanned application or endpoint. This enables them to more easily identify potential security issues and prioritise their analysis, while also covering a larger potential attack surface.

[!WARNING] Data traffic is sent to OpenAI for analysis. If you have concerns about this or are using the extension for security-critical applications, it is important to carefully consider this and review OpenAI's Privacy Policy for further information.

[!WARNING] While the report is automated, it still requires triaging and post-processing by security professionals, as it may contain false positives.

[!WARNING] The effectiveness of this extension is heavily reliant on the quality and precision of the prompts created by the user for the selected GPT model. This targeted approach will help ensure the GPT model generates accurate and valuable results for your security analysis.

 

Features

  • Adds a passive scan check, allowing users to submit HTTP data to an OpenAI-controlled GPT model for analysis through a placeholder system.
  • Leverages the power of OpenAI's GPT models to conduct comprehensive traffic analysis, enabling detection of various issues beyond just security vulnerabilities in scanned applications.
  • Enables granular control over the number of GPT tokens used in the analysis by allowing for precise adjustments of the maximum prompt length.
  • Offers users multiple OpenAI models to choose from, allowing them to select the one that best suits their needs.
  • Empowers users to customise prompts and unleash limitless possibilities for interacting with OpenAI models. Browse through the Example Use Cases for inspiration.
  • Integrates with Burp Suite, providing all native features for pre- and post-processing, including displaying analysis results directly within the Burp UI for efficient analysis.
  • Provides troubleshooting functionality via the native Burp Event Log, enabling users to quickly resolve communication issues with the OpenAI API.

Requirements

  1. System requirements:
  • Operating System: Compatible with Linux, macOS, and Windows operating systems.

  • Java Development Kit (JDK): Version 11 or later.

  • Burp Suite Professional or Community Edition: Version 2023.3.2 or later.

    [!IMPORTANT] Please note that using any version lower than 2023.3.2 may result in a java.lang.NoSuchMethodError. It is crucial to use the specified version or a more recent one to avoid this issue.

  1. Build tool:
  • Gradle: Version 6.9 or later (recommended). The build.gradle file is provided in the project repository.
  1. Environment variables:
  • Set up the JAVA_HOME environment variable to point to the JDK installation directory.

Please ensure that all system requirements, including a compatible version of Burp Suite, are met before building and running the project. Note that the project's external dependencies will be automatically managed and installed by Gradle during the build process. Adhering to the requirements will help avoid potential issues and reduce the need for opening new issues in the project repository.

Installation

1. Compilation

  1. Ensure you have Gradle installed and configured.

  2. Download the burpgpt repository:

    git clone https://github.com/aress31/burpgpt
    cd .\burpgpt\
  3. Build the standalone jar:

    ./gradlew shadowJar

2. Loading the Extension Into Burp Suite

To install burpgpt in Burp Suite, first go to the Extensions tab and click on the Add button. Then, select the burpgpt-all jar file located in the .\lib\build\libs folder to load the extension.

Usage

To start using burpgpt, users need to complete the following steps in the Settings panel, which can be accessed from the Burp Suite menu bar:

  1. Enter a valid OpenAI API key.
  2. Select a model.
  3. Define the max prompt size. This field controls the maximum prompt length sent to OpenAI to avoid exceeding the maxTokens of GPT models (typically around 2048 for GPT-3).
  4. Adjust or create custom prompts according to your requirements.

Once configured as outlined above, the Burp passive scanner sends each request to the chosen OpenAI model via the OpenAI API for analysis, producing Informational-level severity findings based on the results.

Prompt Configuration

burpgpt enables users to tailor the prompt for traffic analysis using a placeholder system. To include relevant information, we recommend using these placeholders, which the extension handles directly, allowing dynamic insertion of specific values into the prompt:

Placeholder Description
{REQUEST} The scanned request.
{URL} The URL of the scanned request.
{METHOD} The HTTP request method used in the scanned request.
{REQUEST_HEADERS} The headers of the scanned request.
{REQUEST_BODY} The body of the scanned request.
{RESPONSE} The scanned response.
{RESPONSE_HEADERS} The headers of the scanned response.
{RESPONSE_BODY} The body of the scanned response.
{IS_TRUNCATED_PROMPT} A boolean value that is programmatically set to true or false to indicate whether the prompt was truncated to the Maximum Prompt Size defined in the Settings.

These placeholders can be used in the custom prompt to dynamically generate a request/response analysis prompt that is specific to the scanned request.

[!NOTE] > Burp Suite provides the capability to support arbitrary placeholders through the use of Session handling rules or extensions such as Custom Parameter Handler, allowing for even greater customisation of the prompts.

Example Use Cases

The following list of example use cases showcases the bespoke and highly customisable nature of burpgpt, which enables users to tailor their web traffic analysis to meet their specific needs.

  • Identifying potential vulnerabilities in web applications that use a crypto library affected by a specific CVE:

    Analyse the request and response data for potential security vulnerabilities related to the {CRYPTO_LIBRARY_NAME} crypto library affected by CVE-{CVE_NUMBER}:

    Web Application URL: {URL}
    Crypto Library Name: {CRYPTO_LIBRARY_NAME}
    CVE Number: CVE-{CVE_NUMBER}
    Request Headers: {REQUEST_HEADERS}
    Response Headers: {RESPONSE_HEADERS}
    Request Body: {REQUEST_BODY}
    Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities related to the {CRYPTO_LIBRARY_NAME} crypto library affected by CVE-{CVE_NUMBER} in the request and response data and report them.
  • Scanning for vulnerabilities in web applications that use biometric authentication by analysing request and response data related to the authentication process:

    Analyse the request and response data for potential security vulnerabilities related to the biometric authentication process:

    Web Application URL: {URL}
    Biometric Authentication Request Headers: {REQUEST_HEADERS}
    Biometric Authentication Response Headers: {RESPONSE_HEADERS}
    Biometric Authentication Request Body: {REQUEST_BODY}
    Biometric Authentication Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities related to the biometric authentication process in the request and response data and report them.
  • Analysing the request and response data exchanged between serverless functions for potential security vulnerabilities:

    Analyse the request and response data exchanged between serverless functions for potential security vulnerabilities:

    Serverless Function A URL: {URL}
    Serverless Function B URL: {URL}
    Serverless Function A Request Headers: {REQUEST_HEADERS}
    Serverless Function B Response Headers: {RESPONSE_HEADERS}
    Serverless Function A Request Body: {REQUEST_BODY}
    Serverless Function B Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities in the data exchanged between the two serverless functions and report them.
  • Analysing the request and response data for potential security vulnerabilities specific to a Single-Page Application (SPA) framework:

    Analyse the request and response data for potential security vulnerabilities specific to the {SPA_FRAMEWORK_NAME} SPA framework:

    Web Application URL: {URL}
    SPA Framework Name: {SPA_FRAMEWORK_NAME}
    Request Headers: {REQUEST_HEADERS}
    Response Headers: {RESPONSE_HEADERS}
    Request Body: {REQUEST_BODY}
    Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities related to the {SPA_FRAMEWORK_NAME} SPA framework in the request and response data and report them.

Roadmap

  • Add a new field to the Settings panel that allows users to set the maxTokens limit for requests, thereby limiting the request size.
  • Add support for connecting to a local instance of the AI model, allowing users to run and interact with the model on their local machines, potentially improving response times and data privacy.
  • Retrieve the precise maxTokens value for each model to transmit the maximum allowable data and obtain the most extensive GPT response possible.
  • Implement persistent configuration storage to preserve settings across Burp Suite restarts.
  • Enhance the code for accurate parsing of GPT responses into the Vulnerability model for improved reporting.

Project Information

The extension is currently under development and we welcome feedback, comments, and contributions to make it even better.

Sponsor

If this extension has saved you time and hassle during a security assessment, consider showing some love by sponsoring a cup of coffee

for the developer. It's the fuel that powers development, after all. Just hit that shiny Sponsor button at the top of the page or click here to contribute and keep the caffeine flowing.

Reporting Issues

Did you find a bug? Well, don't just let it crawl around! Let's squash it together like a couple of bug whisperers!

Please report any issues on the GitHub issues tracker. Together, we'll make this extension as reliable as a cockroach surviving a nuclear apocalypse!

Contributing

Looking to make a splash with your mad coding skills?

Awesome! Contributions are welcome and greatly appreciated. Please submit all PRs on the GitHub pull requests tracker. Together we can make this extension even more amazing!

License

See LICENSE.



Bypass-Sandbox-Evasion - Bypass Malware Sandbox Evasion Ram Check

By: Zion3R


Sandboxes are commonly used to analyze malware. They provide a temporary, isolated, and secure environment in which to observe whether a suspicious file exhibits any malicious behavior. However, malware developers have also developed methods to evade sandboxes and analysis environments. One such method is to perform checks to determine whether the machine the malware is being executed on is being operated by a real user. One such check is the RAM size. If the RAM size is unrealistically small (e.g., 1GB), it may indicate that the machine is a sandbox. If the malware detects a sandbox, it will not execute its true malicious behavior and may appear to be a benign file

Details

  • The GetPhysicallyInstalledSystemMemory API retrieves the amount of RAM that is physically installed on the computer from the SMBIOS firmware tables. It takes a PULONGLONG parameter and returns TRUE if the function succeeds, setting the TotalMemoryInKilobytes to a nonzero value. If the function fails, it returns FALSE.

       

  • The amount of physical memory retrieved by the GetPhysicallyInstalledSystemMemory function must be equal to or greater than the amount reported by the GlobalMemoryStatusEx function; if it is less, the SMBIOS data is malformed and the function fails with ERROR_INVALID_DATA, Malformed SMBIOS data may indicate a problem with the user's computer .

  • The register rcx holds the parameter TotalMemoryInKilobytes. To overwrite the jump address of GetPhysicallyInstalledSystemMemory, I use the following opcodes: mov qword ptr ss:[rcx],4193B840. This moves the value 4193B840 (or 1.1 TB) to rcx. Then, the ret instruction is used to pop the return address off the stack and jump to it, Therefore, whenever GetPhysicallyInstalledSystemMemory is called, it will set rcx to the custom value."



Hades - Go Shellcode Loader That Combines Multiple Evasion Techniques

By: Zion3R


Hades is a proof of concept loader that combines several evasion technques with the aim of bypassing the defensive mechanisms commonly used by modern AV/EDRs.


Usage

The easiest way, is probably building the project on Linux using make.

git clone https://github.com/f1zm0/hades && cd hades
make

Then you can bring the executable to a x64 Windows host and run it with .\hades.exe [options].

PS > .\hades.exe -h

'||' '||' | '||''|. '||''''| .|'''.|
|| || ||| || || || . ||.. '
||''''|| | || || || ||''| ''|||.
|| || .''''|. || || || . '||
.||. .||. .|. .||. .||...|' .||.....| |'....|'

version: dev [11/01/23] :: @f1zm0

Usage:
hades -f <filepath> [-t selfthread|remotethread|queueuserapc]

Options:
-f, --file <str> shellcode file path (.bin)
-t, --technique <str> injection technique [selfthread, remotethread, queueuserapc]

Example:

Inject shellcode that spawms calc.exe with queueuserapc technique:

.\hades.exe -f calc.bin -t queueuserapc

Showcase

User-mode hooking bypass with syscall RVA sorting (NtQueueApcThread hooked with frida-trace and custom handler)

Instrumentation callback bypass with indirect syscalls (injected DLL is from syscall-detect by jackullrich)

Additional Notes

Direct syscall version

In the latest release, direct syscall capabilities have been replaced by indirect syscalls provided by acheron. If for some reason you want to use the previous version of the loader that used direct syscalls, you need to explicitly pass the direct_syscalls tag to the compiler, which will figure out what files needs to be included and excluded from the build.

GOOS=windows GOARCH=amd64 go build -ldflags "-s -w" -tags='direct_syscalls' -o dist/hades_directsys.exe cmd/hades/main.go

Disclaimers

Warning
This project has been created for educational purposes only, to experiment with malware dev in Go, and learn more about the unsafe package and the weird Go Assembly syntax. Don't use it to on systems you don't own. The developer of this project is not responsible for any damage caused by the improper use of this tool.

Credits

Shoutout to the following people that shared their knowledge and code that inspired this tool:

License

This project is licensed under the GPLv3 License - see the LICENSE file for details



Metlo - An Open-Source API Security Platform

By: Zion3R

Secure Your API.


Metlo is an open-source API security platform

With Metlo you can:

  • Create an Inventory of all your API Endpoints and Sensitive Data.
  • Detect common API vulnerabilities.
  • Proactively test your APIs before they go into production.
  • Detect API attacks in real time.

Metlo does this by scanning your API traffic using one of our connectors and then analyzing trace data.


There are three ways to get started with Metlo. Metlo Cloud, Metlo Self Hosted, and our Open Source product. We recommend Metlo Cloud for almost all users as it scales to 100s of millions of requests per month and all upgrades and migrations are managed for you.

You can get started with Melto Cloud right away without a credit card. Just make an account on https://app.metlo.com and follow the instructions in our docs here.

Although we highly recommend Metlo Cloud, if you're a large company or need an air-gapped system you can self host Metlo as well! Create an account on https://my.metlo.com and follow the instructions on our docs here to setup Metlo in your own Cloud environment.

If you want to deploy our Open Source product we have instructions for AWS, GCP, Azure and Docker.

You can also join our Discord community if you need help or just want to chat!

Features

  • Endpoint Discovery - Metlo scans network traffic and creates an inventory of every single endpoint in your API.
  • Sensitive Data Scannning - Each endpoint is scanned for PII data and given a risk score.
  • Vulnerability Discovery - Get Alerts for issues like unauthenticated endpoints returning sensitive data, No HSTS headers, PII data in URL params, Open API Spec Diffs and more
  • API Security Testing - Build security tests directly in Metlo. Autogenerate tests for OWASP Top 10 vulns like BOLA, Broken Authentication, SQL Injection and more.
  • CI/CD Integration - Integrate with your CI/CD to find issues in development and staging.
  • Attack Detection - Our ML Algorithms build a model for baseline API behavior. Any deviation from this baseline is surfaced to your security team as soon as possible.
  • Attack Context - Metlo’s UI gives you full context around any attack to help quickly fix the vulnerability.

Testing

For tests that we can't autogenerate, our built in testing framework helps you get to 100% Security Coverage on your highest risk APIs. You can build tests in a yaml format to make sure your API is working as intendend.

For example the following test checks for broken authentication:

id: test-payment-processor-metlo.com-user-billing

meta:
name: test-payment-processor.metlo.com/user/billing Test Auth
severity: CRITICAL
tags:
- BROKEN_AUTHENTICATION

test:
- request:
method: POST
url: https://test-payment-processor.metlo.com/user/billing
headers:
- name: Content-Type
value: application/json
- name: Authorization
value: ...
data: |-
{ "ccn": "...", "cc_exp": "...", "cc_code": "..." }
assert:
- key: resp.status
value: 200
- request:
method: POST
url: https://test-payment-processor.metlo.com/user/billing
headers:
- name: Content-Type
value: application/json
data: |-
{ "ccn": "...", "cc_exp": "...", "cc_code": "..." }
assert:
- key: resp.s tatus
value: [ 401, 403 ]

You can see more information on our docs.

Why Metlo?

Most businesses have adopted public facing APIs to power their websites and apps. This has dramatically increased the attack surface for your business. There’s been a 200% increase in API security breaches in just the last year with the APIs of companies like Uber, Meta, Experian and Just Dial leaking millions of records. It's obvious that tools are needed to help security teams make APIs more secure but there's no great solution on the market.

Some solutions require you to go through sales calls to even try the product while others have you to send all your API traffic to their own cloud. Metlo is the first Open Source API security platform that you can self host, and get started for free right away!

We're Hiring!

We would love for you to come help us make Metlo better. Come join us at Metlo!

Open-source vs. paid

This repo is entirely MIT licensed. Features like user management, user roles and attack protection require an enterprise license. Contact us for more information.

Development

Checkout our development guide for more info on how to develop Metlo locally.



Nmap-API - Uses Python3.10, Debian, python-Nmap, And Flask Framework To Create A Nmap API That Can Do Scans With A Good Speed Online And Is Easy To Deploy


Uses python3.10, Debian, python-Nmap, and flask framework to create a Nmap API that can do scans with a good speed online and is easy to deploy.

This is a implementation for our college PCL project which is still under development and constantly updating.


API Reference

Get all items

  GET /api/p1/{username}:{password}/{target}
GET /api/p2/{username}:{password}/{target}
GET /api/p3/{username}:{password}/{target}
GET /api/p4/{username}:{password}/{target}
GET /api/p5/{username}:{password}/{target}
Parameter Type Description
username string Required. username of the current user
password string Required. current user password
target string Required. The target Hostname and IP

Get item

  GET /api/p1/
GET /api/p2/
GET /api/p3/
GET /api/p4/
GET /api/p5/
Parameter Return data Description Nmap Command
p1 json Effective Scan -Pn -sV -T4 -O -F
p2 json Simple Scan -Pn -T4 -A -v
p3 json Low Power Scan -Pn -sS -sU -T4 -A -v
p4 json Partial Intense Scan -Pn -p- -T4 -A -v
p5 json Complete Intense Scan -Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln

Auth and User management

  POST /adduser/{admin-username}:{admin-passwd}/{id}/{username}/{passwd}
POST /deluser/{admin-username}:{admin-passwd}/{t-username}/{t-userpass}
POST /altusername/{admin-username}:{admin-passwd}/{t-user-id}/{new-t-username}
POST /altuserid/{admin-username}:{admin-passwd}/{new-t-user-id}/{t-username}
POST /altpassword/{admin-username}:{admin-passwd}/{t-username}/{new-t-userpass}
  • make sure you use the ADMIN CREDS MENTIONED BELOW
Parameter Type Description
admin-username String Admin username
admin-passwd String Admin password
id String Id for newly added user
username String Username of the newly added user
passwd String Password of the newly added user
t-username String Target username
t-user-id String Target userID
t-userpass String Target users password
new-t-username String New username for the target
new-t-user-id String New userID for the target
new-t-userpass String New password for the target

DEFAULT CREDENTIALS

ADMINISTRATOR : zAp6_oO~t428)@,



Waf-Bypass - Check Your WAF Before An Attacker Does


WAF bypass Tool is an open source tool to analyze the security of any WAF for False Positives and False Negatives using predefined and customizable payloads. Check your WAF before an attacker does. WAF Bypass Tool is developed by Nemesida WAF team with the participation of community.


How to run

It is forbidden to use for illegal and illegal purposes. Don't break the law. We are not responsible for possible risks associated with the use of this software.

Run from Docker

The latest waf-bypass always available via the Docker Hub. It can be easily pulled via the following command:

# docker pull nemesida/waf-bypass
# docker run nemesida/waf-bypass --host='example.com'

Run source code from GitHub

# git clone https://github.com/nemesida-waf/waf_bypass.git /opt/waf-bypass/
# python3 -m pip install -r /opt/waf-bypass/requirements.txt
# python3 /opt/waf-bypass/main.py --host='example.com'

Options

  • '--proxy' (--proxy='http://proxy.example.com:3128') - option allows to specify where to connect to instead of the host.

  • '--header' (--header 'Authorization: Basic YWRtaW46YWRtaW4=' --header 'X-TOKEN: ABCDEF') - option allows to specify the HTTP header to send with all requests (e.g. for authentication). Multiple use is allowed.

  • '--user-agent' (--user-agent 'MyUserAgent 1/1') - option allows to specify the HTTP User-Agent to send with all requests, except when the User-Agent is set by the payload ("USER-AGENT").

  • '--block-code' (--block-code='403' --block-code='222') - option allows you to specify the HTTP status code to expect when the WAF is blocked. (default is 403). Multiple use is allowed.

  • '--threads' (--threads=15) - option allows to specify the number of parallel scan threads (default is 10).

  • '--timeout' (--timeout=10) - option allows to specify a request processing timeout in sec. (default is 30).

  • '--json-format' - an option that allows you to display the result of the work in JSON format (useful for integrating the tool with security platforms).

  • '--details' - display the False Positive and False Negative payloads. Not available in JSON format.

  • '--exclude-dir' - exclude the payload's directory (--exclude-dir='SQLi' --exclude-dir='XSS'). Multiple use is allowed.

Payloads

Depending on the purpose, payloads are located in the appropriate folders:

  • FP - False Positive payloads
  • API - API testing payloads
  • CM - Custom HTTP Method payloads
  • GraphQL - GraphQL testing payloads
  • LDAP - LDAP Injection etc. payloads
  • LFI - Local File Include payloads
  • MFD - multipart/form-data payloads
  • NoSQLi - NoSQL injection payloads
  • OR - Open Redirect payloads
  • RCE - Remote Code Execution payloads
  • RFI - Remote File Inclusion payloads
  • SQLi - SQL injection payloads
  • SSI - Server-Side Includes payloads
  • SSRF - Server-side request forgery payloads
  • SSTI - Server-Side Template Injection payloads
  • UWA - Unwanted Access payloads
  • XSS - Cross-Site Scripting payloads

Write your own payloads

When compiling a payload, the following zones, method and options are used:

  • URL - request's path
  • ARGS - request's query
  • BODY - request's body
  • COOKIE - request's cookie
  • USER-AGENT - request's user-agent
  • REFERER - request's referer
  • HEADER - request's header
  • METHOD - request's method
  • BOUNDARY - specifies the contents of the request's boundary. Applicable only to payloads in the MFD directory.
  • ENCODE - specifies the type of payload encoding (Base64, HTML-ENTITY, UTF-16) in addition to the encoding for the payload. Multiple values are indicated with a space (e.g. Base64 UTF-16). Applicable only to for ARGS, BODY, COOKIE and HEADER zone. Not applicable to payloads in API and MFD directories. Not compatible with option JSON.
  • JSON - specifies that the request's body should be in JSON format
  • BLOCKED - specifies that the request should be blocked (FN testing) or not (FP)

Except for some cases described below, the zones are independent of each other and are tested separately (those if 2 zones are specified - the script will send 2 requests - alternately checking one and the second zone).

For the zones you can use %RND% suffix, which allows you to generate an arbitrary string of 6 letters and numbers. (e.g.: param%RND=my_payload or param=%RND% OR A%RND%B)

You can create your own payloads, to do this, create your own folder on the '/payload/' folder, or place the payload in an existing one (e.g.: '/payload/XSS'). Allowed data format is JSON.

API directory

API testing payloads located in this directory are automatically appended with a header 'Content-Type: application/json'.

MFD directory

For MFD (multipart/form-data) payloads located in this directory, you must specify the BODY (required) and BOUNDARY (optional). If BOUNDARY is not set, it will be generated automatically (in this case, only the payload must be specified for the BODY, without additional data ('... Content-Disposition: form-data; ...').

If a BOUNDARY is specified, then the content of the BODY must be formatted in accordance with the RFC, but this allows for multiple payloads in BODY a separated by BOUNDARY.

Other zones are allowed in this directory (e.g.: URL, ARGS etc.). Regardless of the zone, header 'Content-Type: multipart/form-data; boundary=...' will be added to all requests.



GPT_Vuln-analyzer - Uses ChatGPT API And Python-Nmap Module To Use The GPT3 Model To Create Vulnerability Reports Based On Nmap Scan Data


This is a Proof Of Concept application that demostrates how AI can be used to generate accurate results for vulnerability analysis and also allows further utilization of the already super useful ChatGPT.

Requirements

  • Python 3.10
  • All the packages mentioned in the requirements.txt file
  • OpenAi api

Usage

  • First Change the "API__KEY" part of the code with OpenAI api key
openai.api_key = "__API__KEY" # Enter your API key
  • second install the packages
pip3 install -r requirements.txt
or
pip install -r requirements.txt
  • run the code python3 gpt_vuln.py <> or if windows run python gpt_vuln.py <>

Supported in both windows and linux

Understanding the code

Profiles:

Parameter Return data Description Nmap Command
p1 json Effective Scan -Pn -sV -T4 -O -F
p2 json Simple Scan -Pn -T4 -A -v
p3 json Low Power Scan -Pn -sS -sU -T4 -A -v
p4 json Partial Intense Scan -Pn -p- -T4 -A -v
p5 json Complete Intense Scan -Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln

The profile is the type of scan that will be executed by the nmap subprocess. The Ip or target will be provided via argparse. At first the custom nmap scan is run which has all the curcial arguments for the scan to continue. nextly the scan data is extracted from the huge pile of data which has been driven by nmap. the "scan" object has a list of sub data under "tcp" each labled according to the ports opened. once the data is extracted the data is sent to openai API davenci model via a prompt. the prompt specifically asks for an JSON output and the data also to be used in a certain manner.

The entire structure of request that has to be sent to the openai API is designed in the completion section of the Program.

vulnerability analysis of {} and return a vulnerabilty report in json".format(analize) # A structure for the request completion = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=1024, n=1, stop=None, ) response = completion.choices[0].text return response" dir="auto">
def profile(ip):
nm.scan('{}'.format(ip), arguments='-Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln')
json_data = nm.analyse_nmap_xml_scan()
analize = json_data["scan"]
# Prompt about what the quary is all about
prompt = "do a vulnerability analysis of {} and return a vulnerabilty report in json".format(analize)
# A structure for the request
completion = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=1024,
n=1,
stop=None,
)
response = completion.choices[0].text
return response

Advantages

  • Can be used in developing a more advanced systems completly made of the API and scanner combination
  • Can increase the effectiveness of the final system
  • Highly productive when working with models such as GPT3


REST-Attacker - Designed As A Proof-Of-Concept For The Feasibility Of Testing Generic Real-World REST Implementations


REST-Attacker is an automated penetration testing framework for APIs following the REST architecture style. The tool's focus is on streamlining the analysis of generic REST API implementations by completely automating the testing process - including test generation, access control handling, and report generation - with minimal configuration effort. Additionally, REST-Attacker is designed to be flexible and extensible with support for both large-scale testing and fine-grained analysis.

REST-Attacker is maintained by the Chair of Network & Data Security of the Ruhr University of Bochum.


Features

REST-Attacker currently provides these features:

  • Automated generation of tests
    • Utilize an OpenAPI description to automatically generate test runs
    • 32 integrated security tests based on OWASP and other scientific contributions
    • Built-in creation of security reports
  • Streamlined API communication
    • Custom request interface for the REST security use case (based on the Python3 requests module)
    • Communicate with any generic REST API
  • Handling of access control
    • Background authentication/authorization with API
    • Support for the most popular access control mechanisms: OAuth2, HTTP Basic Auth, API keys and more
  • Easy to use & extend
    • Usable as standalone (CLI) tool or as a module
    • Adapt test runs to specific APIs with extensive configuration options
    • Create custom test cases or access control schemes with the tool's interfaces

Install

Get the tool by downloading or cloning the repository:

git clone https://github.com/RUB-NDS/REST-Attacker.git

You need Python >3.10 for running the tool.

You also need to install the following packages with pip:

python3 -m pip install -r requirements.txt

Quickstart

Here you can find a quick rundown of the most common and useful commands. You can find more information on each command and other about available configuration options in our usage guides.

Get the list of supported test cases:

python3 -m rest_attacker --list

Basic test run (with load-time test case generation):

python3 -m rest_attacker <cfg-dir-or-openapi-file> --generate

Full test run (with load-time and runtime test case generation + rate limit handling):

python3 -m rest_attacker <cfg-dir-or-openapi-file> --generate --propose --handle-limits

Test run with only selected test cases (only generates test cases for test cases scopes.TestTokenRequestScopeOmit and resources.FindSecurityParameters):

python3 -m rest_attacker <cfg-dir-or-openapi-file> --generate --test-cases scopes.TestTokenRequestScopeOmit resources.FindSecurityParameters

Rerun a test run from a report:

python3 -m rest_attacker <cfg-dir-or-openapi-file> --run /path/to/report.json

Documentation

Usage guides and configuration format documentation can be found in the documentation subfolders.

Troubleshooting

For fixes/mitigations for known problems with the tool, see the troubleshooting docs or the Issues section.

Contributing

Contributions of all kinds are appreciated! If you found a bug or want to make a suggestion or feature request, feel free to create a new issue in the issue tracker. You can also submit fixes or code ammendments via a pull request.

Unfortunately, we can be very busy sometimes, so it may take a while before we respond to comments in this repository.

License

This project is licensed under GNU LGPLv3 or later (LGPL3+). See COPYING for the full license text and CONTRIBUTORS.md for the list of authors.



DotDumper - An Automatic Unpacker And Logger For DotNet Framework Targeting Files


An automatic unpacker and logger for DotNet Framework targeting files! This tool has been unveiled at Black Hat USA 2022.

The automatic detection and classification of any given file in a reliable manner is often considered the holy grail of malware analysis. The trials and tribulations to get there are plenty, which is why the creation of such a system is held in high regard. When it comes to DotNet targeting binaries, our new open-source tool DotDumper aims to assist in several of the crucial steps along the way: logging (in-memory) activity, dumping interesting memory segments, and extracting characteristics from the given sample.


Why DotDumper?

In brief, manual unpacking is a tedious process which consumes a disproportional amount of time for analysts. Obfuscated binaries further increase the time an analyst must spend to unpack a given file. When scaling this, organizations need numerous analysts who dissect malware daily, likely in combination with a scalable sandbox. The lost valuable time could be used to dig into interesting campaigns or samples to uncover new threats, rather than the mundane generic malware that is widely spread. Afterall, analysts look for the few needles in the haystack.

So, what difference does DotDumper make? Running a DotNet based malware sample via DotDumper provides log files of crucial, contextualizing, and common function calls in three formats (human readable plaintext, JSON, and XML), as well as copies from useful in-memory segments. As such, an analyst can skim through the function call log. Additionally, the dumped files can be scanned to classify them, providing additional insight into the malware sample and the data it contains. This cuts down on time vital to the triage and incident response processes, and frees up SOC analyst and researcher time for more sophisticated analysis needs.

Features

To log and dump the contextualizing function calls and their results, DotDumper uses a mixture of reflection and managed hooks, all written in pure C#. Below, key features will be highlighted and elaborated upon, in combination with excerpts of DotDumper’s results of a packed AgentTesla stealer sample, the hashes of which are below.

Hash type Hash value
SHA-256 b7512e6b8e9517024afdecc9e97121319e7dad2539eb21a79428257401e5558d
SHA-1 c10e48ee1f802f730f41f3d11ae9d7bcc649080c
MD-5 23541daadb154f1f59119952e7232d6b

Using the command-line interface

DotDumper is accessible through a command-line interface, with a variety of arguments. The image below shows the help menu. Note that not all arguments will be discussed, but rather the most used ones.

The minimal requirement to run a given sample, is to provide the “-file” argument, along with a file name or file path. If a full path is given, it is used. If a file name is given, the current working directory is checked, as well as the folder of DotDumper’s executable location.

Unless a directory name is provided, the “-log” folder name is set equal to the file name of the sample without the extension (if any). The folder is located in the same folder as DotDumper resides in, which is where the logs and dumped files will be saved in.

In the case of a library, or an alternative entry point into a binary, one must override the entry point using “-overrideEntry true”. Additionally, one has to provide the fully qualified class, which includes the name space using “-fqcn My.NameSpace.MyClass”. This tells DotDumper which class to select, which is where the provided function name (using “-functionName MyFunction”) is retrieved.

If the selected function requires arguments, one has to provide the number of arguments using “-argc” and the number of required arguments. The argument types and values are to be provided as “string|myValue int|9”. Note that when spaces are used in the values, the argument on the command-line interface needs to be encapsulated between quotes to ensure it is passed as a single argument.

Other less frequently used options such as “-raceTime” or “-deprecated” are safe in their default settings but might require tweaking in the future due to changes in the DotNet Framework. They are currently exposed in the command-line interface to easily allow changes, if need be, even if one is using an older version of DotDumper when the time comes.

Logging and dumping

Logging and dumping are the two core features of DotDumper. To minimize the amount of time the analysis takes, the logging should provide context to the analyst. This is done by providing the analyst with the following information for each logged function call:

  • A stack trace based on the function’s caller
  • Information regarding the assembly object where the call originated from, such as the name, version, and cryptographic hashes
  • The parent assembly, from which the call originates if it is not the original sample
  • The type, name, and value of the function’s arguments
  • The type, name, and value of function’s return value, if any
  • A list of files which are dumped to disk which correspond with the given function call

Note that for each dumped file, the file name is equal to the file’s SHA-256 hash.

To clarify the above, an excerpt of a log is given below. The excerpt shows the details for the aforementioned AgentTesla sample, where it loads the second stage using DotNet’s Assembly.Load function.

First, the local system time is given, together with the original function’s return type, name, and argument(s). Second, the stack trace is given, where it shows that the sample’s main function leads to a constructor, initialises the components, and calls two custom functions. The Assembly.Load function was called from within “NavigationLib.TaskEightBestOil.GGGGGGGGGGGGGGGGGGGG(String str)”. This provides context for the analyst to find the code around this call if it is of interest.

Then, information regarding the assembly call order is given. The more stages are loaded, the more complex it becomes to see via which stages the call came to be. One normally expects one stage to load the next, but in some cases later stages utilize previous stages in a non-linear order. Additionally, information regarding the originating assembly is given to further enrich the data for the analyst.

Next, the parent hash is given. The parent of a stage is the previous stage, which in this example is not yet present. The newly loaded stage will have this stage as its parent. This allows the analyst to correlate events more easily.

Finally, the function’s return type and value are stored, along with the type, name, and value of each argument that is passed to the hooked function. If any variable is larger than 100 bytes in size, it is stored on the disk instead. A reference is then inserted in the log to reference the file, rather than showing the value. The threshold has been set to avoid hiccups in the printing of the log, as some arrays are thousands of indices in size.

Reflection

Per Microsoft’s documentation, reflection is best summarized as “[…] provides objects that encapsulate assemblies, modules, and types”. In short, this allows the dynamic creation and invocation of DotNet classes and functions from the malware sample. DotDumper contains a reflective loader which allows an analyst to load and analyze both executables and libraries, as long as they are DotNet Framework based.

To utilize the loader, one has to opt to overwrite the entry point in the command-line interface, specify the class (including the namespace it resides in) and function name within a given file. Optionally, one can provide arguments to the specified function, for all native types and arrays thereof. Examples of native types are int, string, char, and arrays such as int[], string[], and char[]. All the arguments are to be provided via the command-line interface, where both the type and the value are to be specified.

Not overriding the entry point results in the default entry point being used. By default, an empty string array is passed towards the sample’s main function, as if the sample is executed without arguments. Additionally, reflection is often used by loaders to invoke a given function in a given class in the next stage. Sometimes, arguments are passed along as well, which are used later to decrypt a resource. In the aforementioned AgentTesla sample, this exact scenario plays out. DotDumper’s invoke related hooks log these occurrences, as can be seen below.

The function name in the first line is not an internal function of the DotNet Framework, but rather a call to a specific function in the second stage. The types and names of the three arguments are listed in the function signature. Their values can be found in the function argument information section. This would allow an analyst to load the second stage in a custom loader with the given values for the arguments, or even do this using DotDumper by loading the previously dumped stage and providing the arguments.

Managed hooks

Before going into managed hooks, one needs to understand how hooks work. There are two main variables to consider here: the target function and a controlled function which is referred to as the hook. Simply put, the memory at the target function (i.e. Assembly.Load) is altered to instead to jump to the hook. As such, the program’s execution flow is diverted. The hook can then perform arbitrary actions, optionally call the original function, after which it returns the execution to the caller together with a return value if need be. The diagram below illustrates this process.

Knowing what hooks are is essential to understand what managed hooks are. Managed code is executed in a virtual and managed environment, such as the DotNet runtime or Java’s virtual machine. Obtaining the memory address where the managed function resides differs from an unmanaged language such as C. Once the correct memory addresses for both functions have been obtained, the hook can be set by directly accessing memory using unsafe C#, along with DotNet’s interoperability service to call native Windows API functionality.

Easily extendible

Since DotDumper is written in pure C# without any external dependencies, one can easily extend the framework using Visual Studio. The code is documented in this blog, on GitHub, and in classes, in functions, and in-line in the source code. This, in combination with the clear naming scheme, allows anyone to modify the tool as they see fit, minimizing the time and effort that one needs to spend to understand the tool. Instead, it allows developers and analysts alike to focus their efforts on the tool’s improvement.

Differences with known tooling

With the goal and features of DotDumper clear, it might seem as if there’s overlap with known publicly available tools such as ILSpy, dnSpyEx, de4dot, or pe-sieve. Note that there is no intention to proclaim one tool is better than another, but rather how the tools differ.

DotDumper’s goal is to log and dump crucial, contextualizing, and common function calls from DotNet targeting samples. ILSpy is a DotNet disassembler and decompiler, but does not allow the execution of the file. dnSpyEx (and its predecessor dnSpy) utilise ILSpy as the disassembler and decompiler component, while adding a debugger. This allows one to manually inspect and manipulate memory. de4dot is solely used to deobfuscate DotNet binaries, improving the code’s readability for human eyes. The last tool in this comparison, pe-sieve, is meant to detect and dump malware from running processes, disregarding the used programming language. The table below provides a graphical overview of the above-mentioned tools.

Future work

DotDumper is under constant review and development, all of which is focused on two main areas of interest: bug fixing and the addition of new features. During the development, the code was tested, but due to injection of hooks into the DotNet Framework’s functions which can be subject to change, it’s very well possible that there are bugs in the code. Anyone who encounters a bug is urged to open an issue on the GitHub repository, which will then be looked at. The suggestion of new features is also possible via the GitHub repository. For those with a GitHub account, or for those who rather not publicly interact, feel free to send me a private message on my Twitter.

Needless to say, if you've used DotDumper during an analysis, or used it in a creative way, feel free to reach out in public or in private! There’s nothing like hearing about the usage of a home-made tool!

There is more in store for DotDumper, and an update will be sent out to the community once it is available!



Octosuite - Advanced Github OSINT Framework


A framework fro gathering osint on GitHub users, repositories and organizations


Wiki

Refer to the Wiki for installation instructions, in addition to all other documentation.

Features

  • Fetches an organization's profile information
  • Fetches an oganization's events
  • Returns an organization's repositories
  • Returns an organization's public members
  • Fetches a repository's information
  • Returns a repository's contributors
  • Returns a repository's languages
  • Fetches a repository's stargazers
  • Fetches a repository's forks
  • Fetches a repository's releases
  • Returns a list of files in a specified path of a repository
  • Fetches a user's profile information
  • Returns a user's gists
  • Returns organizations that a user owns/belongs to
  • Fetches a user's events
  • Fetches a list of users followed by the target
  • Fetches a user's followers
  • Checks if user A follows user B
  • Checks if user is a public member of an organizations
  • Returns a user's subscriptions
  • Gets a user's subscriptions
  • Gets a user's events
  • Searches users
  • Searches repositories
  • Searches topics
  • Searches issues
  • Searches commits
  • Automatically logs network activity (.logs folder)
  • User can view, read and delete logs
  • ...And more

Note

Octosuite automatically logs network and user activity of each session, the logs are saved by date and time in the .logs folder



TeamFiltration - Cross-Platform Framework For Enumerating, Spraying, Exfiltrating, And Backdooring O365 AAD Accounts


TeamFiltration is a cross-platform framework for enumerating, spraying, exfiltrating, and backdooring O365 AAD accounts. See the TeamFiltration wiki page for an introduction into how TeamFiltration works and the Quick Start Guide for how to get up and running!

This tool has been used internally since January 2021 and was publicly released in my talk "Taking a Dumb In The Cloud" during DefCON30.


Download

You can download the latest precompiled release for Linux, Windows and MacOSX X64

The releases are precompiled into a single application-dependent binary. The size go up, but you do not need DotNetCore or any other dependencies to run them.

Usage


╓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╖
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ╟╬╬╜╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬╡ │ ╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬╡ ││ ╙╬╬╜╘ └╙╜╬╬╬╬╬╬
╬╬╬╬╡ ╓╥╥╬╬╬╬╬╬╥╥╖ ││ │ ╬╬╬╬╬
╬╬╬╬╡ ╓╬╫╬╜╜┘ ╙╜╜╬╫╬┐ ││ ││ └╬╬╬╬
╬╬╬╬┤ ╬╬╜╙╩╬╖╓ ╙╬╬╬ ││ ││ ╬╬╬╬
╬╬╬╬┤ ╬╜ ╙╬╫╖╖ ╓ ╙╬╖ ││ ├││ ╬╬╬╬
╬╬╬╬┤ ╬╬ ╓╖ ╙╬╬╬╬╬╬╦ ╬╬ │┌ ╓╬┤││ ╓╬╬╬╬
╬╬╬╬┤ ╓╬┤ ╬╬╬ ╬╬╬╬╬╬╬╬╜╜╜╬╬╖ ╟╬╬╬╬╬╬╬╬╬╕ ┌╬╬╬╬╬
╬╬╬╬┤ ╬╬┤ ╙╩┘ ╙╬╬╬╬╬╩ ╟╬╬ ╙╜╜╜╜╜╜╜╜╜╬╬╖╖╖╦╬╬╬╬╬╬╬
╬╬╬╬┤ ╬╬┤ ╟╬╬ ││ ╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ╬╬ ╦╖ ╗╖ ╬╬ ││ │ ╬╬╬╬
╬╬╬╬┤ └╬┐ ╙╬╖╖ ╓╬╬╜ ╓╬┘ ││ │ ╬╬╬╬
╬╬╬╬┤ └╬╖ ╙╩╨╬╬╬╩╨╜╜ ╒╬╬ ││ │ ╬╬╬╬
╬╬╬╬┤ ╙╬╬╬╖ ┌╖╫╬╜┘ ││ │ ╬╬╬╬
╬╬╬╬┤ ╙╩╬╬╬╥╥╥╥╥╥╫╬╬╜╜ ││ │ ╬╬╬╬
╬╬╬╬┤ ╙╙╜╜╜╛ ││ │ ╬╬╬╬
╬╬╬╬┤ ││ │ ╓╖╬╬╬╬╬
╬╬╬╬┤ ││ ╬╦╦╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ││ ╓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ╬╬╬╖╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
└╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╜
╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜

[�] TeamFiltration V0.3.3.7 PUBLIC, created by @Flangvik @TrustedSec
Usage:

--outpath Output path to store database and exfiltrated information (Needed for all modules)

--config Local path to your TeamFiltration.json configuration file, if not provided will load from the current path

--exfil Load the exfiltration module

--username Override to target a given username that does not exist in the database
--password Override to target a given password that does not exist in the database
--cookie-dump Override to target a given account using it's refresk-cookie-collection

--all Exfiltrate information from ALL SSO resources (Graph, OWA, SharePoint, OneDrive, Teams)
--aad Exfiltrate information from Graph API (domain users and groups)
--teams Exfiltrate information from Teams API (files, chatlogs, attachments, contactlist)
--onedrive Exfiltrate information from OneDrive/SharePoint API (accessible SharePoint files and the users entire OneDrive directory)
--owa Exfiltrate information from the Outlook REST API ( The last 2k emails, both sent and received)
--owa-limit Set the max amount of emails to exfiltrate, default is 2k.
--jwt-tokens Exfiltrate JSON formated JTW-tokens for SSO resources (MsGraph,AdGraph, Outlook, SharePoint, OneDrive, Teams)

--spray Load the spraying module

--aad-sso Use SecureWorks recent Azure Active Directory password brute-forcing vuln for spraying
--us-cloud When spraying companies attached to US Tenants (https://login.microsoftonline.us/)
--time-window Defines a time windows where spraying should accour, in the military time format <12:00-19:00>
--passwords Path to a list of passwords, common weak-passwords will be generated if not supplied
--seasons-only Password generated for spraying will only be based on seasons
--months-only Password generated for spraying will only be based on months
--common-only Spray with the top 20 most common passwords
--combo Path to a combolist of username:password
--exclude Path to a list of emails to exclude from spraying

--sleep-min Minimum minutes to sleep between each full rotation of spraying default=60
--sleep-max Maximum minutes to sleep between each full rotation of spraying default=100
--delay Delay in seconds between each individual authentication attempt. default=0
--push Get Pushover notifications when valid credentials are found (requires pushover keys in config)
--push-lo cked Get Pushover notifications when an sprayed account gets locked (requires pushover keys in config)
--force Force the spraying to proceed even if there is less the <sleep> time since the last attempt

--enum Load the enumeration module

--domain Domain to perfom enumeration against, names pulled from statistically-likely-usernames if not provided with --usernames
--usernames Path to a list of usernames to enumerate (emails)
--dehashed Use the dehashed submodule in order to enumerate emails from a basedomain
--validate-msol Validate that the given o365 accounts exists using the public GetCredentialType method (Very RateLimited - Slow 20 e/s)
--validate-teams Validate that the given o365 accounts exists using the Teams API method (Recommended - Super Fast 300 e/s)
--validate-login Validate that the given o365 accounts by attemping to login (Noisy - triggers logins - Fast 100 e/s)

--backdoor Loads the interactive backdoor module

--database Loads the interactive database browser module

--debug Add burp as a proxy on 127.0.0.1:8080

Examples:

--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --spray --sleep-min 120 --sleep-max 200 --push
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --spray --push-locked --months-only --exclude C:\Clients\2021\FooBar\Exclude_Emails.txt
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --spray --passwords C:\Clients\2021\FooBar\Generic\Passwords.txt --time-window 13:00-22:00
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --exfil --all
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --exfil --aad
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --exfil --teams --owa --owa-limit 5000
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --debug --exfil --onedrive
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --enum --validate-teams
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --enum --validate-msol --usernames C:\Clients\2021\FooBar\OSINT\Usernames.txt
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --backdoor
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --database

Credits



FUD-UUID-Shellcode - Another shellcode injection technique using C++ that attempts to bypass Windows Defender using XOR encryption sorcery and UUID strings madness


Introduction

Another shellcode injection technique using C++ that attempts to bypass Windows Defender using XOR encryption sorcery and UUID strings madness :).


How it works

Shellcode generation

  • Firstly, generate a payload in binary format( using either CobaltStrike or msfvenom ) for instance, in msfvenom, you can do it like so( the payload I'm using is for illustration purposes, you can use whatever payload you want ):

    msfvenom -p windows/messagebox  -f raw -o shellcode.bin
  • Then convert the shellcode( in binary/raw format ) into a UUID string format using the Python3 script, bin_to_uuid.py:

    ./bin_to_uuid.py -p shellcode.bin > uuid.txt
  • xor encrypt the UUID strings in the uuid.txt using the Python3 script, xor_encryptor.py.

    ./xor_encryptor.py uuid.txt > xor_crypted_out.txt
  • Copy the C-style array in the file, xor_crypted_out.txt, and paste it in the C++ file as an array of unsigned char i.e. unsigned char payload[]{your_output_from_xor_crypted_out.txt}

Execution

This shellcode injection technique comprises the following subsequent steps:

  • First things first, it allocates virtual memory for payload execution and residence via VirtualAlloc
  • It xor decrypts the payload using the xor key value
  • Uses UuidFromStringA to convert UUID strings into their binary representation and store them in the previously allocated memory. This is used to avoid the usage of suspicious APIs like WriteProcessMemory or memcpy.
  • Use EnumChildWindows to execute the payload previously loaded into memory( in step 1 )

What makes it unique?

  • It doesn't use standard functions like memcpy or WriteProcessMemory which are known to raise alarms to AVs/EDRs, this program uses the Windows API function called UuidFromStringA which can be used to decode data as well as write it to memory( Isn't that great folks? And please don't say "NO!" :) ).
  • It uses the function call obfuscation trick to call the Windows API functions
  • Lastly, because it looks unique :) ( Isn't it? :) )

Important

  • You have to change the xor key(row 86) to what you wish. This can be done in the ./xor_encryptor.py python3 script by changing the KEY variable.
  • You have to change the default executable filename value(row 90) to your filename.
  • The command for compiling is provided in the C++ file( around the top ). NB: mingw was used but you can use whichever compiler you prefer. :)

Compile

make

Proof-of-Concept( PoC )

Static Analysis

AV Scan results

The binary was scanned using antiscan.me on 01/08/2022.

Credits

https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/



Erlik 2 - Vulnerable-Flask-App


Erlik 2 - Vulnerable-Flask-App

Tested - Kali 2022.1

Description

It is a vulnerable Flask Web App. It is a lab environment created for people who want to improve themselves in the field of web penetration testing.


Features

It contains the following vulnerabilities.

  • HTML Injection
  • XSS
  • SSTI
  • SQL Injection
  • Information Disclosure
  • Command Injection
  • Brute Force
  • Deserialization
  • Broken Authentication
  • DOS
  • File Upload

Installation

git clone https://github.com/anil-yelken/Vulnerable-Flask-App

cd Vulnerable-Flask-App

sudo pip3 install -r requirements.txt

Usage

python3 vulnerable-flask-app.py

Contact

https://twitter.com/anilyelken06

https://medium.com/@anilyelken



Utkuici - Nessus Automation


Today, with the spread of information technology systems, investments in the field of cyber security have increased to a great extent. Vulnerability management, penetration tests and various analyzes are carried out to accurately determine how much our institutions can be affected by cyber threats. With Tenable Nessus, the industry leader in vulnerability management tools, an IP address that has just joined the corporate network, a newly opened port, exploitable vulnerabilities can be determined, and a python application that can work integrated with Tenable Nessus has been developed to automatically identify these processes.


Features

  • Finding New IP Address
  • Finding New Port
  • Finding New Exploitable Vulnerability

Installation

git clone https://github.com/anil-yelken/Nessus-Automation cd Nessus-Automation sudo pip3 install requirements.txt

Usage

The SIEM IP address in the codes should be changed.

In order to detect a new IP address exactly, it was checked whether the phrase "Host Discovery" was used in the Nessus scan name, and the live IP addresses were recorded in the database with a timestamp, and the difference IP address was sent to SIEM. The contents of the hosts table were as follows:

Usage: python finding-new-ip-nessus.py

By checking the port scans made by Nessus, the port-IP-time stamp information is recorded in the database, it detects a newly opened service over the database and transmits the data to SIEM in the form of "New Port:" port-IP-time stamp. The result observed by SIEM is as follows:

Usage: python finding-new-port-nessus.py

In the findings of vulnerability scans made in institutions and organizations, primarily exploitable vulnerabilities should be closed. At the same time, it records the vulnerabilities in the database that can be exploited with metasploit in the institutions and transmits this information to SIEM when it finds a different exploitable vulnerability on the systems. Exploitable vulnerabilities observed by SIEM:

Usage: python finding-exploitable-service-nessus.py

Contact

https://twitter.com/anilyelken06

https://medium.com/@anilyelken



GraphCrawler - GraphQL Automated Security Testing Toolkit


Graph Crawler is the most powerful automated testing toolkit for any GraphQL endpoint.

NEW: Can search for endpoints for you using Escape Technology's powerful Graphinder tool. Just point it towards a domain and add the '-e' option and Graphinder will do subdomain enumeration + search popular directories for GraphQL endpoints. After all this GraphCrawler will take over and work through each find.

It will run through and check if mutation is enabled, check for any sensitive queries available, such as users and files, and it will also test any easy queries it find to see if authentication is required.

If introspection is not enabled on the endpoint it will check if it is an Apollo Server and then can run Clairvoyance to brute force and grab the suggestions to try to build the schema ourselves. (See the Clairvoyance project for greater details on this). It will then score the findings 1-10 with 10 being the most critical.

If you want to dig deeper into the schema you can also use graphql-path-enum to look for paths to certain types, like user IDs, emails, etc.

I hope this saves you as much time as it has for me


Usage

python graphCrawler.py -u https://test.com/graphql/api -o <fileName> -a "<headers>"


██████╗ ██████╗ █████╗ ██████╗ ██╗ ██╗ ██████╗██████╗ █████╗ ██╗ ██╗██╗ ███████╗██████╗
██╔════╝ ██╔══██╗██╔══██╗██╔══██╗██║ ██║██╔════╝██╔══██╗██╔══██╗██║ ██║██║ ██╔════╝██╔══██╗
██║ ███╗██████╔╝███████║██████╔╝███████║██║ ██████╔╝███████║██║ █╗ ██║██║ █████╗ ██████╔╝
██║ ██║██╔══██╗██╔══██║██╔═══╝ ██╔══██║██║ ██╔══██╗██╔══██║██║███╗██║██║ ██╔══╝ ██╔══██╗
╚██████╔╝██║ ██║██║ ██║██║ ██║ ██║╚██████╗██║ ██║██║ ██║╚███╔███╔╝███████╗███████╗██║ ██║
╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚══╝╚══╝ ╚══════╝╚══════╝╚═╝ ╚═╝

The output option is not required and by default it will output to schema.json

Example output:

Requirements

  • Python3
  • Docker
  • Install all Python dependencies with pip

Wordlist from google-10000-english

TODO

  • Add option for "full report" following the endpoint search where it will run clairvoyance and all other aspects of the toolkit on the endpoints found
  • Default to "simple scan" to just find endpoints when this feature is added
  • Way Future: help craft queries based of the shema provided


ReconPal - Leveraging NLP For Infosec


Recon is one of the most important phases that seem easy but takes a lot of effort and skill to do right. One needs to know about the right tools, correct queries/syntax, run those queries, correlate the information, and sanitize the output. All of this might be easy for a seasoned infosec/recon professional to do, but for rest, it is still near to magic. How cool it will be to ask a simple question like "Find me an open Memcached server in Singapore with UDP support?" or "How many IP cameras in Singapore are using default credentials?" in a chat and get the answer?

The integration of GPT-3, deep learning-based language models to produce human-like text, with well-known recon tools like Shodan, is the foundation of ReconPal. ReconPal also supports using voice commands to execute popular exploits and perform reconnaissance.


Built With

  • OpenAI GPT-3
  • Shodan API
  • Speech-to-Text
  • Telegram Bot
  • Docker Containers
  • Python 3

Getting Started

To get ReconPal up and running, follow these simple steps.

Prerequisites

Installation

  1. Clone the repo

    git clone https://github.com/pentesteracademy/reconpal.git
  2. Enter your OPENAI, SHODAN API keys, and TELEGRAM bot token in docker-compose.yml

    OPENAI_API_KEY=<Your key>
    SHODAN_API_KEY=<Your key>
    TELEGRAM_BOT_TOKEN=<Your token>
  3. Start reconpal

    docker-compose up

Usage

Open the telegram app and select the created bot to use ReconPal.

  1. Click on start or just type in the input box.
/start
  1. Register the model.
/register
  1. Test the tool with some commands.
scan 10.0.0.8

Tool featured at

Contributors

Jeswin Mathai, Senior Security Researcher, INE jmathai@ine.com

Nishant Sharma, Security Research Manager, INE nsharma@ine.com

Shantanu Kale, Cloud Developer, INE skale@ine.com

Sherin Stephen, Cloud Developer, INE sstephen@ine.com

Sarthak Saini (Ex-Pentester Academy)

Documentation

For more details, refer to the "ReconPal.pdf" PDF file. This file contains the slide deck used for presentations.

Screenshots

Starting reconpal and registering model

Finder module in action

Scanner module in action

Attacker module in action

Voice Support

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License v2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.



crAPI - Completely Ridiculous API


completely ridiculous API (crAPI) will help you to understand the ten most critical API security risks. crAPI is vulnerable by design, but you'll be able to safely run it to educate/train yourself.

crAPI is modern, built on top of a microservices architecture. When time has come to buy your first car, sign up for an account and start your journey. To know more about crAPI, please check crAPI's overview.


QuickStart Guide

Docker

You'll need to have Docker installed and running on your host system.

Using prebuilt images

You can use prebuilt images generated by our CI workflow.

  • To use the latest stable version.

    • Linux Machine
    curl -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/main/deploy/docker/docker-compose.yml

    docker-compose pull

    docker-compose -f docker-compose.yml --compatibility up -d
    • Windows Machine
    curl.exe -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/main/deploy/docker/docker-compose.yml

    docker-compose pull

    docker-compose -f docker-compose.yml --compatibility up -d
  • To use the latest development version

    • Linux Machine
    curl -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/develop/deploy/docker/docker-compose.yml

    VERSION=develop docker-compose pull

    VERSION=develop docker-compose -f docker-compose.yml --compatibility up -d
    • Windows Machine
    Visit http://localhost:8888

    Note: All emails are sent to mailhog service by default and can be checked on http://localhost:8025 You can change the smtp configuration if required however all emails with domain example.com will still go to mailhog.

    Vagrant

    This option allows you to run crAPI within a virtual machine, thus isolated from your system. You'll need to have Vagrant and, for example VirtualBox installed.

    1. Clone crAPI repository
      $ git clone [REPOSITORY-URL]
    2. Start crAPI Virtual Machine
      $ cd deploy/vagrant && vagrant up
    3. Visit http://192.168.33.20

    Note: All emails are sent to mailhog service and can be checked on http://192.168.33.20:8025

    Once you're done playing with crAPI, you can remove it completely from your system running the following command from the repository root directory

    $ cd deploy/vagrant && vagrant destroy

    For more deployment options visit the setup instructions for more details.

    To know more about challenges in crAPI. Visit challenges



OffensiveVBA - Code Execution And AV Evasion Methods For Macros In Office Documents


In preparation for a VBS AV Evasion Stream/Video I was doing some research for Office Macro code execution methods and evasion techniques.

The list got longer and longer and I found no central place for offensive VBA templates - so this repo can be used for such. It is very far away from being complete. If you know any other cool technique or useful template feel free to contribute and create a pull request!

Most of the templates in this repo were already published somewhere. I just copy pasted most templates from ms-docs sites, blog posts or from other tools.


Templates in this repo

File Description
ShellApplication_ShellExecute.vba Execute an OS command via ShellApplication object and ShellExecute method
ShellApplication_ShellExecute_privileged.vba Execute an privileged OS command via ShellApplication object and ShellExecute method - UAC prompt
Shellcode_CreateThread.vba Execute shellcode in the current process via Win32 CreateThread
Shellcode_EnumChildWindowsCallback.vba Execute shellcode in the current process via EnumChildWindows
Win32_CreateProcess.vba Create a new process for code execution via Win32 CreateProcess function
Win32_ShellExecute.vba Create a new process for code execution via Win32 ShellExecute function
WMI_Process_Create.vba Create a new process via WMI for code execution
WMI_Process_Create2.vba Another WMI code execution example
WscriptShell_Exec.vba Execute an OS command via WscriptShell object and Exec method
WscriptShell_run.vba Execute an OS command via WscriptShell object and Run method
VBA-RunPE @itm4n's RunPE technique in VBA
GadgetToJScript med0x2e's C# script for generating .NET serialized gadgets that can trigger .NET assembly load/execution when deserialized using BinaryFormatter from JS/VBS/VBA based scripts.
PPID_Spoof.vba christophetd's spoofing-office-macro copy
AMSIBypass_AmsiScanBuffer_ordinal.vba rmdavy's AMSI Bypass to patch AmsiScanBuffer using ordinal values for a signature bypass
AMSIBypass_AmsiScanBuffer_Classic.vba rasta-mouse's classic AmsiScanBuffer patch
AMSIBypass_Heap.vba rmdavy's HeapsOfFun repo copy
AMSIbypasses.vba outflanknl's AMSI bypass blog
COMHijack_DLL_Load.vba Load DLL via COM Hijacking
COM_Process_create.vba Create process via COM object
Download_Autostart.vba Download a file from a remote webserver and put it into the StartUp folder
Download_Autostart_WinAPI.vba Download a file from a remote webserver via URLDownloadtoFileA and put it into the StartUp folder
Dropper_Autostart.vba Drop batch file into the StartUp folder
Registry_Persist_wmi.vba Create StartUp registry key for persistence via WMI
Registry_Persist_wscript.vba Create StartUp registry key for persistence via wscript object
ScheduledTask_Create.vba Create and start sheduled task for code execution/persistence
XMLDOM_Load_XSL_Process_create.vba Load XSL from a remote webserver to execute code
regsvr32_sct_DownloadExecute.vba Execute regsvr32 to download a remote webservers SCT file for code execution
BlockETW.vba Patch EtwEventWrite in ntdll.dll to block ETW data collection
BlockETW_COMPLUS_ETWEnabled_ENV.vba Block ETW data collection by setting the environment variable COMPLUS_ETWEnabled to 0, credit to @xpn
ShellWindows_Process_create.vba ShellWindows Process create to get explorer.exe as parent process
AES.vba An example to use AES encryption/decryption in VBA from Here
Dropper_Executable_Autostart.vba Get executable bytes from VBA and drop into Autostart - no download in this case
MarauderDrop.vba Drop a COM registered .NET DLL into temp, import the function and execute code - in this case loads a remote C# binary from a webserver to memory and executes it - credit to @Jean_Maes_1994 for MaraudersMap
Dropper_Workfolders_lolbas_Execute.vba Drop an embedded executable into the TEMP directory and execute it using C:\windows\system32\Workfolders.exe as LOLBAS - credit to @YoSignals
SandBoxEvasion Some SandBox Evasion templates
Evasion Dropper Autostart.vba Drops a file to the Startup directory bypassing file write monitoring via renamed folder operation
Evasion MsiInstallProduct.vba Installs a remote MSI package using WindowsInstaller ActiveXObject avoiding spawning suspicious office child process, the msi installation will be executed as a child of the MSIEXEC /V service
StealNetNTLMv2.vba Steal NetNTLMv2 Hash via share connection - credit to https://book.hacktricks.xyz/windows/ntlm/places-to-steal-ntlm-creds
Parse-Outlook.vba Parses Outlook for sensitive keywords and file extensions, and exfils them via email - credit to JohnWoodman
Reverse-Shell.vba Reverse shell written entirely in VBA using Windows API calls - credit to JohnWoodman

Missing - ToDos

File Description
Unhooker.vba Unhook API's in memory to get rid of hooks
Syscalls.vba Syscall usage - fresh from disk or Syswhispers like
Manymore.vba If you have any more ideas feel free to contribute

Obfuscators / Payload generators

  1. VBad
  2. wePWNise
  3. VisualBasicObfuscator - needs some modification as it doesn't split up lines and is therefore not usable for office document macros
  4. macro_pack
  5. shellcode2vbscript.py
  6. EvilClippy
  7. OfficePurge
  8. SharpShooter
  9. VBS-Obfuscator-in-Python - - needs some modification as it doesn't split up lines and is therefore not usable for office document macros

Credits / usefull resources

ASR bypass: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Shellcode to VBScript conversion: https://github.com/DidierStevens/DidierStevensSuite/blob/master/shellcode2vbscript.py

Bypass AMSI in VBA: https://outflank.nl/blog/2019/04/17/bypassing-amsi-for-vba/

VBA purging: https://www.mandiant.com/resources/purgalicious-vba-macro-obfuscation-with-vba-purging

F-Secure VBA Evasion and detection post: https://blog.f-secure.com/dechaining-macros-and-evading-edr/

One more F-Secure blog: https://labs.f-secure.com/archive/dll-tricks-with-vba-to-improve-offensive-macro-capability/



❌