TL;DR: Galah (/Ι‘ΙΛlΙΛ/ - pronounced 'guh-laa') is an LLM (Large Language Model) powered web honeypot, currently compatible with the OpenAI API, that is able to mimic various applications and dynamically respond to arbitrary HTTP requests.
Named after the clever Australian parrot known for its mimicry, Galah mirrors this trait in its functionality. Unlike traditional web honeypots that rely on a manual and limiting method of emulating numerous web applications or vulnerabilities, Galah adopts a novel approach. This LLM-powered honeypot mimics various web applications by dynamically crafting relevant (and occasionally foolish) responses, including HTTP headers and body content, to arbitrary HTTP requests. Fun fact: in Aussie English, Galah also means fool!
I've deployed a cache for the LLM-generated responses (the cache duration can be customized in the config file) to avoid generating multiple responses for the same request and to reduce the cost of the OpenAI API. The cache stores responses per port, meaning if you probe a specific port of the honeypot, the generated response won't be returned for the same request on a different port.
The prompt is the most crucial part of this honeypot! You can update the prompt in the config file, but be sure not to change the part that instructs the LLM to generate the response in the specified JSON format.
Note: Galah was a fun weekend project I created to evaluate the capabilities of LLMs in generating HTTP messages, and it is not intended for production use. The honeypot may be fingerprinted based on its response time, non-standard, or sometimes weird responses, and other network-based techniques. Use this tool at your own risk, and be sure to set usage limits for your OpenAI API.
Rule-Based Response: The new version of Galah will employ a dynamic, rule-based approach, adding more control over response generation. This will further reduce OpenAI API costs and increase the accuracy of the generated responses.
Response Database: It will enable you to generate and import a response database. This ensures the honeypot only turns to the OpenAI API for unknown or new requests. I'm also working on cleaning up and sharing my own database.
Support for Other LLMs.
config.yaml
file.% git clone git@github.com:0x4D31/galah.git
% cd galah
% go mod download
% go build
% ./galah -i en0 -v
ββββββ βββββ ββ βββββ ββ ββ
ββ ββ ββ ββ ββ ββ ββ ββ
ββ βββ βββββββ ββ βββββββ βββββββ
ββ ββ ββ ββ ββ ββ ββ ββ ββ
ββββββ ββ ββ βββββββ ββ ββ ββ ββ
llm-based web honeypot // version 1.0
author: Adel "0x4D31" Karimi
2024/01/01 04:29:10 Starting HTTP server on port 8080
2024/01/01 04:29:10 Starting HTTP server on port 8888
2024/01/01 04:29:10 Starting HTTPS server on port 8443 with TLS profile: profile1_selfsigned
2024/01/01 04:29:10 Starting HTTPS server on port 443 with TLS profile: profile1_selfsigned
2024/01/01 04:35:57 Received a request for "/.git/config" from [::1]:65434
2024/01/01 04:35:57 Request cache miss for "/.git/config": Not found in cache
2024/01/01 04:35:59 Generated HTTP response: {"Headers": {"Content-Type": "text/plain", "Server": "Apache/2.4.41 (Ubuntu)", "Status": "403 Forbidden"}, "Body": "Forbidden\nYou don't have permission to access this resource."}
2024/01/01 04:35:59 Sending the crafted response to [::1]:65434
^C2024/01/01 04:39:27 Received shutdown signal. Shutting down servers...
2024/01/01 04:39:27 All servers shut down gracefully.
Here are some example responses:
% curl http://localhost:8080/login.php
<!DOCTYPE html><html><head><title>Login Page</title></head><body><form action='/submit.php' method='post'><label for='uname'><b>Username:</b></label><br><input type='text' placeholder='Enter Username' name='uname' required><br><label for='psw'><b>Password:</b></label><br><input type='password' placeholder='Enter Password' name='psw' required><br><button type='submit'>Login</button></form></body></html>
JSON log record:
{"timestamp":"2024-01-01T05:38:08.854878","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"51978","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/login.php","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Content-Type":"text/html","Server":"Apache/2.4.38"},"body":"\u003c!DOCTYPE html\u003e\u003chtml\u003e\u003chead\u003e\u003ctitle\u003eLogin Page\u003c/title\u003e\u003c/head\u003e\u003cbody\u003e\u003cform action='/submit.php' method='post'\u003e\u003clabel for='uname'\u003e\u003cb\u003eUsername:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='text' placeholder='Enter Username' name='uname' required\u003e\u003cbr\u003e\u003clabel for='psw'\u003e\u003cb\u003ePassword:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='password' placeholder='Enter Password' name='psw' required\u003e\u003cbr\u003e\u003cbutton type='submit'\u003eLogin\u003c/button\u003e\u003c/form\u003e\u003c/body\u003e\u003c/html\u003e"}}
% curl http://localhost:8080/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
region = us-west-2
JSON log record:
{"timestamp":"2024-01-01T05:40:34.167361","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"65311","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/.aws/credentials","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Encoding":"gzip","Content-Length":"126","Content-Type":"text/plain","Server":"Apache/2.4.51 (Unix)"},"body":"[default]\naws_access_key_id = AKIAIOSFODNN7EXAMPLE\naws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\nregion = us-west-2"}}
Okay, that was impressive!
Now, let's do some sort of adversarial testing!
% curl http://localhost:8888/are-you-a-honeypot
No, I am a server.`
JSON log record:
{"timestamp":"2024-01-01T05:50:43.792479","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"61982","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/are-you-a-honeypot","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Length":"20","Content-Type":"text/plain","Server":"Apache/2.4.41 (Ubuntu)"},"body":"No, I am a server."}}
π
% curl http://localhost:8888/i-mean-are-you-a-fake-server`
No, I am not a fake server.
JSON log record:
{"timestamp":"2024-01-01T05:51:40.812831","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"62205","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/i-mean-are-you-a-fake-server","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Type":"text/plain","Server":"LocalHost/1.0"},"body":"No, I am not a fake server."}}
You're a galah, mate!
AttackGen is a cybersecurity incident response testing tool that leverages the power of large language models and the comprehensive MITRE ATT&CK framework. The tool generates tailored incident response scenarios based on user-selected threat actor groups and your organisation's details.
If you find AttackGen useful, please consider starring the repository on GitHub. This helps more people discover the tool. Your support is greatly appreciated! β
What's new? | Why is it useful? |
---|---|
Mistral API Integration | - Alternative Model Provider: Users can now leverage the Mistral AI models to generate incident response scenarios. This integration provides an alternative to the OpenAI and Azure OpenAI Service models, allowing users to explore and compare the performance of different language models for their specific use case. |
Local Model Support using Ollama | - Local Model Hosting: AttackGen now supports the use of locally hosted LLMs via an integration with Ollama. This feature is particularly useful for organisations with strict data privacy requirements or those who prefer to keep their data on-premises. Please note that this feature is not available for users of the AttackGen version hosted on Streamlit Community Cloud at https://attackgen.streamlit.app |
Optional LangSmith Integration | - Improved Flexibility: The integration with LangSmith is now optional. If no LangChain API key is provided, users will see an informative message indicating that the run won't be logged by LangSmith, rather than an error being thrown. This change improves the overall user experience and allows users to continue using AttackGen without the need for LangSmith. |
Various Bug Fixes and Improvements | - Enhanced User Experience: This release includes several bug fixes and improvements to the user interface, making AttackGen more user-friendly and robust. |
What's new? | Why is it useful? |
---|---|
Azure OpenAI Service Integration | - Enhanced Integration: Users can now choose to utilise OpenAI models deployed on the Azure OpenAI Service, in addition to the standard OpenAI API. This integration offers a seamless and secure solution for incorporating AttackGen into existing Azure ecosystems, leveraging established commercial and confidentiality agreements. - Improved Data Security: Running AttackGen from Azure ensures that application descriptions and other data remain within the Azure environment, making it ideal for organizations that handle sensitive data in their threat models. |
LangSmith for Azure OpenAI Service | - Enhanced Debugging: LangSmith tracing is now available for scenarios generated using the Azure OpenAI Service. This feature provides a powerful tool for debugging, testing, and monitoring of model performance, allowing users to gain insights into the model's decision-making process and identify potential issues with the generated scenarios. - User Feedback: LangSmith also captures user feedback on the quality of scenarios generated using the Azure OpenAI Service, providing valuable insights into model performance and user satisfaction. |
Model Selection for OpenAI API | - Flexible Model Options: Users can now select from several models available from the OpenAI API endpoint, such as gpt-4-turbo-preview . This allows for greater customization and experimentation with different language models, enabling users to find the most suitable model for their specific use case. |
Docker Container Image | - Easy Deployment: AttackGen is now available as a Docker container image, making it easier to deploy and run the application in a consistent and reproducible environment. This feature is particularly useful for users who want to run AttackGen in a containerised environment, or for those who want to deploy the application on a cloud platform. |
What's new? | Why is it useful? |
---|---|
Custom Scenarios based on ATT&CK Techniques | - For Mature Organisations: This feature is particularly beneficial if your organisation has advanced threat intelligence capabilities. For instance, if you're monitoring a newly identified or lesser-known threat actor group, you can tailor incident response testing scenarios specific to the techniques used by that group. - Focused Testing: Alternatively, use this feature to focus your incident response testing on specific parts of the cyber kill chain or certain MITRE ATT&CK Tactics like 'Lateral Movement' or 'Exfiltration'. This is useful for organisations looking to evaluate and improve specific areas of their defence posture. |
User feedback on generated scenarios | - Collecting feedback is essential to track model performance over time and helps to highlight strengths and weaknesses in scenario generation tasks. |
Improved error handling for missing API keys | - Improved user experience. |
Replaced Streamlit st.spinner widgets with new st.status widget | - Provides better visibility into long running processes (i.e. scenario generation). |
Initial release.
langchain
and mitreattack
).enterprise-attack.json
(MITRE ATT&CK dataset in STIX format) and groups.json
.git clone https://github.com/mrwadams/attackgen.git
cd attackgen
pip install -r requirements.txt
docker pull mrwadams/attackgen
If you would like to use LangSmith for debugging, testing, and monitoring of model performance, you will need to set up a LangSmith account and create a .streamlit/secrets.toml
file that contains your LangChain API key. Please follow the instructions here to set up your account and obtain your API key. You'll find a secrets.toml-example
file in the .streamlit/
directory that you can use as a template for your own secrets.toml file.
If you do not wish to use LangSmith, you must still have a .streamlit/secrets.toml
file in place, but you can leave the LANGCHAIN_API_KEY
field empty.
Download the latest version of the MITRE ATT&CK dataset in STIX format from here. Ensure to place this file in the ./data/
directory within the repository.
After the data setup, you can run AttackGen with the following command:
streamlit run π_Welcome.py
You can also try the app on Streamlit Community Cloud.
streamlit run π_Welcome.py
docker run -p 8501:8501 mrwadams/attackgen
This command will start the container and map port 8501 (default for Streamlit apps) from the container to your host machine. 2. Open your web browser and navigate to http://localhost:8501
. 3. Use the app to generate standard or custom incident response scenarios (see below for details).
Threat Group Scenarios
page..streamlit/secrets.toml
file.Custom Scenario
page..streamlit/secrets.toml
file.Please note that generating scenarios may take a minute or so. Once the scenario is generated, you can view it on the app and also download it as a Markdown file.
I'm very happy to accept contributions to this project. Please feel free to submit an issue or pull request.
This project is licensed under GNU GPLv3.
Pentest Muse is an AI assistant tailored for cybersecurity professionals. It can help penetration testers brainstorm ideas, write payloads, analyze code, and perform reconnaissance. It can also take actions, execute command line codes, and iteratively solve complex tasks.
In addition to this command-line tool, we are excited to introduce the Pentest Muse Web Application! The web app has access to the latest online information, and would be a good AI assistant for your pentesting job.
This tool is intended for legal and ethical use only. It should only be used for authorized security testing and educational purposes. The developers assume no liability and are not responsible for any misuse or damage caused by this program.
requirements.txt
git clone https://github.com/pentestmuse-ai/PentestMuse cd PentestMuse
pip install -r requirements.txt
Install Pentest Muse as a Python Package:
pip install .
In the chat mode, you can chat with pentest muse and ask it to help you brainstorm ideas, write payloads, and analyze code. Run the application with:
python run_app.py
or
pmuse
You can also give Pentest Muse more control by asking it to take actions for you with the agent mode. In this mode, Pentest Muse can help you finish a simple task (e.g., 'help me do sql injection test on url xxx'). To start the program with agent model, you can use:
python run_app.py agent
or
pmuse agent
You can use Pentest Muse with our managed APIs after signing up at www.pentestmuse.ai/signup. After creating an account, you can simply start the pentest muse cli, and the program will prompt you to login.
Alternatively, you can also choose to use your own OpenAI API keys. To do this, you can simply add argument --openai-api-key=[your openai api key]
when starting the program.
For any feedback or suggestions regarding Pentest Muse, feel free to reach out to us at contact@pentestmuse.ai or join our discord. Your input is invaluable in helping us improve and evolve.
AiCEF is a tool implementing the accompanying framework [1] in order to harness the intelligence that is available from online resources, as well as threat groups' activities, arsenal (eg. MITRE), to create relevant and timely cybersecurity exercise content. This way, we abstract the events from the reports in a machine-readable form. The produced graphs can be infused with additional intelligence, e.g. the threat actor profile from MITRE, also mapped in our ontology. While this may fill gaps that would be missing from a report, one can also manipulate the graph to create custom and unique models. Finally, we exploit transformer-based language models like GPT to convert the graph into text that can serve as the scenario of a cybersecurity exercise. We have tested and validated AiCEF with a group of experts in cybersecurity exercises, and the results clearly show that AiCEF significantly augments the capabilities in creating timely and relevant cybersecurity exercises in terms of both quality and time.
We used Python to create a machine-learning-powered Exercise Generation Framework and developed a set of tools to perform a set of individual tasks which would help an exercise planner (EP) to create a timely and targeted Cybersecurity Exercise Scenario, regardless of her experience.
Problems an Exercise Planner faces:
Our Main Objective: Build an AI powered tool that can generate relevant and up-to-date Cyber Exercise Content in a few steps with little technical expertise from the user.
The updated project, AiCEF v.2.0 is planned to be publicly released by the end of 2023, pending heavy code review and functionality updates. Submodules with reduced functinality will start being release by early June 2023. Thank you for your patience.
The most convenient way to install AiCEF is by using the docker-compose command. For production deployment, we advise you deploy MySQL manually in a dedicated environment and then to start the other components using Docker.
First, make sure you have docker-compose installed in your environment:
$ sudo apt-get install docker-compose
Then, clone the repository:
$ git clone https://github.com/grazvan/AiCEF/docker.git /<choose-a-path>/AiCEF-docker
$ cd /<choose-a-path>/AiCEF-docker
Import the MySQL file in your
$ mysql -u <your_username> Γ’β¬β-password=<your_password> AiCEF_db < AiCEF_db.sql
Before running the docker-compose
command, settings must be configured. Copy the sample settings file and change it accordingly to your needs.
$ cp .env.sample .env
Note: Make sure you have an OpenAI API key available. Load the environment setttings (including your MySQL connection details):
set -a ; source .env
Finally, run docker-compose
in detached (-d
) mode:
$ sudo docker-compose up -d
A common usage flow consists of generating a Trend Report to analyze patterns over time, parsing relevant articles and converting them into Incident Breadcrumbs using MLTP module and storing them in a knowledge database called KDb. Incidents are then generated using IncGen component and can be enhanced using the Graph Enhancer module to simulate known APT activity. The incidents come with injects that can be edited on the fly. The CSE scenario is then created using CEGen, which defines various attributes like CSE name, number of Events, and Incidents. MLCESO is a crucial step in the methodology where dedicated ML models are trained to extract information from the collected articles with over 80% accuracy. The Incident Generation & Enhancer (IncGen) workflow can be automated, generating a variety of incidents based on filtering parameters and the existing database. The knowledge database (KDB) consists of almost 3000 articles classified into six categories that can be augmented using APT Enhancer by using the activity of known APT groups from MITRE or manually.
Find below some sample usage screenshots:
AiCEF is a product designed and developed by Alex Zacharis, Razvan Gavrila and Constantinos Patsakis.
[1] https://link.springer.com/article/10.1007/s10207-023-00693-z
[2] https://oasis-open.github.io/cti-documentation/stix/intro.html
Contributions are welcome! If you'd like to contribute to AiCEF v2.0, please follow these steps:
git checkout -b feature/your-branch-name
)git commit -m 'Add some feature'
)git push origin feature/your-branch-name
)AiCEF is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. See for more information.
Under the following terms:
Attribution β You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial β You may not use the material for commercial purposes. No additional restrictions β You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
ReconAIzer is a powerful Jython extension for Burp Suite that leverages OpenAI to help bug bounty hunters optimize their recon process. This extension automates various tasks, making it easier and faster for security researchers to identify and exploit vulnerabilities.
Once installed, ReconAIzer add a contextual menu and a dedicated tab to see the results:
Follow these steps to install the ReconAIzer extension on Burp Suite:
ReconAIzer.py
file in Step 3.1. Select the file and click "Open."Congratulations! You have successfully installed the ReconAIzer extension in Burp Suite. You can now start using it to enhance your bug bounty hunting experience.
Once it's done, you must configure your OpenAI API key on the "Config" tab under "ReconAIzer" tab.
Feel free to suggest prompts improvements or anything you would like to see on ReconAIzer!
Happy bug hunting!
burpgpt
leverages the power of AI
to detect security vulnerabilities that traditional scanners might miss. It sends web traffic to an OpenAI
model
specified by the user, enabling sophisticated analysis within the passive scanner. This extension offers customisable prompts
that enable tailored web traffic analysis to meet the specific needs of each user. Check out the Example Use Cases section for inspiration.
The extension generates an automated security report that summarises potential security issues based on the user's prompt
and real-time data from Burp
-issued requests. By leveraging AI
and natural language processing, the extension streamlines the security assessment process and provides security professionals with a higher-level overview of the scanned application or endpoint. This enables them to more easily identify potential security issues and prioritise their analysis, while also covering a larger potential attack surface.
[!WARNING] Data traffic is sent to
OpenAI
for analysis. If you have concerns about this or are using the extension for security-critical applications, it is important to carefully consider this and review OpenAI's Privacy Policy for further information.
[!WARNING] While the report is automated, it still requires triaging and post-processing by security professionals, as it may contain false positives.
[!WARNING] The effectiveness of this extension is heavily reliant on the quality and precision of the prompts created by the user for the selected
GPT
model. This targeted approach will help ensure theGPT model
generates accurate and valuable results for your security analysis.
Β
passive scan check
, allowing users to submit HTTP
data to an OpenAI
-controlled GPT model
for analysis through a placeholder
system.OpenAI's GPT models
to conduct comprehensive traffic analysis, enabling detection of various issues beyond just security vulnerabilities in scanned applications.GPT tokens
used in the analysis by allowing for precise adjustments of the maximum prompt length
.OpenAI models
to choose from, allowing them to select the one that best suits their needs.prompts
and unleash limitless possibilities for interacting with OpenAI models
. Browse through the Example Use Cases for inspiration.Burp Suite
, providing all native features for pre- and post-processing, including displaying analysis results directly within the Burp UI for efficient analysis.Burp Event Log
, enabling users to quickly resolve communication issues with the OpenAI API
.Operating System: Compatible with Linux
, macOS
, and Windows
operating systems.
Java Development Kit (JDK): Version 11
or later.
Burp Suite Professional or Community Edition: Version 2023.3.2
or later.
[!IMPORTANT] Please note that using any version lower than
2023.3.2
may result in a java.lang.NoSuchMethodError. It is crucial to use the specified version or a more recent one to avoid this issue.
Version 6.9
or later (recommended). The build.gradle file is provided in the project repository.JAVA_HOME
environment variable to point to the JDK installation directory.Please ensure that all system requirements, including a compatible version of Burp Suite
, are met before building and running the project. Note that the project's external dependencies will be automatically managed and installed by Gradle
during the build process. Adhering to the requirements will help avoid potential issues and reduce the need for opening new issues in the project repository.
Ensure you have Gradle installed and configured.
Download the burpgpt
repository:
git clone https://github.com/aress31/burpgpt
cd .\burpgpt\
Build the standalone jar
:
./gradlew shadowJar
Burp Suite
To install burpgpt
in Burp Suite
, first go to the Extensions
tab and click on the Add
button. Then, select the burpgpt-all
jar file located in the .\lib\build\libs
folder to load the extension.
To start using burpgpt, users need to complete the following steps in the Settings panel, which can be accessed from the Burp Suite menu bar:
OpenAI API key
.model
.max prompt size
. This field controls the maximum prompt
length sent to OpenAI
to avoid exceeding the maxTokens
of GPT
models (typically around 2048
for GPT-3
).Once configured as outlined above, the Burp passive scanner
sends each request to the chosen OpenAI model
via the OpenAI API
for analysis, producing Informational
-level severity findings based on the results.
burpgpt
enables users to tailor the prompt
for traffic analysis using a placeholder
system. To include relevant information, we recommend using these placeholders
, which the extension handles directly, allowing dynamic insertion of specific values into the prompt
:
Placeholder | Description |
---|---|
{REQUEST} | The scanned request. |
{URL} | The URL of the scanned request. |
{METHOD} | The HTTP request method used in the scanned request. |
{REQUEST_HEADERS} | The headers of the scanned request. |
{REQUEST_BODY} | The body of the scanned request. |
{RESPONSE} | The scanned response. |
{RESPONSE_HEADERS} | The headers of the scanned response. |
{RESPONSE_BODY} | The body of the scanned response. |
{IS_TRUNCATED_PROMPT} | A boolean value that is programmatically set to true or false to indicate whether the prompt was truncated to the Maximum Prompt Size defined in the Settings . |
These placeholders
can be used in the custom prompt
to dynamically generate a request/response analysis prompt
that is specific to the scanned request.
[!NOTE] >
Burp Suite
provides the capability to support arbitraryplaceholders
through the use of Session handling rules or extensions such as Custom Parameter Handler, allowing for even greater customisation of theprompts
.
The following list of example use cases showcases the bespoke and highly customisable nature of burpgpt
, which enables users to tailor their web traffic analysis to meet their specific needs.
Identifying potential vulnerabilities in web applications that use a crypto library affected by a specific CVE:
Analyse the request and response data for potential security vulnerabilities related to the {CRYPTO_LIBRARY_NAME} crypto library affected by CVE-{CVE_NUMBER}:
Web Application URL: {URL}
Crypto Library Name: {CRYPTO_LIBRARY_NAME}
CVE Number: CVE-{CVE_NUMBER}
Request Headers: {REQUEST_HEADERS}
Response Headers: {RESPONSE_HEADERS}
Request Body: {REQUEST_BODY}
Response Body: {RESPONSE_BODY}
Identify any potential vulnerabilities related to the {CRYPTO_LIBRARY_NAME} crypto library affected by CVE-{CVE_NUMBER} in the request and response data and report them.
Scanning for vulnerabilities in web applications that use biometric authentication by analysing request and response data related to the authentication process:
Analyse the request and response data for potential security vulnerabilities related to the biometric authentication process:
Web Application URL: {URL}
Biometric Authentication Request Headers: {REQUEST_HEADERS}
Biometric Authentication Response Headers: {RESPONSE_HEADERS}
Biometric Authentication Request Body: {REQUEST_BODY}
Biometric Authentication Response Body: {RESPONSE_BODY}
Identify any potential vulnerabilities related to the biometric authentication process in the request and response data and report them.
Analysing the request and response data exchanged between serverless functions for potential security vulnerabilities:
Analyse the request and response data exchanged between serverless functions for potential security vulnerabilities:
Serverless Function A URL: {URL}
Serverless Function B URL: {URL}
Serverless Function A Request Headers: {REQUEST_HEADERS}
Serverless Function B Response Headers: {RESPONSE_HEADERS}
Serverless Function A Request Body: {REQUEST_BODY}
Serverless Function B Response Body: {RESPONSE_BODY}
Identify any potential vulnerabilities in the data exchanged between the two serverless functions and report them.
Analysing the request and response data for potential security vulnerabilities specific to a Single-Page Application (SPA) framework:
Analyse the request and response data for potential security vulnerabilities specific to the {SPA_FRAMEWORK_NAME} SPA framework:
Web Application URL: {URL}
SPA Framework Name: {SPA_FRAMEWORK_NAME}
Request Headers: {REQUEST_HEADERS}
Response Headers: {RESPONSE_HEADERS}
Request Body: {REQUEST_BODY}
Response Body: {RESPONSE_BODY}
Identify any potential vulnerabilities related to the {SPA_FRAMEWORK_NAME} SPA framework in the request and response data and report them.
Settings
panel that allows users to set the maxTokens
limit for requests, thereby limiting the request size.AI model
, allowing users to run and interact with the model on their local machines, potentially improving response times and data privacy.maxTokens
value for each model
to transmit the maximum allowable data and obtain the most extensive GPT
response possible.Burp Suite
restarts.GPT
responses into the Vulnerability model
for improved reporting.The extension is currently under development and we welcome feedback, comments, and contributions to make it even better.
If this extension has saved you time and hassle during a security assessment, consider showing some love by sponsoring a cup of coffee
for the developer. It's the fuel that powers development, after all. Just hit that shiny Sponsor button at the top of the page or click here to contribute and keep the caffeine flowing.Did you find a bug? Well, don't just let it crawl around! Let's squash it together like a couple of bug whisperers!
Please report any issues on the GitHub issues tracker. Together, we'll make this extension as reliable as a cockroach surviving a nuclear apocalypse!
Looking to make a splash with your mad coding skills?
Awesome! Contributions are welcome and greatly appreciated. Please submit all PRs on the GitHub pull requests tracker. Together we can make this extension even more amazing!
See LICENSE.
This is a Proof Of Concept application that demostrates how AI can be used to generate accurate results for vulnerability analysis and also allows further utilization of the already super useful ChatGPT.
openai.api_key = "__API__KEY" # Enter your API key
pip3 install -r requirements.txt
or
pip install -r requirements.txt
Supported in both windows and linux
Profiles:
Parameter | Return data | Description | Nmap Command |
---|---|---|---|
p1 | json | Effective Scan | -Pn -sV -T4 -O -F |
p2 | json | Simple Scan | -Pn -T4 -A -v |
p3 | json | Low Power Scan | -Pn -sS -sU -T4 -A -v |
p4 | json | Partial Intense Scan | -Pn -p- -T4 -A -v |
p5 | json | Complete Intense Scan | -Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln |
The profile is the type of scan that will be executed by the nmap subprocess. The Ip or target will be provided via argparse. At first the custom nmap scan is run which has all the curcial arguments for the scan to continue. nextly the scan data is extracted from the huge pile of data which has been driven by nmap. the "scan" object has a list of sub data under "tcp" each labled according to the ports opened. once the data is extracted the data is sent to openai API davenci model via a prompt. the prompt specifically asks for an JSON output and the data also to be used in a certain manner.
The entire structure of request that has to be sent to the openai API is designed in the completion section of the Program.
def profile(ip):
nm.scan('{}'.format(ip), arguments='-Pn -sS -sU -T4 -A -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script=vuln')
json_data = nm.analyse_nmap_xml_scan()
analize = json_data["scan"]
# Prompt about what the quary is all about
prompt = "do a vulnerability analysis of {} and return a vulnerabilty report in json".format(analize)
# A structure for the request
completion = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=1024,
n=1,
stop=None,
)
response = completion.choices[0].text
return response