FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Operationalizing our custom “SOC in a Box” at the RSA Conference 2024

Cisco engineers often face the challenge of setting up a Security Operations Center in two days at global events. Aditya Sankar explains the process with our “SOC in a Box” in this blog.

‘Operation Endgame’ Hits Malware Delivery Platforms

Law enforcement agencies in the United States and Europe today announced Operation Endgame, a coordinated action against some of the most popular cybercrime platforms for delivering ransomware and data-stealing malware. Dubbed “the largest ever operation against botnets,” the international effort is being billed as the opening salvo in an ongoing campaign targeting advanced malware “droppers” or “loaders” like IcedID, Smokeloader and Trickbot.

A frame from one of three animated videos released today in connection with Operation Endgame.

Operation Endgame targets the cybercrime ecosystem supporting droppers/loaders, slang terms used to describe tiny, custom-made programs designed to surreptitiously install malware onto a target system. Droppers are typically used in the initial stages of a breach, and they allow cybercriminals to bypass security measures and deploy additional harmful programs, including viruses, ransomware, or spyware.

Droppers like IcedID are most often deployed through email attachments, hacked websites, or bundled with legitimate software. For example, cybercriminals have long used paid ads on Google to trick people into installing malware disguised as popular free software, such as Microsoft Teams, Adobe Reader and Discord. In those cases, the dropper is the hidden component bundled with the legitimate software that quietly loads malware onto the user’s system.

Droppers remain such a critical, human-intensive component of nearly all major cybercrime enterprises that the most popular have turned into full-fledged cybercrime services of their own. By targeting the individuals who develop and maintain dropper services and their supporting infrastructure, authorities are hoping to disrupt multiple cybercriminal operations simultaneously.

According to a statement from the European police agency Europol, between May 27 and May 29, 2024 authorities arrested four suspects (one in Armenia and three in Ukraine), and disrupted or took down more than 100 Internet servers in Bulgaria, Canada, Germany, Lithuania, the Netherlands, Romania, Switzerland, the United Kingdom, United States and Ukraine. Authorities say they also seized more than 2,000 domain names that supported dropper infrastructure online.

In addition, Europol released information on eight fugitives suspected of involvement in dropper services and who are wanted by Germany; their names and photos were added to Europol’s “Most Wanted” list on 30 May 2024.

A “wanted” poster including the names and photos of eight suspects wanted by Germany and now on Europol’s “Most Wanted” list.

“It has been discovered through the investigations so far that one of the main suspects has earned at least EUR 69 million in cryptocurrency by renting out criminal infrastructure sites to deploy ransomware,” Europol wrote. “The suspect’s transactions are constantly being monitored and legal permission to seize these assets upon future actions has already been obtained.”

There have been numerous such coordinated malware takedown efforts in the past, and yet often the substantial amount of coordination required between law enforcement agencies and cybersecurity firms involved is not sustained after the initial disruption and/or arrests.

But a new website erected to detail today’s action — operation-endgame.com — makes the case that this time is different, and that more takedowns and arrests are coming. “Operation Endgame does not end today,” the site promises. “New actions will be announced on this website.”

A message on operation-endgame.com promises more law enforcement and disruption actions.

Perhaps in recognition that many of today’s top cybercriminals reside in countries that are effectively beyond the reach of international law enforcement, actions like Operation Endgame seem increasingly focused on mind games — i.e., trolling the hackers.

Writing in this month’s issue of Wired, Matt Burgess makes the case that Western law enforcement officials have turned to psychological measures as an added way to slow down Russian hackers and cut to the heart of the sweeping cybercrime ecosystem.

“These nascent psyops include efforts to erode the limited trust the criminals have in each other, driving subtle wedges between fragile hacker egos, and sending offenders personalized messages showing they’re being watched,” Burgess wrote.

When authorities in the U.S. and U.K. announced in February 2024 that they’d infiltrated and seized the infrastructure used by the infamous LockBit ransomware gang, they borrowed the existing design of LockBit’s victim shaming website to link instead to press releases about the takedown, and included a countdown timer that was eventually replaced with the personal details of LockBit’s alleged leader.

The feds used the existing design on LockBit’s victim shaming website to feature press releases and free decryption tools.

The Operation Endgame website also includes a countdown timer, which serves to tease the release of several animated videos that mimic the same sort of flashy, short advertisements that established cybercriminals often produce to promote their services online. At least two of the videos include a substantial amount of text written in Russian.

The coordinated takedown comes on the heels of another law enforcement action this week against what the director of the FBI called “likely the world’s largest botnet ever.” On Wednesday U.S. Department of Justice (DOJ) announced the arrest of YunHe Wang, the alleged operator of the ten-year-old online anonymity service 911 S5. The government also seized 911 S5’s domains and online infrastructure, which allegedly turned computers running various “free VPN” products into Internet traffic relays that facilitated billions of dollars in online fraud and cybercrime.

Navigating DORA (Digital Operational Resilience Act) with Secure Workload

The Digital Operational Resilience Act (DORA) represents a shift toward establishing harmonized guidelines that can keep pace with the dynamic nature of cyber threats.

DevOps Dilemma: How Can CISOs Regain Control in the Age of Speed?

Introduction The infamous Colonial pipeline ransomware attack (2021) and SolarWinds supply chain attack (2020) were more than data leaks; they were seismic shifts in cybersecurity. These attacks exposed a critical challenge for Chief Information Security Officers (CISOs): holding their ground while maintaining control over cloud security in the accelerating world of DevOps.

Update Chrome Browser Now: 4th Zero-Day Exploit Discovered in May 2024

Google on Thursday rolled out fixes to address a high-severity security flaw in its Chrome browser that it said has been exploited in the wild. Assigned the CVE identifier CVE-2024-5274, the vulnerability relates to a type confusion bug in the V8 JavaScript and WebAssembly engine. It was reported by Clément Lecigne of Google's Threat Analysis Group and Brendon Tiszka of

Rockwell Advises Disconnecting Internet-Facing ICS Devices Amid Cyber Threats

Rockwell Automation is urging its customers to disconnect all industrial control systems (ICSs) not meant to be connected to the public-facing internet to mitigate unauthorized or malicious cyber activity. The company said it's issuing the advisory due to "heightened geopolitical tensions and adversarial cyber activity globally." To that end, customers are required to take immediate

Kinsing Hacker Group Exploits More Flaws to Expand Botnet for Cryptojacking

The cryptojacking group known as Kinsing has demonstrated an ability to continuously evolve and adapt, proving to be a persistent threat by swiftly integrating newly disclosed vulnerabilities to the exploit arsenal and expand its botnet. The findings come from cloud security firm Aqua, which described the threat actor as actively orchestrating illicit cryptocurrency mining

SHQ Response Platform and Risk Centre to Enable Management and Analysts Alike

In the last decade, there has been a growing disconnect between front-line analysts and senior management in IT and Cybersecurity. Well-documented challenges facing modern analysts revolve around a high volume of alerts, false positives, poor visibility of technical environments, and analysts spending too much time on manual tasks. The Impact of Alert Fatigue and False Positives  Analysts

It Costs How Much?!? The Financial Pitfalls of Cyberattacks on SMBs

Cybercriminals are vipers. They’re like snakes in the grass, hiding behind their keyboards, waiting to strike. And if you're a small- and medium-sized business (SMB), your organization is the ideal lair for these serpents to slither into.  With cybercriminals becoming more sophisticated, SMBs like you must do more to protect themselves. But at what price? That’s the daunting question

10 Critical Endpoint Security Tips You Should Know

In today's digital world, where connectivity is rules all, endpoints serve as the gateway to a business’s digital kingdom. And because of this, endpoints are one of hackers' favorite targets.  According to the IDC, 70% of successful breaches start at the endpoint. Unprotected endpoints provide vulnerable entry points to launch devastating cyberattacks. With IT

Considerations for Operational Technology Cybersecurity

Operational Technology (OT) refers to the hardware and software used to change, monitor, or control the enterprise's physical devices, processes, and events. Unlike traditional Information Technology (IT) systems, OT systems directly impact the physical world. This unique characteristic of OT brings additional cybersecurity considerations not typically present in conventional IT security

Making Sense of Operational Technology Attacks: The Past, Present, and Future

When you read reports about cyber-attacks affecting operational technology (OT), it’s easy to get caught up in the hype and assume every single one is sophisticated. But are OT environments all over the world really besieged by a constant barrage of complex cyber-attacks? Answering that would require breaking down the different types of OT cyber-attacks and then looking back on all the

Meta Details WhatsApp and Messenger Interoperability to Comply with EU's DMA Regulations

Meta has offered details on how it intends to implement interoperability in WhatsApp and Messenger with third-party messaging services as the Digital Markets Act (DMA) went into effect in the European Union. “This allows users of third-party providers who choose to enable interoperability (interop) to send and receive messages with opted-in users of either Messenger or WhatsApp – both designated

From Alert to Action: How to Speed Up Your SOC Investigations

Processing alerts quickly and efficiently is the cornerstone of a Security Operations Center (SOC) professional's role. Threat intelligence platforms can significantly enhance their ability to do so. Let's find out what these platforms are and how they can empower analysts. The Challenge: Alert Overload The modern SOC faces a relentless barrage of security alerts generated by SIEMs and EDRs.

Feds Seize LockBit Ransomware Websites, Offer Decryption Tools, Troll Affiliates

U.S. and U.K. authorities have seized the darknet websites run by LockBit, a prolific and destructive ransomware group that has claimed more than 2,000 victims worldwide and extorted over $120 million in payments. Instead of listing data stolen from ransomware victims who didn’t pay, LockBit’s victim shaming website now offers free recovery tools, as well as news about arrests and criminal charges involving LockBit affiliates.

Investigators used the existing design on LockBit’s victim shaming website to feature press releases and free decryption tools.

Dubbed “Operation Cronos,” the law enforcement action involved the seizure of nearly three-dozen servers; the arrest of two alleged LockBit members; the unsealing of two indictments; the release of a free LockBit decryption tool; and the freezing of more than 200 cryptocurrency accounts thought to be tied to the gang’s activities.

LockBit members have executed attacks against thousands of victims in the United States and around the world, according to the U.S. Department of Justice (DOJ). First surfacing in September 2019, the gang is estimated to have made hundreds of millions of U.S. dollars in ransom demands, and extorted over $120 million in ransom payments.

LockBit operated as a ransomware-as-a-service group, wherein the ransomware gang takes care of everything from the bulletproof hosting and domains to the development and maintenance of the malware. Meanwhile, affiliates are solely responsible for finding new victims, and can reap 60 to 80 percent of any ransom amount ultimately paid to the group.

A statement on Operation Cronos from the European police agency Europol said the months-long infiltration resulted in the compromise of LockBit’s primary platform and other critical infrastructure, including the takedown of 34 servers in the Netherlands, Germany, Finland, France, Switzerland, Australia, the United States and the United Kingdom. Europol said two suspected LockBit actors were arrested in Poland and Ukraine, but no further information has been released about those detained.

The DOJ today unsealed indictments against two Russian men alleged to be active members of LockBit. The government says Russian national Artur Sungatov used LockBit ransomware against victims in manufacturing, logistics, insurance and other companies throughout the United States.

Ivan Gennadievich Kondratyev, a.k.a. “Bassterlord,” allegedly deployed LockBit against targets in the United States, Singapore, Taiwan, and Lebanon. Kondratyev is also charged (PDF) with three criminal counts arising from his alleged use of the Sodinokibi (aka “REvil“) ransomware variant to encrypt data, exfiltrate victim information, and extort a ransom payment from a corporate victim based in Alameda County, California.

With the indictments of Sungatov and Kondratyev, a total of five LockBit affiliates now have been officially charged. In May 2023, U.S. authorities unsealed indictments against two alleged LockBit affiliates, Mikhail “Wazawaka” Matveev and Mikhail Vasiliev.

Vasiliev, 35, of Bradford, Ontario, Canada, is in custody in Canada awaiting extradition to the United States (the complaint against Vasiliev is at this PDF). Matveev remains at large, presumably still in Russia. In January 2022, KrebsOnSecurity published Who is the Network Access Broker ‘Wazawaka,’ which followed clues from Wazawaka’s many pseudonyms and contact details on the Russian-language cybercrime forums back to a 31-year-old Mikhail Matveev from Abaza, RU.

An FBI wanted poster for Matveev.

In June 2023, Russian national Ruslan Magomedovich Astamirov was charged in New Jersey for his participation in the LockBit conspiracy, including the deployment of LockBit against victims in Florida, Japan, France, and Kenya. Astamirov is currently in custody in the United States awaiting trial.

LockBit was known to have recruited affiliates that worked with multiple ransomware groups simultaneously, and it’s unclear what impact this takedown may have on competing ransomware affiliate operations. The security firm ProDaft said on Twitter/X that the infiltration of LockBit by investigators provided “in-depth visibility into each affiliate’s structures, including ties with other notorious groups such as FIN7, Wizard Spider, and EvilCorp.”

In a lengthy thread about the LockBit takedown on the Russian-language cybercrime forum XSS, one of the gang’s leaders said the FBI and the U.K.’s National Crime Agency (NCA) had infiltrated its servers using a known vulnerability in PHP, a scripting language that is widely used in Web development.

Several denizens of XSS wondered aloud why the PHP flaw was not flagged by LockBit’s vaunted “Bug Bounty” program, which promised a financial reward to affiliates who could find and quietly report any security vulnerabilities threatening to undermine LockBit’s online infrastructure.

This prompted several XSS members to start posting memes taunting the group about the security failure.

“Does it mean that the FBI provided a pentesting service to the affiliate program?,” one denizen quipped. “Or did they decide to take part in the bug bounty program? :):)”

Federal investigators also appear to be trolling LockBit members with their seizure notices. LockBit’s data leak site previously featured a countdown timer for each victim organization listed, indicating the time remaining for the victim to pay a ransom demand before their stolen files would be published online. Now, the top entry on the shaming site is a countdown timer until the public doxing of “LockBitSupp,” the unofficial spokesperson or figurehead for the LockBit gang.

“Who is LockbitSupp?” the teaser reads. “The $10m question.”

In January 2024, LockBitSupp told XSS forum members he was disappointed the FBI hadn’t offered a reward for his doxing and/or arrest, and that in response he was placing a bounty on his own head — offering $10 million to anyone who could discover his real name.

“My god, who needs me?,” LockBitSupp wrote on Jan. 22, 2024. “There is not even a reward out for me on the FBI website. By the way, I want to use this chance to increase the reward amount for a person who can tell me my full name from USD 1 million to USD 10 million. The person who will find out my name, tell it to me and explain how they were able to find it out will get USD 10 million. Please take note that when looking for criminals, the FBI uses unclear wording offering a reward of UP TO USD 10 million; this means that the FBI can pay you USD 100, because technically, it’s an amount UP TO 10 million. On the other hand, I am willing to pay USD 10 million, no more and no less.”

Mark Stockley, cybersecurity evangelist at the security firm Malwarebytes, said the NCA is obviously trolling the LockBit group and LockBitSupp.

“I don’t think this is an accident—this is how ransomware groups talk to each other,” Stockley said. “This is law enforcement taking the time to enjoy its moment, and humiliate LockBit in its own vernacular, presumably so it loses face.”

In a press conference today, the FBI said Operation Cronos included investigative assistance from the Gendarmerie-C3N in France; the State Criminal Police Office L-K-A and Federal Criminal Police Office in Germany; Fedpol and Zurich Cantonal Police in Switzerland; the National Police Agency in Japan; the Australian Federal Police; the Swedish Police Authority; the National Bureau of Investigation in Finland; the Royal Canadian Mounted Police; and the National Police in the Netherlands.

The Justice Department said victims targeted by LockBit should contact the FBI at https://lockbitvictims.ic3.gov/ to determine whether affected systems can be successfully decrypted. In addition, the Japanese Police, supported by Europol, have released a recovery tool designed to recover files encrypted by the LockBit 3.0 Black Ransomware.

Microsoft Introduces Linux-Like 'sudo' Command to Windows 11

Microsoft said it's introducing Sudo for Windows 11 as part of an early preview version to help users execute commands with administrator privileges. "Sudo for Windows is a new way for users to run elevated commands directly from an unelevated console session," Microsoft Product Manager Jordi Adoumie said. "It is an ergonomic and familiar solution for users who want to elevate a command

Combined Security Practices Changing the Game for Risk Management

A significant challenge within cyber security at present is that there are a lot of risk management platforms available in the market, but only some deal with cyber risks in a very good way. The majority will shout alerts at the customer as and when they become apparent and cause great stress in the process. The issue being that by using a reactive, rather than proactive approach, many risks

Malicious PyPI Packages Slip WhiteSnake InfoStealer Malware onto Windows Machines

Cybersecurity researchers have identified malicious packages on the open-source Python Package Index (PyPI) repository that deliver an information stealing malware called WhiteSnake Stealer on Windows systems. The malware-laced packages are named nigpal, figflix, telerer, seGMM, fbdebug, sGMM, myGens, NewGends, and TestLibs111. They have been uploaded by a threat actor named "WS." "These

Opera MyFlaw Bug Could Let Hackers Run ANY File on Your Mac or Windows

Cybersecurity researchers have disclosed a now-patched security flaw in the Opera web browser for Microsoft Windows and Apple macOS that could be exploited to execute any file on the underlying operating system. The remote code execution vulnerability has been codenamed MyFlaw by the Guardio Labs research team owing to the fact that it takes advantage of a feature called My Flow that

High-Severity Flaws Uncovered in Bosch Thermostats and Smart Nutrunners

Multiple security vulnerabilities have been disclosed in Bosch BCC100 thermostats and Rexroth NXA015S-36V-B smart nutrunners that, if successfully exploited, could allow attackers to execute arbitrary code on affected systems. Romanian cybersecurity firm Bitdefender, which discovered the flaw in Bosch BCC100 thermostats last August, said the issue could be weaponized by an attacker to

New Variant of DLL Search Order Hijacking Bypasses Windows 10 and 11 Protections

Security researchers have detailed a new variant of a dynamic link library (DLL) search order hijacking technique that could be used by threat actors to bypass security mechanisms and achieve execution of malicious code on systems running Microsoft Windows 10 and Windows 11. The approach "leverages executables commonly found in the trusted WinSxS folder and exploits them via the classic DLL

Google Using Clang Sanitizers to Protect Android Against Cellular Baseband Vulnerabilities

Google is highlighting the role played by Clang sanitizers in hardening the security of the cellular baseband in the Android operating system and preventing specific kinds of vulnerabilities. This comprises Integer Overflow Sanitizer (IntSan) and BoundsSanitizer (BoundSan), both of which are part of UndefinedBehaviorSanitizer (UBSan), a tool designed to catch various kinds of

Scaling Security Operations with Automation

In an increasingly complex and fast-paced digital landscape, organizations strive to protect themselves from various security threats. However, limited resources often hinder security teams when combatting these threats, making it difficult to keep up with the growing number of security incidents and alerts. Implementing automation throughout security operations helps security teams alleviate

6 Steps to Accelerate Cybersecurity Incident Response

Modern security tools continue to improve in their ability to defend organizations’ networks and endpoints against cybercriminals. But the bad actors still occasionally find a way in. Security teams must be able to stop threats and restore normal operations as quickly as possible. That’s why it’s essential that these teams not only have the right tools but also understand how to effectively

Russian Hackers Sandworm Cause Power Outage in Ukraine Amidst Missile Strikes

The notorious Russian hackers known as Sandworm targeted an electrical substation in Ukraine last year, causing a brief power outage in October 2022. The findings come from Google's Mandiant, which described the hack as a "multi-event cyber attack" leveraging a novel technique for impacting industrial control systems (ICS). "The actor first used OT-level living-off-the-land (LotL) techniques to

Elon Musk Mocked Ukraine, and Russian Trolls Went Wild

Inauthentic accounts on X flocked to its owner’s post about Ukrainian president Vlodymr Zelensky, hailing “Comrade Musk” and boosting pro-Russia propaganda.

Caracal - Static Analyzer For Starknet Smart Contracts

By: Zion3R


Caracal is a static analyzer tool over the SIERRA representation for Starknet smart contracts.

Features

  • Detectors to detect vulnerable Cairo code
  • Printers to report information
  • Taint analysis
  • Data flow analysis framework
  • Easy to run in Scarb projects

Installation

Precompiled binaries

Precompiled binaries are available on our releases page. If you are using Cairo compiler 1.x.x uses the binary v0.1.x otherwise if you are using the Cairo compiler 2.x.x uses v0.2.x.

Building from source

You need the Rust compiler and Cargo. Building from git:

cargo install --git https://github.com/crytic/caracal --profile release --force

Building from a local copy:

git clone https://github.com/crytic/caracal
cd caracal
cargo install --path . --profile release --force

Usage

List detectors:

caracal detectors

List printers:

caracal printers

Standalone

To use with a standalone cairo file you need to pass the path to the corelib library either with the --corelib cli option or by setting the CORELIB_PATH environment variable. Run detectors:

caracal detect path/file/to/analyze --corelib path/to/corelib/src

Run printers:

caracal print path/file/to/analyze --printer printer_to_use --corelib path/to/corelib/src

Scarb

If you have a project that uses Scarb you need to add the following in Scarb.toml:

[[target.starknet-contract]]
sierra = true

[cairo]
sierra-replace-ids = true

Then pass the path to the directory where Scarb.toml resides. Run detectors:

caracal detect path/to/dir

Run printers:

caracal print path/to/dir --printer printer_to_use

Detectors

Num Detector What it Detects Impact Confidence Cairo
1 controlled-library-call Library calls with a user controlled class hash High Medium 1 & 2
2 unchecked-l1-handler-from Detect L1 handlers without from address check High Medium 1 & 2
3 felt252-overflow Detect user controlled operations with felt252 type, which is not overflow safe High Medium 1 & 2
4 reentrancy Detect when a storage variable is read before an external call and written after Medium Medium 1 & 2
5 read-only-reentrancy Detect when a view function read a storage variable written after an external call Medium Medium 1 & 2
6 unused-events Events defined but not emitted Medium Medium 1 & 2
7 unused-return Unused return values Medium Medium 1 & 2
8 unenforced-view Function has view decorator but modifies state Medium Medium 1
9 unused-arguments Unused arguments Low Medium 1 & 2
10 reentrancy-benign Detect when a storage variable is written after an external call but not read before Low Medium 1 & 2
11 reentrancy-events Detect when an event is emitted after an external call leading to out-of-order events Low Medium 1 & 2
12 dead-code Private functions never used Low Medium 1 & 2

The Cairo column represent the compiler version(s) for which the detector is valid.

Printers

  • cfg: Export the CFG of each function to a .dot file
  • callgraph: Export function call graph to a .dot file

How to contribute

Check the wiki on the following topics:

Limitations

  • Inlined functions are not handled correctly.
  • Since it's working over the SIERRA representation it's not possible to report where an error is in the source code but we can only report SIERRA instructions/what's available in a SIERRA program.


16 New CODESYS SDK Flaws Expose OT Environments to Remote Attacks

By: THN
A set of 16 high-severity security flaws have been disclosed in the CODESYS V3 software development kit (SDK) that could result in remote code execution and denial-of-service under specific conditions, posing risks to operational technology (OT) environments. The flaws, tracked from CVE-2022-47378 through CVE-2022-47393 and dubbed CoDe16, carry a CVSS score of 8.8 with the exception of CVE-2022-

Continuous Security Validation with Penetration Testing as a Service (PTaaS)

By: THN
Validate security continuously across your full stack with Pen Testing as a Service. In today's modern security operations center (SOC), it's a battle between the defenders and the cybercriminals. Both are using tools and expertise – however, the cybercriminals have the element of surprise on their side, and a host of tactics, techniques, and procedures (TTPs) that have evolved. These external

5 Things CISOs Need to Know About Securing OT Environments

For too long the cybersecurity world focused exclusively on information technology (IT), leaving operational technology (OT) to fend for itself. Traditionally, few industrial enterprises had dedicated cybersecurity leaders. Any security decisions that arose fell to the plant and factory managers, who are highly skilled technical experts in other areas but often lack cybersecurity training or

Researchers Expose New Severe Flaws in Wago and Schneider Electric OT Products

Three security vulnerabilities have been disclosed in operational technology (OT) products from Wago and Schneider Electric. The flaws, per Forescout, are part of a broader set of shortcomings collectively called OT:ICEFALL, which now comprises a total of 61 issues spanning 13 different vendors. "OT:ICEFALL demonstrates the need for tighter scrutiny of, and improvements to, processes related to

BackupOperatorToolkit - The BackupOperatorToolkit Contains Different Techniques Allowing You To Escalate From Backup Operator To Domain Admin

By: Zion3R


The BackupOperatorToolkit contains different techniques allowing you to escalate from Backup Operator to Domain Admin.

Usage

The BackupOperatorToolkit (BOT) has 4 different mode that allows you to escalate from Backup Operator to Domain Admin.
Use "runas.exe /netonly /user:domain.dk\backupoperator powershell.exe" before running the tool.


Service Mode

The SERVICE mode creates a service on the remote host that will be executed when the host is rebooted.
The service is created by modyfing the remote registry. This is possible by passing the "REG_OPTION_BACKUP_RESTORE" value to RegOpenKeyExA and RegSetValueExA.
It is not possible to have the service executed immediately as the service control manager database "SERVICES_ACTIVE_DATABASE" is loaded into memory at boot and can only be modified with local administrator privileges, which the Backup Operator does not have.

.\BackupOperatorToolkit.exe SERVICE \\PATH\To\Service.exe \\TARGET.DOMAIN.DK SERVICENAME DISPLAYNAME DESCRIPTION

DSRM Mode

The DSRM mode will set the DsrmAdminLogonBehavior registry key found in "HKLM\SYSTEM\CURRENTCONTROLSET\CONTROL\LSA" to either 0, 1, or 2.
Setting the value to 0 will only allow the DSRM account to be used when in recovery mode.
Setting the value to 1 will allow the DSRM account to be used when the Directory Services service is stopped and the NTDS is unlocked.
Setting the value to 2 will allow the DSRM account to be used with network authentication such as WinRM.
If the DUMP mode has been used and the DSRM account has been cracked offline, set the value to 2 and log into the Domain Controller with the DSRM account which will be local administrator.

.\BackupOperatorToolkit.exe DSRM \\TARGET.DOMAIN.DK 0||1||2

DUMP Mode

The DUMP mode will dump the SAM, SYSTEM, and SECURITY hives to a local path on the remote host or upload the files to a network share.
Once the hives have been dumped you could PtH with the Domain Controller hash, crack DSRM and enable network auth, or possibly authenticate with another account found in the dumps. Accounts from other forests may be stored in these files, I'm not sure why but this has been observed on engagements with management forests. This mode is inspired by the BackupOperatorToDA project.

.\BackupOperatorToolkit.exe DUMP \\PATH\To\Dump \\TARGET.DOMAIN.DK

IFEO Mode

The IFEO (Image File Execution Options) will enable you to run an application when a specifc process is terminated.
This could grant a shell before the SERVICE mode will in case the target host is heavily utilized and rarely rebooted.
The executable will be running as a child to the WerFault.exe process.

.\BackupOperatorToolkit.exe IFEO notepad.exe \\Path\To\pwn.exe \\TARGET.DOMAIN.DK






5 Reasons Why IT Security Tools Don't Work For OT

Attacks on critical infrastructure and other OT systems are on the rise as digital transformation and OT/IT convergence continue to accelerate. Water treatment facilities, energy providers, factories, and chemical plants — the infrastructure that undergirds our daily lives could all be at risk. Disrupting or manipulating OT systems stands to pose real physical harm to citizens, environments, and

Promising Jobs at the U.S. Postal Service, ‘US Job Services’ Leaks Customer Data

A sprawling online company based in Georgia that has made tens of millions of dollars purporting to sell access to jobs at the United States Postal Service (USPS) has exposed its internal IT operations and database of nearly 900,000 customers. The leaked records indicate the network’s chief technology officer in Pakistan has been hacked for the past year, and that the entire operation was created by the principals of a Tennessee-based telemarketing firm that has promoted USPS employment websites since 2016.

The website FederalJobsCenter promises to get you a job at the USPS in 30 days or your money back.

KrebsOnSecurity was recently contacted by a security researcher who said he found a huge tranche of full credit card records exposed online, and that at first glance the domain names involved appeared to be affiliated with the USPS.

Further investigation revealed a long-running international operation that has been emailing and text messaging people for years to sign up at a slew of websites that all promise they can help visitors secure employment at the USPS.

Sites like FederalJobsCenter[.]com also show up prominently in Google search results for USPS employment, and steer applicants toward making credit card “registration deposits” to ensure that one’s application for employment is reviewed. These sites also sell training, supposedly to help ace an interview with USPS human resources.

FederalJobsCenter’s website is full of content that makes it appear the site is affiliated with the USPS, although its “terms and conditions” state that it is not. Rather, the terms state that FederalJobsCenter is affiliated with an entity called US Job Services, which says it is based in Lawrenceville, Ga.

“US Job Services provides guidance, coaching, and live assistance to postal job candidates to help them perform better in each of the steps,” the website explains.

The site says applicants need to make a credit card deposit to register, and that this amount is refundable if the applicant is not offered a USPS job within 30 days after the interview process.

But a review of the public feedback on US Job Services and dozens of similar names connected to this entity over the years shows a pattern of activity: Applicants pay between $39.99 and $100 for USPS job coaching services, and receive little if anything in return. Some reported being charged the same amount monthly.

The U.S. Federal Trade Commission (FTC) has sued several times over the years to disrupt various schemes offering to help people get jobs at the Postal Service. Way back in 1998, the FTC and the USPS took action against several organizations that were selling test or interview preparation services for potential USPS employees.

“Companies promising jobs with the U.S. Postal Service are breaking federal law,” the joint USPS-FTC statement said.

In that 1998 case, the defendants behind the scheme were taking out classified ads in newspapers. Ditto for a case the FTC brought in 2005. By 2008, the USPS job exam preppers had shifted to advertising their schemes mostly online. And in 2013, the FTC won a nearly $5 million judgment against a Kentucky company purporting to offer such services.

Tim McKinlay authored a report last year at Affiliateunguru.com on whether the US Job Services website job-postal[.]com was legitimate or a scam. He concluded it was a scam based on several factors, including that the website listed multiple other names (suggesting it had recently switched names), and that he got nothing from the transaction with the job site.

“They openly admit they’re not affiliated with the US Postal Service, but claim to be experts in the field, and that, just by following the steps on their site, you easily pass the postal exams and get a job in no time,” McKinlay wrote. “But it’s really just a smoke and mirrors game. The site’s true purpose is to collect $46.95 from as many people as possible. And considering how popular this job is, they’re probably making a killing.”

US JOB SERVICES

KrebsOnSecurity was alerted to the data exposure by Patrick Barry, chief information officer at Charlotte, NC based Rebyc Security. Barry said he found that not only was US Job Services leaking its customer payment records in real-time and going back to 2016, but its website also leaked a log file from 2019 containing the site administrator’s contact information and credentials to the site’s back-end database.

Barry shared screenshots of that back-end database, which show the email address for the administrator of US Job Services is tab.webcoder@gmail.com. According to cyber intelligence platform Constella Intelligence, that email address is tied to the LinkedIn profile for a developer in Karachi, Pakistan named Muhammed Tabish Mirza.

A search on tab.webcoder@gmail.com at DomainTools.com reveals that email address was used to register several USPS-themed domains, including postal2017[.]com, postaljobscenter[.]com and usps-jobs[.]com.

Mr. Mirza declined to respond to questions, but the exposed database information was removed from the Internet almost immediately after KrebsOnSecurity shared the offending links.

A “Campaigns” tab on that web panel listed several advertising initiatives tied to US Job Services websites, with names like “walmart drip campaign,” “hiring activity due to virus,” “opt-in job alert SMS,” and “postal job opening.”

Another page on the US Job Services panel included a script for upselling people who call in response to email and text message solicitations, with an add-on program that normally sells for $1,200 but is being “practically given away” for a limited time, for just $49.

An upselling tutorial for call center employees.

“There’s something else we have you can take advantage of that can help you make more money,” the script volunteers. “It’s an easy to use 12-month career development plan and program to follow that will result in you getting any job you want, not just at the post office….anywhere…and then getting promoted rapidly.”

It’s bad enough that US Job Services was leaking customer data: Constella Intelligence says the email address tied to Mr. Mirza shows up in more than a year’s worth of “bot logs” created by a malware infection from the Redline infostealer.

Constella reports that for roughly a year between 2021 and 2022, a Microsoft Windows device regularly used by Mr. Mirza and his colleagues was actively uploading all of the device’s usernames, passwords and authentication cookies to cybercriminals based in Russia.

NEXT LEVEL SUPPORT

The web-based backend for US Job Services lists more than 160 people under its “Users & Teams” tab. This page indicates that access to the consumer and payment data collected by US Job Services is currently granted to several other coders who work with Mr. Mirza in Pakistan, and to multiple executives, contractors and employees working for a call center in Murfreesboro, Tennessee.

The call center — which operates as Nextlevelsupportcenters[.]com and thenextlevelsupport[.]com — curiously has several key associates with a history of registering USPS jobs-related domain names.

The US Job Services website has more than 160 users, including most of the employees at Next Level Support.

The website for NextLevelSupport says it was founded in 2017 by a Gary Plott, whose LinkedIn profile describes him as a seasoned telecommunications industry expert. The leaked backend database for US Job Services says Plott is a current administrator on the system, along with several other Nextlevel founders listed on the company’s site.

Reached via telephone, Plott initially said his company was merely a “white label” call center that multiple clients use to interact with customers, and that the content their call center is responsible for selling on behalf of US Job Services was not produced by NextLevelSupport.

“A few years ago, we started providing support for this postal product,” Plott said. “We didn’t develop the content but agreed we would support it.”

Interestingly, DomainTools says the Gmail address used by Plott in the US Jobs system was also used to register multiple USPS job-related domains, including postaljobssite[.]com, postalwebsite[.]com, usps-nlf[.]com, usps-nla[.]com.

Asked to reconcile this with his previous statement, Plott said he never did anything with those sites but acknowledged that his company did decide to focus on the US Postal jobs market from the very beginning.

Plott said his company never refuses to issue a money-back request from a customer, because doing so would result in costly chargebacks for NextLevel (and presumably for the many credit card merchant accounts apparently set up by Mr. Mirza).

“We’ve never been deceptive,” Plott said, noting that customers of the US Job Services product receive a digital download with tips on how to handle a USPS interview, as well as unlimited free telephone support if they need it.

“We’ve never told anyone we were the US Postal Service,” Plott continued. “We make sure people fully understand that they are not required to buy this product, but we think we can help you and we have testimonials from people we have helped. But ultimately you as the customer make that decision.”

An email address in the US Job Services teams page for another user — Stephanie Dayton — was used to register the domains postalhiringreview[.]com, and postalhiringreviewboard[.]org back in 2014. Reached for comment, Ms. Dayton said she has provided assistance to Next Level Support Centers with their training and advertising, but never in the capacity as an employee.

Perhaps the most central NextLevel associate who had access to US Job Services was Russell Ramage, a telemarketer from Warner Robins, Georgia. Ramage is listed in South Carolina incorporation records as the owner of a now-defunct call center service called Smart Logistics, a company whose name appears in the website registration records for several early and long-running US Job Services sites.

According to the state of Georgia, Russell Ramage was the registered agent of several USPS job-themed companies.

The leaked records show the email address used by Ramage also registered multiple USPS jobs-related domains, including postalhiringcenter[.]com, postalhiringreviews[.]com, postaljobs-email[.]com, and postaljobssupport1[.]com.

A review of business incorporation records in Georgia indicate Ramage was the registered agent for at least three USPS-related companies over the years, including Postal Career Placement LLC, Postal Job Services Inc., and Postal Operations Inc. All three companies were founded in 2015, and are now dissolved.

An obituary dated February 2023 says Russell Ramage recently passed away at the age of 41. No cause of death was stated, but the obituary goes on to say that Russ “Rusty” Ramage was “preceded in death by his mother, Anita Lord Ramage, pets, Raine and Nola and close friends, Nicole Reeves and Ryan Rawls.”

In 2014, then 33-year-old Ryan “Jootgater” Rawls of Alpharetta, Georgia pleaded guilty to conspiring to distribute controlled substances. Rawls also grew up in Warner Robins, and was one of eight suspects charged with operating a secret darknet narcotics ring called the Farmer’s Market, which federal prosecutors said trafficked in millions of dollars worth of controlled substances.

Reuters reported that an eighth suspect in that case had died by the time of Rawls’ 2014 guilty plea, although prosecutors declined to offer further details about that. According to his obituary, Ryan Christopher Rawls died at the age of 38 on Jan. 28, 2019.

In a comment on Ramage’s memorial wall, Stephanie Dayton said she began working with Ramage in 2006.

“Our friendship far surpassed a working one, we had a very close bond and became like brother and sister,” Dayton wrote. “I loved Russ deeply and he was like family. He was truly one of the best human beings I have ever known. He was kind and sweet and truly cared about others. Never met anyone like him. He will be truly missed. RIP brother.”

The FTC and USPS note that while applicants for many entry-level postal jobs are required to take a free postal exam, the tests are usually offered only every few years in any particular district, and there are no job placement guarantees based on score.

“If applicants pass the test by scoring at least 70 out of 100, they are placed on a register, ranked by their score,” the FTC explained. “When a position becomes open, the local post office looks to the applicable register for that geographic location and calls the top three applicants. The score is only one of many criteria taken into account for employment. The exams test general aptitude, something that cannot necessarily be increased by studying.”

The FTC says anyone interested in a job at the USPS should inquire at their local postal office, where applicants generally receive a free packet of information about required exams. More information about job opportunities at the postal service is available at the USPS’s careers website.

Michael Martel, spokesperson for the United States Postal Inspection Service, said in a written statement that the USPS has no affiliation with the websites or companies named in this story.

“To learn more about employment with USPS, visit USPS.com/careers,” Martel wrote. “If you are the victim of a crime online report it to the FBI’s Internet Crime Complaint Center (IC3) at www.ic3.gov. To report fraud committed through or toward the USPS, its employees, or customers, report it to the United States Postal Inspection Service (USPIS) at www.uspis.gov/report.”

According to the leaked back-end server for US Job Services, here is a list of the current sites selling this product:

usjobshelpcenter[.]com
usjobhelpcenter[.]com
job-postal[.]com
localpostalhiring[.]com
uspostalrecruitment[.]com
postalworkerjob[.]com
next-level-now[.]com
postalhiringcenters[.]com
postofficehiring[.]com
postaljobsplacement[.]com
postal-placement[.]com
postofficejobopenings[.]com
postalexamprep[.]com
postaljobssite[.]com
postalwebsite[.]com
postalcareerscenters[.]com
postal-hiring[.]com
postal-careers[.]com
postal-guide[.]com
postal-hiring-guide[.]com
postal-openings[.]com
postal-placement[.]com
postofficeplacements[.]com
postalplacementservices[.]com
postaljobs20[.]com
postal-jobs-placement[.]com
postaljobopenings[.]com
postalemployment[.]com
postaljobcenters[.]com
postalmilitarycareers[.]com
epostaljobs[.]com
postal-job-center[.]com
postalcareercenter[.]com
postalhiringcenters[.]com
postal-job-center[.]com
postalcareercenter[.]com
postalexamprep[.]com
postalplacementcenters[.]com
postalplacementservice[.]com
postalemploymentservices[.]com
uspostalhiring[.]com

Beyond Traditional Security: NDR's Pivotal Role in Safeguarding OT Networks

Why is Visibility into OT Environments Crucial? The significance of Operational Technology (OT) for businesses is undeniable as the OT sector flourishes alongside the already thriving IT sector. OT includes industrial control systems, manufacturing equipment, and devices that oversee and manage industrial environments and critical infrastructures. In recent years, adversaries have recognized the

UK Sets Up Fake Booter Sites To Muddy DDoS Market

The United Kingdom’s National Crime Agency (NCA) has been busy setting up phony DDoS-for-hire websites that seek to collect information on users, remind them that launching DDoS attacks is illegal, and generally increase the level of paranoia for people looking to hire such services.

The warning displayed to users on one of the NCA’s fake booter sites. Image: NCA.

The NCA says all of its fake so-called “booter” or “stresser” sites — which have so far been accessed by several thousand people — have been created to look like they offer the tools and services that enable cyber criminals to execute these attacks.

“However, after users register, rather than being given access to cyber crime tools, their data is collated by investigators,” reads an NCA advisory on the program. “Users based in the UK will be contacted by the National Crime Agency or police and warned about engaging in cyber crime. Information relating to those based overseas is being passed to international law enforcement.”

The NCA declined to say how many phony booter sites it had set up, or for how long they have been running. The NCA says hiring or launching attacks designed to knock websites or users offline is punishable in the UK under the Computer Misuse Act 1990.

“Going forward, people who wish to use these services can’t be sure who is actually behind them, so why take the risk?” the NCA announcement continues.

The NCA campaign comes closely on the heels of an international law enforcement takedown involving four-dozen websites that made powerful DDoS attacks a point-and-click operation.

In mid-December 2022, the U.S. Department of Justice (DOJ) announced “Operation Power Off,” which seized four-dozen booter business domains responsible for more than 30 million DDoS attacks, and charged six U.S. men with computer crimes related to their alleged ownership of popular DDoS-for-hire services. In connection with that operation, the NCA also arrested an 18-year-old man suspected of running one of the sites.

According to U.S. federal prosecutors, the use of booter and stresser services to conduct attacks is punishable under both wire fraud laws and the Computer Fraud and Abuse Act (18 U.S.C. § 1030), and may result in arrest and prosecution, the seizure of computers or other electronics, as well as prison sentences and a penalty or fine.

The United Kingdom, which has been battling its fair share of domestic booter bosses, started running online ads in 2020 aimed at young people who search the Web for booter services.

As part of last year’s mass booter site takedown, the FBI and the Netherlands Police joined the NCA in announcing they are running targeted placement ads to steer those searching for booter services toward a website detailing the potential legal risks of hiring an online attack.

Black Hat Europe 2022 NOC: When planning meets execution

In this blog about the design, deployment and automation of the Black Hat network, we have the following sections:

  • Designing the Black Hat Network, by Evan Basta
  • AP Placement Planning, by Sandro Fasser
  • Wi-Fi Air Marshal, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games
  • Meraki Dashboards, by Rossi Rosario Burgos
  • Meraki Systems Manager, by Paul Fidler
  • A Better Way to Design Training SSIDs/VLANs, by Paul Fidler

Cisco is honored to be a Premium Partner of the Black Hat NOC, and is the Official Network Platform, Mobile Device Management, Malware Analysis and DNS (Domain Name Service) Provider of Black Hat.

2022 was Cisco’s sixth year as a NOC partner for Black Hat Europe. However, it was our first time building the network for Black Hat Europe. We used experiences of Black Hat Asia 2022 and Black Hat USA 2022 to refine the planning for network topology design and equipment. Below are our fellow NOC partners providing hardware, to build and secure the network, for our joint customer: Black Hat.

Designing the Black Hat Network, by Evan Basta

We are grateful to share that Black Hat Europe 2022 was the smoothest experience we’ve had in the years at Black Hat. This is thanks to the 15 Cisco Meraki and Cisco Secure engineers on site (plus virtually supporting engineers) to build, operate and secure the network; and great NOC leadership and collaborative partners.

To plan, configure, deploy (in two days), maintain resilience, and recover (in four hours) an enterprise class network, took a lot of coordination. We appreciate the Black Hat NOC leadership, Informa and the NOC partners; meeting each week to discuss the best design, staffing, gear selection and deployment, to meet the unique needs of the conference. Check out the “Meraki Unboxed” podcast – Episode 94: Learnings from the Black Hat Europe 2022 Cybersecurity Event

We must allow real malware on the Black Hat network: for training, demonstrations, and briefing sessions; while protecting the attendees from attack within the network from their fellow attendees, and prevent bad actors from using the network to attack the Internet. It is a critical balance to ensure everyone has a safe experience, while still being able to learn from real world malware, vulnerabilities, and malicious websites.

In addition to the weekly meetings with Black Hat and the other partners, the Cisco Meraki engineering team of Sandro Fasser, Rossi Rosario Burgos, Otis Ioannou, Asmae Boutkhil, Jeffry Handal and I met every Friday for two months. We also discussed the challenges in a Webex space with other engineers who worked on past Black Hat events.

The mission:

Division of labor is essential to reduce mistakes and stay laser focused on security scope. Otis took the lead working on network topology design with Partners. Asmae handled the port assignments for the switches. Rossi ensured every AP and Switch was tracked, and the MAC addresses were provided to Palo Alto Networks for DCHP assignments. Otis and Rossi spent two days in the server room with the NOC partners, ensuring every switch was operating and configured correctly. Rossi also deployed and configured a remote Registration switch for Black Hat.

AP Placement Planning, by Sandro Fasser

In the weeks before deployment, our virtual Meraki team member, Aleksandar Dimitrov Vladimirov, and I focused on planning and creating a virtual Wi-Fi site survey. Multiple requirements and restrictions had to be taken into consideration. The report was based on the ExCel centre floor plans, the space allocation requirements from Black Hat and the number of APs we had available to us. Although challenging to create, with some uncertainties and often changing requirements due to the number of stakeholders involved, the surveys AP placement for best coverage ended up being pivotal at the event.

Below is the Signal Strength plan for the Expo Hall Floor on the 5 GHz band. The original plan to go with a dual-Band deployment was adjusted onsite and the 2.4 GHz band was disabled to enhance performance and throughput. This was a decision made during the network setup, in coordination with the NOC Leadership and based on experience from past conferences.

Upon arrival at the ExCel Centre, we conducted a walkthrough of the space that most of us had only seen as a floor plan and on some photos. Thanks to good planning, we could start deploying the 100+ APs immediately, with only a small number of changes to optimize the deployment on-site. As the APs had been pre-staged and added to the Meraki dashboard, including their location on the floor maps, the main work was placing and cabling them physically. During operation, the floor plans in the Meraki Dashboard were a visual help to easily spot a problem and navigate the team on the ground to the right spot, if something had to be adjusted.

As the sponsors and attendees filled each space, in the Meraki dashboard, we were able to see in real-time the number of clients connected to each AP, currently and over the time of the conference. This enabled quick reaction if challenges were identified, or APs could be redeployed to other zones. Below is the ExCel Centre Capital Hall and London Suites, Level 0. We could switch between the four levels with a single click on the Floor Plans, and drill into any AP, as needed.

The Location heatmaps also provided essential visibility into conference traffic, both on the network and footfalls of attendees. Physical security is also an important aspect of cybersecurity; we need to know how devices move in space, know where valuable assets are located and monitor their safety.

Below is the Business Hall at lunchtime, on the opening day of the conference. You can see no live APs in the bottom right corner of the Location heatmap. This is an example of adapting the plan to reality onsite. In past Black Hat Europe conferences, the Lobby in that area was the main entrance. Construction in 2022 closed this entrance. So, those APs were reallocated to the Level 1 Lobby, where attendees would naturally flow from Registration.

The floor plans and heatmaps also helped with the Training, Briefings and Keynote network resilience. Capacity was easy to add temporarily, and we were able to remove it and relocate it after a space emptied.

Meraki API Integration for automatic device blocking

During our time in the NOC, we had the chance to work with other vendor engineers and some use cases that came up led to interesting collaborations. One specific use case was that we wanted to block wireless clients, that show some malicious or bad behavior, automatically after they have been identified by one of the SOC analysts on the different security platforms, in addition we wanted to show them a friendly warning page that guides them to the SOC for a friendly conversation.

The solution was a script that can be triggered thru the interfaces of the other security products and attaches a group policy thru the Meraki Dashboard, including a quarantine VLAN and a splash page, via the Meraki APIs. This integration was just one of the many collaboration bits that we worked on.

Wi-Fi Air Marshal, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games

During the first day of training, in the Meraki dashboard Air Marshal, I observed packet flood attacks, against we were able to adapt and remain resilient.

I also observed an AP spoofing and broadcast de-authentication attack. I was able to quickly identify the location of the attack, which was at the Lobby outside the Business Hall.  Should the attacks continue, physical security had the information to intervene. We also had the ability to track the MAC address throughout the venue, as discussed in Christian Clasen’s section in part two.

From our experiences at Black Hat USA 2022, we had encrypted frames enabled, blunting the attack.

Meraki Dashboards, by Rossi Rosario Burgos

The Meraki dashboards made it very easy to monitor the health of the network APs and Switches, with the ability to aggregate data, and quickly pivot into any switch, AP or clients.

Through the phases of the conference, from two days of pre-conference setup, to focused and intense training the first two days, and transition to the briefings and Business Hall, we were able to visualize the network traffic.

In addition, we could see the number of attendees who passed through the covered area of the conference, with or without connecting to the network. Christian Clasen takes this available data to a new level in Part 2 of the blog.

As the person with core responsibilities for the switch configuration and uptime, the Meraki dashboard made it very simple to quickly change the network topology, according to the needs of the Black Hat customer.

Meraki Systems Manager, by Paul Fidler

If you refer back to Black Hat USA 2022, you’d have seen that we had over 1,000 iOS devices to deploy, with which we had several difficulties. For context, the company that leases the devices to Black Hat doesn’t use a Mobile Device Management (MDM) platform for any of their other shows…Black Hat is the only one that does. So, instead of using a mass deployment technology, like Apple’s Automated Device Enrollment, the iOS devices are “prepared” using Apple Configurator. This includes uploading a Wi-Fi profile to the devices as part of that process. In Las Vegas, this Wi-Fi profile wasn’t set to auto join the Wi-Fi, resulting in the need to manually change this on 1,000 devices. Furthermore, 200 devices weren’t reset or prepared, so we had those to reimage as well.

Black Hat Europe 2022 was different. We took the lessons from US and coordinated with the contractor to prepare the devices. Now, if you’ve ever used Apple Configurator, there’s several steps needed to prepare a device. However, all of these can be actions can be combined into a Blueprint:

Instead of there being several steps to prepare a device, there is now just one! Applying the Blueprint!

For Black Hat Europe, this included:

  • Wi-Fi profile
  • Enrollment, including supervision
  • Whether to allow USB pairing
  • Setup Assistant pane skipping

There’s lots of other things that can be achieved as well, but this results in the time taken to enroll and set up a device to around 30 seconds. Since devices can be set up in parallel (you’re only limited by the number of USB cables / ports you have), this really streamlines the enrollment and set up process.

Now, for the future, whilst you can’t Export these blueprints, they are transportable. If you open Terminal on a Mac and type:
cd /Users/<YOUR USER NAME>/Library/Group Containers/K36BKF7T3D.group.com.apple.configurator/Library/Application Support/com.apple.configurator/Blueprints

You’ll see a file / package called something.blueprint This can be zipped up and emailed to some else so, they can then use the exact same Blueprint! You may need to reboot your computer for the Blueprint to appear in Apple Configurator.

Device Naming / Lock Screen Messages

As mentioned, the registration / lead capture / session scanning devices are provided by the contractor. Obviously, these are all catalogued and have a unique device code / QR code on the back of them. However, during setup, any device name provisioned on the device gets lost.

So, there’s three things we do to know, without having to resort to using the unwieldy serial number, what devices is what.

  • The first thing that we do is to use the Meraki API to rename Systems Manager Devices. The script created has some other functionality too, such as error handling, but it is possible to do this without a script. You can find it here. This ensures that the device has a name: iOS devices default to being called iPhone or iPad in Systems Manager when they first enroll, so, already, this is incredibly helpful.
  • The second thing we do is to use a simple Restrictions profile for iOS, which keeps the physical device’s name in sync with that in the dashboard
  • Lastly, we then use a Lock Screen payload to format the message on the device when it’s locked:

In the footnote, you’ll see Device Name and Device Serial in blue. This denotes that the values are actually dynamic and change per device. They include:

  • Organization name
  • Network name
  • Device name
  • Device serial
  • Device model
  • Device OS version
  • Device notes
  • Owner name
  • Owner email
  • Owner username
  • SM device ID

On the Lock Screen, it’s now possible to see the device’s name and serial number, without having to flip the device over (A problem for the registration devices which are locked in a secure case) or open systems preferences.

We also had integration with SecureX device insights, to see the security status of each iOS device.

With the ability to quickly check on device health from the SecureX dashboard.

 

Data Security

This goes without saying, but the iOS devices (Registration, Lead Capture and Session Scanning) do have access to personal information. To ensure the security of the data, devices are wiped at the end of the conference. This is incredibly satisfying, hitting the Erase Devices button in Meraki Systems Manager, and watching the 100+ devices reset!

A Better Way to Design Training SSIDs/VLANs, by Paul Fidler

Deploying a network like Black Hat takes a lot of work, and repetitive configuration. Much of this has been covered in previous blogs. However, to make things easier for this event, instead of the 60 training SSIDs we had in Black Hat US 2022, the Meraki team discussed the benefits of moving to iPSKs with Black Hat NOC Leadership, which accepted the plan.

For context, instead of having a single pre shared key for an SSID, iPSK functionality allows you to have 1000+. Each of these iPSKs can be assigned its own group policy / VLAN. So, we created a script:

  • That consumed networkID, SSID, Training name, iPSK and VLAN from a CSV
  • Created a group policy for that VLAN with the name of the training
  • Created an iPSK for the given SSID that referred to the training name

This only involves five API calls:

  • For a given network name, get the network ID
  • Get Group Policies
  • If the group policy exists, use that, else create a group policy, retaining the group policy ID
  • Get the SSIDs (to get the ID of the SSID)
  • Create an iPSK for the given SSID ID

The bulk of the script is error handling (The SSID or network doesn’t exist, for example) and logic!

The result was one SSID for all of training: BHTraining, and each classroom had their own password. This reduced the training SSIDs from over a dozen and helped clear the airwaves.

Check out part two – Black Hat Europe 2022 NOC: The SOC Inside the NOC 

Acknowledgments

Thank you to the Cisco NOC team:

  • Meraki Network: Evan Basta, Sandro Fasser, Rossi Rosario Burgos, Otis Ioannou, Asmae Boutkhil, Jeffry Handal and Aleksandar Dimitrov Vladimirov
  • Meraki Systems Manager: Paul Fidler
  • Cisco Secure: Ian Redden, Christian Clasen, Aditya Sankar, Ryan MacLennan, Guillaume Buisson, Jerome Schneider, Robert Taylor, Piotr Jarzynka, Tim Wadhwa-Brown and Matthieu Sprunck
  • Threat Hunter / Paris 2024 Olympics SOC: Jérémy Couture

Also, to our NOC partners NetWitness (especially David Glover, Iain Davidson, Alessandro Contini and Alessandro Zatti), Palo Alto Networks (especially James Holland, Matt Ford, Matt Smith and Mathew Chase), Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Black Hat Europe 2022 NOC: The SOC Inside the NOC

Our core mission in the NOC is network resilience. We also provide integrated security, visibility and automation, a SOC inside the NOC.

In part one, we covered:

  • Designing the Black Hat Network, by Evan Basta
  • AP Placement Planning, by Sandro Fasser
  • Wi-Fi Air Marshal, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games
  • Meraki Dashboards, by Rossi Rosario Burgos
  • Meraki Systems Manager, by Paul Fidler
  • A Better Way to Design Training SSIDs/VLANs, by Paul Fidler

In part two, we are going deep with security:

  • Integrating Security
  • First Time at Black Hat, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games
  • Trojan on an Attendee Laptop, by Ryan MacLennan
  • Automated Account Provisioning, by Adi Sankar
  • Integrating Meraki Scanning Data with Umbrella Security Events, by Christian Clasen
  • Domain Name Service Statistics, by Adi Sankar

Integrating Security

As the needs of Black Hat evolved, so did the Cisco Secure Technologies in the NOC:

The SecureX dashboard made it easy to see the status of each of the connected Cisco Secure technologies.

Since joining the Black Hat NOC in 2016, my goal remains integration and automation. As a NOC team comprised of many technologies and companies, we are pleased that this Black Hat NOC was the most integrated to date, to provide an overall SOC cybersecurity architecture solution.

We have ideas for even more integrations for Black Hat Asia and Black Hat USA 2023. Thank you, Piotr Jarzynka, for designing the integration diagram.

Below are the SecureX threat response integrations for Black Hat Europe, empowering analysts to investigate Indicators of Compromise very quickly, with one search.

The original Black Hat NOC integration for Cisco was NetWitness sending suspicious files to Threat Grid (know Secure Malware Analytics). We expanded that in 2022 with Palo Alto Networks Cortex XSOAR and used it in London, for investigation of malicious payload attack.

NetWitness observed a targeted attack against the Black Hat network. The attack was intended to compromise the network.

NetWitness extracted the payload and sent it to Secure Malware Analytics for detonation.

Reviewing the analysis report, we were able to quickly determine it was the MyDoom worm, which would have been very damaging.

The attack was blocked at the perimeter and the analysts were able to track and enrich the incident in XSOAR.

First Time at Black Hat, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games

My first time at Black Hat turned out to be an incredible journey!

Thanks to the cybersecurity partnership between Paris 2024 and Cisco, I was able to integrate into the Cisco Crew, to operate the NOC/SOC as a Threat Hunter on the most dangerous network in the world for this European Edition of Black Hat.

My first day, I helped with deploying the network by installing the wireless Meraki APs on the venue, understanding how they were configured and how they could help analysts to identify and locate any client connected to the network that could have a bad behavior during the event, the idea being to protect the attendees if an attack was to spray on the network.

Following this “physical” deployment, I’ve been able to access the whole Cisco Secure environment including Meraki, Secure Malware Analytics, Umbrella, SecureX and the other Black Hat NOC partners software tools.

SecureX was definitely the product on which I wanted to step up. By having so fantastic professionals around me, we were able to dig in the product, identifying potential use cases to deploy in the orchestration module and expected integrations for Paris 2024.

Time was flying and so were the attendees to the conference, a network without user is fun but can be quite boring as nothing happens, having so many cybersecurity professional at the same place testing different security malwares, attacks and so on led us to very interesting investigations. A paradox at the Black Hat, we do not want to block malicious content as it could be part of exercises or training classes, quite a different mindset as what we, security defenders, are used to! Using the different components, we were able to find some observables/IOCs that we investigate through SecureX, SecureX being connected to all the other components helped us to enrich the observables (IPs, urls, domains…), understanding the criticality of what we identified (such as malware payloads) and even led us to poke the folks in the training classes to let them know that something really wrong was happening on their devices.

Being part of the Black Hat NOC was an incredible experience, I was able to meet fantastic professionals, fully committed on making the event a success for all attendees and exhibitors. It also helped me to better understand how products, that we use or will use within Paris 2024, could be leveraged to our needs and which indicators could be added to our various Dashboards, helping us to identify, instantaneously, that something is happening. 

Trojan on an Attendee Laptop, by Ryan MacLennan

During the last day of Black Hat Europe, our NOC partner, NetWitness saw some files being downloaded on the network. The integration again automatically carved out the file and submitted the Cisco Secure Malware Analytics (SMA) platform. One of those files came back as a trojan, after SMA detonated the file in a sandbox environment. The specific hash is the below SHA-256:

938635a0ceed453dc8ff60eab20c5d168a882bdd41792e5c5056cc960ebef575

The screenshot below shows some of the behaviors that influenced the decision:

The result of seeing these behaviors caused SMA to give it the highest judgement score available to a detonated file:

After this judgement was made, we connected with the Palo Alto Networks team, and they found the IP address associated with the file download.

Once we had this information, we went to the Meraki dashboard and did a search for the IP address. The search returned only one client that has been associated with the address for the entire Black Hat conference.

Knowing that there has only been one client associated with the address made finding the attendee easier. We then needed to know where they were and Meraki had this figured out. After opening the client’s profile, we saw what SSID and access point (AP) they were connected to using the Meraki location map.

We then found the attendee and let them know to have their IT inspect their laptop to make sure it is clean.

Apart from the technical challenges of running a temporary network for N thousand people, the Black Hat event reminded us that success doesn’t happen without teamwork; that leadership isn’t just about keeping the project on track. It is also about looking after the team and that small details in planning, build up and tear down can be just as important, as having all the right tools and fantastically skilled Individuals using them during the event itself.

Automated Account Provisioning, by Adi Sankar

In the Cisco Secure technology stack, within the Black Hat NOC, we use SecureX Single Sign-on. This reduces the confusion of managing multiple accounts and passwords. It also streamlines the integrations between the Cisco products and our fellow NOC partners. We have an open ecosystem approach to integrations and access in the NOC, so we will provision Cisco Secure accounts for any staff member of the NOC. Logging into each individual console and creating an account is time consuming and can often lead to confusion on which tools to provision and which permission levels are needed.

To automate this process, I developed two workflows: one to create non-admin users for NOC partners and one to create administrator accounts in all the tools for Cisco staff. The workflows create accounts in SecureX, Secure Malware Analytics (Threat Grid), Umbrella DNS and Meraki dashboard, all using SecureX Single Sign-On.

Here is what the workflow looks like for creating non-admin users.

The workflow requires three inputs: first name, last name, and email. Click Run.

The sequence of API calls is as follows:

  • Generate a SecureX token to access the SecureX API including the “admin/invite:write, invite:write” scopes.
  • Invite the User to SecureX using the invite API (https://visibility.amp.cisco.com/iroh/invite/index.html#/). In the body of this POST the role is set to “user”. In the Administrator workflow this would be set to “admin” allowing full access to SecureX.
  • If the invite fails due to a duplicate invite, print an error message in Webex teams.
  • Invite the user to the Meraki dashboard using the “admins” API (https://api.meraki.com/api/v1/organizations/{organizationId}/admins). In the body of this call, the organization access is set to none, and access to two networks (Wireless network and Systems Manager) are set to “read-only” to ensure the user cannot make any changes to affect the network. In the Administrator version org access is still set to none but “full” permissions are provided to the two networks, something we do not want all users to have.
  • Generate a token to the new Umbrella API using https://api.umbrella.com/auth/v2/token with the following scopes (read admin users, write admin users, read admin roles). This single endpoint for generating a token based on scopes has made using the Umbrella API significantly easier.
  • Then invite the user to Umbrella using the “admins” API at (https://api.umbrella.com/admin/v2/users) and in the body of this POST the “role ID” is set to 2 to ensure read-only permissions are provisioned for Umbrella.
  • Create a user in Secure Malware analytics using the API at (https://panacea.threatgrid.com/api/v3/organizations/<ORG_ID>/users). The body of this request simply creates a Malware Analytics login using the users last name and appending “_blackhat”
  • The last call is to send a password reset email for the Malware Analytics user. (https://panacea.threatgrid.com/api/v3/users/<LOGIN>/password-email) They can set their password via the email, login to the Malware Analytics console and then link their SecureX sign-on account, which means they will no longer need to use their Malware Analytics credentials.

Once the workflow has completed successfully, the user will receive four emails to create a SecureX Sign-On account and accept the invitations to the various products. These workflows really improved our responsiveness to account provisioning requests and makes it much easier to collaborate with other NOC partners.

Integrating Meraki Scanning Data with Umbrella Security Events, by Christian Clasen

Over the previous Black Hat events, we have been utilizing Meraki scanning data to get location data for individual clients, as they roamed conference. In the initial blog post (Black Hat Asia 2022), we created a Docker container to accept the data from the Meraki Scanning API and save it for future analysis. At Black Hat USA 2022, we wrote about how to use Python Folium to use the flat text files to generate chronological heatmaps that illustrated the density of clients throughout the conference.

This time around, we’ve stepped it up again by integrating Umbrella DNS Security events and adding the ability to track clients across the heatmap using their local IP address.

To improve the portability of our data and the efficiency of our code, we began by moving from flat JSON files to a proper database. We chose SQLite this time around, though going forward we will likely use Mongo.

Both can be queried directly into Python Pandas dataframes which is what will give us the optimal performance we are looking for. We have a dedicated Docker container (Meraki-Receiver) that will validate the incoming data stream from the Meraki dashboard and insert the values into the database.

The database is stored on a Docker volume that can be mounted by our second container, the Meraki-Mapper. Though this container’s primary purpose is building the heatmaps, it also performs the task of retrieving and correlating Umbrella DNS security events. That is, any DNS query from the Black Hat network that matches one of several predefined security categories. Umbrella’s APIs were recently improved to add OAuth and simplify the URI scheme for each endpoint. After retrieving a token, we can get all security events in the time frame of the current heatmap with one call.

What we want to do with these events is to create Folium Markers. These are static “pins” that will sit on the map to indicate where the DNS query originated from. Clicking on a marker will popup more information about the query and the client who sent it.

Thanks to the Umbrella Virtual Appliances in the Black Hat network, we have the internal IP address of the client who sent the DNS query. We also have the internal IP address in the Meraki scanning data, along with the latitude and longitude. After converting the database query into a Pandas dataframe, our logic takes the IP address from the DNS query and finds all instances in the database of location data for that IP within a 5-minute window (the resolution of our heatmap).

What we end up with is a list of dictionaries representing the markers we want to add to the map. Using Bootstrap, we can format the popup for each event to make it look a bit more polished. Folium’s Popup plugin allows for an iFrame for each marker popup.

The result is a moving heatmap covering an entire day on a given conference floor, complete with markers indicating security events (the red pushpin icon).

Clicking on the pushpin shows the details of the query, allowing us in the NOC to see the exact location of the client when they sent it.

To further improve this service during the next conference, we plan to implement a web page where NOC staff can submit an IP address and immediately get map tracking that client through the conference floor. This should give us an even more efficient way to find and notify folks who are either behaving maliciously or appear to be infected.

Domain Name Service Statistics, by Adi Sankar

For years we have been tracking the DNS stats at the Blackhat conferences. The post-pandemic 2022 numbers look like we never skipped a beat after the dip in DNS queries from 2021, seen in the bar graph below. This year’s attendance saw well over 11 million total DNS queries.

The Activity volume view from Umbrella gives a top-level level glance of activity by category, which we can drill into for deeper threat hunting. On trend with the previous Black Hat Europe events, the top Security categories were Dynamic DNS and Newly Seen Domains. However, it’s worth noting a proportionally larger increase in the cryptomining and phishing categories from 9 to 17 and 28 to 73, respectively, compared to last year.

These years, Black Hat saw over 4,100 apps connect to the network, which is nearly double of what was seen last year. However, still not topping over 6,100 apps seen at Black Hat USA early this year.

Should the need arise, we can block any application, such as Mail.ru above.

Black Hat Europe 2022 was the best planned and executed NOC in my experience, with the most integrations and visibility. This allowed us the time to deal with problems, which will always arise.

We are very proud of the collaboration of the team and the NOC partners.

Black Hat Asia will be in May 2023, at the Marina Bay Sands, Singapore…hope to see you there!

Acknowledgments

Thank you to the Cisco NOC team:

  • Cisco Secure: Ian Redden, Christian Clasen, Aditya Sankar, Ryan MacLennan, Guillaume Buisson, Jerome Schneider, Robert Taylor, Piotr Jarzynka, Tim Wadhwa-Brown and Matthieu Sprunck
  • Threat Hunter / Paris 2024 Olympics SOC: Jérémy Couture
  • Meraki Network: Evan Basta, Sandro Fasser, Rossi Rosario Burgos, Otis Ioannou, Asmae Boutkhil, Jeffry Handal and Aleksandar Dimitrov Vladimirov
  • Meraki Systems Manager: Paul Fidler

Also, to our NOC partners NetWitness (especially David Glover, Iain Davidson, Alessandro Contini and Alessandro Zatti), Palo Alto Networks (especially James Holland, Matt Ford, Matt Smith and Mathew Chase), Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

3 New Vulnerabilities Affect OT Products from German Companies Festo and CODESYS

Researchers have disclosed details of three new security vulnerabilities affecting operational technology (OT) products from CODESYS and Festo that could lead to source code tampering and denial-of-service (DoS). The vulnerabilities, reported by Forescout Vedere Labs, are the latest in a long list of flaws collectively tracked under the name OT:ICEFALL. "These issues exemplify either an

“This Connection Is Not Private” – What it Means and How to Protect Your Privacy

By: McAfee

Have you ever been browsing online and clicked a link or search result that took you to a site that triggers a “your connection is not private” or “your connection is not secureerror code? If you’re not too interested in that particular result, you may simply move on to another result option. But if you’re tempted to visit the site anyway, you should be sure you understand what the warning means, what the risks are, and how to bypass the error if you need to.   

What does “this connection is not private” mean?

A “your connection is not private” error means that your browser cannot determine with certainty that a website has safe encryption protocols in place to protect your device and data. You can bump into this error on any device connected to the internet — computer, smartphone, or tablet.  

So, what exactly is going on when you see the “this connection is not private” error?  

For starters, it’s important to know that seeing the error is just a warning, and it does not mean any of your private information is compromised. A “your connection is not privateerror means the website you were trying to visit does not have an up-to-date SSL (secure sockets layer) security certificate. 

Website owners must maintain the licensing regularly to ensure the site encryption capabilities are up to date. If the website’s SSL certificate is outdated, it means the site owners have not kept their encryption licensing current, but it doesn’t necessarily mean they are up to no good. Even major websites like LinkedIn have had momentary lapses that would throw the error. LinkedIn mistakenly let their subdomain SSL certificates lapse.  

In late 2021, a significant provider of SSL certificates, Let’s Encrypt, went out of business. When their root domain officially lapsed, it created issues for many domain names and SSL certificates owned by legitimate companies. The privacy error created problems for unwitting businesses, as many of their website visitors were rightfully concerned about site security.  

While it does not always mean a website is unsafe to browse, it should not be ignored. A secure internet connection is critical to protecting yourself online. Many nefarious websites are dangerous to visit, and this SSL certificate error will protect you from walking into them unaware.   

SSL certification standards have helped make the web a safer place to transact. It helps ensure online activities like paying bills online, ordering products, connecting to online banking, or keeping your private email accounts safe and secure. Online security continues to improve with a new Transport Layer Security (TLS) standard, which promises to be the successor protocol to SSL. 

So be careful whenever visiting sites that trigger the “connection is not private” error, as those sites can potentially make your personal data less secure and make your devices vulnerable to viruses and malware 

Note: The “your connection is not private” error is Google Chrome‘s phrasing. Microsoft Edge or Mozilla Firefox users will instead see a “your connection is not secure” error as the warning message.   

How to fix the “connection is not private” error

If you feel confident that a website or page is safe, despite the warning from your web browser, there are a few things you can do to troubleshoot the error.  

  • Refresh the page. In some cases, the error is just a momentary glitch. Try reloading the page to rule out a temporary error.  
  • Close browser and reopen. Closing and reopening your web browser might also help clear a temporary glitch.  
  • If you’re on public WiFi, think twice. Hackers often exploit public WiFi because their routers are usually not as secure or well-maintained for security. Some public WiFi networks may not have an SSL connection, or they may limit your access to websites. You can safely browse more securely in public spaces if you have an antivirus software or virtual private network (VPN) solution. 
  • Use “Incognito” mode. The most used browsers (Google Chrome browser, Mac‘s Safari, Mozilla Firefox, and Microsoft Edge) offer an “Incognito mode” that lets you browse without data collecting in your history or cache. Open the site in a new incognito window and see if the error still appears.  
  • Clear the cache on your browser. While cookies make browsing the web more convenient and personalized, they also can hold on to sensitive information. Hackers will take advantage of cached data to try and get passwords, purchase information, and anything else they can exploit. Clear browsing data before going to a site with the “connection is not secure” error to help limit available data for hackers 
  • Check the computer’s date and time. If you frequently see the “connection is not private” error, you should check and ensure your computer has the accurate time and date. Your computer’s clock can sometimes have time and date stamp issues and get glitchy in multiple ways. If it’s incorrect, adjust the date and set the time to the correct settings.  
  • Check your antivirus software. If your antivirus software is sensitive, you may have to disable it momentarily to bypass the error. Antivirus software protects you, so you should be careful to remember to turn the software back on again after you’ve bypassed the error.  
  • Be sure your browsers and operating systems are up to date. You should always keep your critical software and the operating system fully updated. An outdated browser can start getting buggy and can increase the occurrence of this kind of error.  
  • Research the website. Do a quick search for the company of the website you wish to visit and make sure they are a legitimate business. You can search for reviews, Better Business Bureau ratings, or check for forums to see if others are having the same issue. Be sure you are spelling the website address correctly and that you have the correct URL for the site. Hackers can take advantage of misspellings or alternative URLs to try and snare users looking for trusted brands. 
  • If it’s not you, it’s them. If you’ve tried all the troubleshooting techniques above and you still see the error, the problem is likely coming from the site itself. If you’re willing to take your chances (after clearing your browser’s cache), you can click the option to “proceed to the domain,” though it is not recommended. You may have to choose “advanced settings” and click again to visit the site.   

Remember, you are taking your chances anytime you ignore an error. As we mentioned, you could leave yourself vulnerable to hackers after your passwords, personal information, and other risks.  

How to protect your privacy when browsing online

Your data and private information are valuable to hackers, so they will continue to find new ways to try and procure it. Here are some ways to protect yourself and your data when browsing online.  

  • Antivirus solutions are, hands down, your best line of protection against hacking. Solutions like McAfee+ Ultimate offer all the tools you need to secure your data and devices.  
  • Use strong passwords and two-factor authentication when available. 
  • Delete unused browser extensions (or phone apps) to reduce access. 
  • Always keep your operating system and browsers up-to-date. You can open system preferences and choose to update your system automatically. 
  • Use a secure VPN solution to shield your data when browsing. 
  • Use your favorite browser’s incognito mode to reduce the data connected to your devices. 
  • Remove any 3rd party apps from your social media accounts — especially if you’ve recently taken a Facebook quiz or similar (also, don’t take Facebook quizzes). 
  • Engage the highest privacy settings in each of your browsers. 
  • Always check the address bar for HTTPS before sharing credit cards or other sensitive data on a website. 
  • Share less personal and private information on social media.  

Discover how McAfee keeps you and your data safe from threats

As we continue to do more critical business online, we must also do our best to address the risks of the internet’s many conveniences.  

A comprehensive cybersecurity tool like McAfee+ Ultimate can help protect you from online scams, identity theft, and phishing attempts, and ensure you always have a secure connection. McAfee helps keep your sensitive information out of the hands of hackers and can help you keep your digital data footprints lighter with personal data cleanup.  

With McAfee’s experts on your side, you can enjoy everything the web offers with the confidence of total protection. 

The post “This Connection Is Not Private” – What it Means and How to Protect Your Privacy appeared first on McAfee Blog.

Your OT Is No Longer Isolated: Act Fast to Protect It

Not too long ago, there was a clear separation between the operational technology (OT) that drives the physical functions of a company – on the factory floor, for example – and the information technology (IT) that manages a company's data to enable management and planning.  As IT assets became increasingly connected to the outside world via the internet, OT remained isolated from IT – and the

RSA Conference® 2022 Security Operations Center Findings Report

NetWitness and Cisco released the third annual Findings Report from the RSA Conference® 2022 Security Operations Center (SOC).

The RSA Conference® SOC analyzes the Moscone Center wireless traffic, which is an open network during the week of the Conference.

The role of the SOC at RSA Conference is an educational exhibit sponsored by NetWitness and Cisco. It has elements of a SOC like you would create to protect an organization. The RSAC SOC coordinated with the Moscone Center Network Operation Center for a SPAN of the network traffic from the Moscone Center wireless network. In the SOC, NetWitness had real time visibility of the traffic traversing the wireless network. Cisco provided automated malware analysis, threat intelligence, DNS visibility and Intrusion Detection; brought together with SecureX.

The goal of the RSAC SOC is to use technology to educate conference attendees about what happens on a typical wireless network. The education comes in the form of daily SOC tours and an RSA Conference® session. You can watch the replay of the ‘EXPOSURE: The 3rd Annual RSAC SOC Report’ session here.

The findings report addresses several security topics, including:

  • Encrypted vs. Unencrypted network traffic
  • Cleartext Usernames and Passwords
  • Voice over IP
  • Threat Hunting
  • Malware Analysis, through the NetWitness® integration
  • Malicious Behavior
  • Domain Name Server (DNS)
  • Automate, Automate
  • Intrusion Detection
  • Firepower Encrypted Visibility Engine (EVE)
  • Firepower and NetWitness® Integration

Look forward to seeing you in 2023!

Download the RSA Conference® 2022 Security Operations Center Findings Report here.

Acknowledgements: Our appreciation to those who made the RSAC SOC possible.

NetWitness Staff

Percy Tucker

Steve Fink

Bart Stump

Dave Glover

Cisco Staff

Jessica Bair Oppenheimer – Cisco SOC Manager

Ian Redden – Team Lead & Integrations

Aditya Sankar / Ben Greenbaum – SecureX & Malware Analytics

Alejo Calaoagan / Christian Clasen – Cisco Umbrella

Dinkar Sharma / Seyed Khadem-Djahaghi – Cisco Secure Firewall

Matt Vander Horst – SecureX Orchestration

Doug Hurd – Partnerships

Hardware Support

Eric Kostlan

Navin Sinha

Zohreh Khezri

Eric Goodwin

Gabe Gilligan and the amazing staff at XPO Digital!


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Secure Your Hybrid Workforce Using These SOC Best Practices

Hybrid Workforce is here to stay

Just a few years ago when the topic of supporting offsite workers arose, some of the key conversation topics were related to purchase, logistics, deployment, maintenance and similar issues. The discussions back then were more like “special cases” vs. today’s environment where supporting workers offsite (now known as the hybrid workforce) has become a critical mainstream topic.

Figure 1: Security challenges in supporting the hybrid workforce

Now with the bulk of many organization’s workers off-premise, the topic of security and the ability of a security vendor to help support an organization’s hybrid workers has risen to the top of the selection criteria.  In a soon to be released Cisco endpoint survey, it’s not surprising that the ability of a security vendor to make supporting the hybrid workforce easier and more efficient was the key motivating factor when organizations choose security solutions.

Figure 2: Results from recent Cisco Survey

Best Practices complement your security tools

Today, when prospects and existing customers look at Cisco’s ability to support hybrid workers with our advanced security solution set and open platform, it’s quite clear that we can deliver on that promise. But, yes, good tools make it easier and more efficient, but the reality is that running a SOC or any security group, large or small, still takes a lot of work. Most organizations not only rely on advanced security tools but utilize a set of best practices to provide clarity of roles, efficiency of operation, and for the more prepared, have tested these best practices to prove to themselves that they are prepared for what’s next.

Give this a listen!

Knowing that not all organizations have this degree of security maturity and preparedness, we gathered a couple of subject matter experts together to discuss 5 areas of time-tested best practices that, besides the advanced tools offered by Cisco and others, can help your SOC (or small security team) yield actionable insights and guide you faster, and with more confidence, toward the outcomes you want.

In this webinar you will hear practical advice from Cisco technical marketing and a representative from our award winning Talos Threat Intelligence group, the same group who have created and are maintaining breach defense in partnership with Fortune 500 Security Operating Centers (SOC) around the globe.

Figure 3: Webinar Speakers

You can expect to hear our 5 Best Practices recommendations on the following topics;

  1. Establishing Consistency – know your roles and responsibilities without hesitation.
  2. Incident Response Plan – document it, share it and test it with your stakeholders.
  3. Threat Hunting – find out what you don’t know and minimize the threat.
  4. Retro Learning – learn from the past and be better prepared.
  5. Unifying stakeholders – don’t go it alone.

Access this On-Demand Webinar now!

Check out our webinar to find out how you can become more security resilient and be better prepared for what’s next.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

4 Key Takeaways from "XDR is the Perfect Solution for SMEs" webinar

Cyberattacks on large organizations dominate news headlines. So, you may be surprised to learn that small and medium enterprises (SMEs) are actually more frequent targets of cyberattacks. Many SMEs understand this risk firsthand.  In a recent survey, 58% of CISOs of SMEs said that their risk of attack was higher compared to enterprises. Yet, they don't have the same resources as enterprises –

Hands-on Review: Stellar Cyber Security Operations Platform for MSSPs

As threat complexity increases and the boundaries of an organization have all but disappeared, security teams are more challenged than ever to deliver consistent security outcomes. One company aiming to help security teams meet this challenge is Stellar Cyber.  Stellar Cyber claims to address the needs of MSSPs by providing capabilities typically found in NG-SIEM, NDR, and SOAR products in their

Black Hat USA 2022: Creating Hacker Summer Camp

In part one of this issue of our Black Hat USA NOC (Network Operations Center) blog, you will find:

  • Adapt and Overcome
  • Building the Hacker Summer Camp network, by Evan Basta
  • The Cisco Stack’s Potential in Action, by Paul Fidler
  • Port Security, by Ryan MacLennan, Ian Redden and Paul Fiddler
  • Mapping Meraki Location Data with Python, by Christian Clausen

Adapt and Overcome, by Jessica Bair Oppenheimer

In technology, we plan as best as we can, execute tactically with the resources and knowledge we have at the time, focus on the strategic mission, adjust as the circumstances require, collaborate, and improve; with transparency and humility. In short, we adapt and we overcome. This is the only way a community can have trust and grow, together. Every deployment comes with its challenges and Black Hat USA  2022 was no exception. Looking at the three Ps (people, process, platform), flexibility, communication, and an awesome Cisco platform allowed us to build and roll with the changes and challenges in the network. I am proud of the Cisco Meraki and Secure team members and our NOC partners.

The Buck Stops Here. Full stop. I heard a comment that the Wi-Fi service in the Expo Hall was “the worst I’ve ever experienced at a conference.” There were a lot of complaints about the Black Hat USA 2022 Wi-Fi network in the Expo Hall on 10 August. I also heard a lot of compliments about the network. Despite that the Wi-Fi and wired network was generally very good the most of the conference, and before my awesome colleagues share the many successes of designing, building, securing, managing, automating and tearing down one of the most hostile networks on Earth; I want to address where and how we adapted and what we did to fix the issues that arose, as we built an evolving, enterprise class network in a week.

First, a little history of how Cisco came to be the Official Network Provider of Black Hat USA 2022, after we were already successfully serving as the Official Mobile Device Management, Malware Analysis and Domain Name Service Provider. An Official Provider, as a Premium Partner, is not a sponsorship and no company can buy their way into the NOC for any amount of money. From the beginning of Black Hat 25 years ago, volunteers built the network for the conference rather than using the hotel network. This continues today, with the staff of Black Hat hand selecting trusted partners to build and secure the network.

After stepping up to help Black Hat with the network at Black Hat Asia, we had only two and a half months until Black Hat USA, in Las Vegas, 6-11 August 2022. Cisco was invited to build and secure the network for the much larger Black Hat USA flagship conference, affectionally known as ‘Hacker Summer Camp’, as the Official Network Equipment Provider. There were few other options, given the short timeframe to plan, supply chain difficulties in procuring the networking gear and assembling a team of network engineers, to join the Cisco Secure engineers and threat hunters. All the work, effort and loaned equipment were a gift from Cisco Meraki and Cisco Secure to the community.

We were proud to collaborate with NOC partners Gigamon, IronNet, Lumen, NetWitness and Palo Alto Networks; and work with Neil ‘Grifter’ Wyler, Bart Stump, Steve Fink and James Pope of Black Hat. We built strong bonds of familial ties over the years of challenges and joint successes. I encourage you to watch the replay of the Black Hat session An Inside Look at Defending the Black Hat Network with Bart and Grifter.

In June 2022, adjacent to Cisco Live Americas, the NOC partners met with Black Hat to plan the network. Cisco Meraki already donated 45 access points (APs), seven MS switches, and two Meraki MX security and SD-WAN appliances to Black Hat, for regional conferences.

I looked at the equipment list from 2019, that was documented in the Bart and Grifter presentation, and estimated we needed to source an additional 150 Cisco Meraki MR AP (with brackets and tripods) and 70+ Cisco Meraki MS switches to build the Black Hat USA network in just a few weeks. I wanted to be prepared for any changes or new requirements on-site. We turned to JW McIntire, who leads the network operations for Cisco Live and Cisco Impact. JW was enthusiastically supportive in helping identify the equipment within the Cisco Global Events inventory and giving his approval to utilize the equipment. A full thanks to those who made this possible is in the Acknowledgements below.

Over the week-long conference, we used all but three of the switches and all the APs.

We worked off the draft floor plans from 13 June 2022, for the training rooms, briefing rooms, support rooms, keynote rooms, conference public areas, registration, and of course the Expo Hall: over two million square feet of venue. We received updated plans for the training rooms, Expo Hall and support needs 12 days before we arrived on site. There were about 60 training rooms planned, each requiring their own SSID and Virtual Local Area Network, without host isolation. The ‘most access possible’ was the requirement, to use real world malware and attacks, without attacking other classrooms, attendees, sponsors or the rest of the world. Many of the training rooms changed again nine days before the start of the network build, as the number confirmed students rose or fell, we adjusted the AP assignments.

For switching allocation, we could not plan until we arrived onsite, to assess the conference needs and the placement of the cables in the walls of the conference center. The Black Hat USA network requires that every switch be replaced, so we always have full control of the network. Every network drop to place an AP and put the other end of a cable into the new switches in the closets costs Black Hat a lot of money. It also requires the time of ‘Doc’ – the lead network engineer at the Mandalay Bay, to whom we are all deeply grateful.

The most important mission of the NOC is Access, then Security, Visibility, Automation, etc. People pay thousands of dollars to attend the trainings and the briefings; and sponsors pay tens of thousands for their booth space. They need Access to have a successful conference experience.

With that background, let’s discuss the Wi-Fi in the Expo Hall. Cisco has a service to help customers do a methodical predictive survey of their space for the best allocation of their resources. We had 74 of the modern MR57 APs for the conference and prioritized their assignment in the Expo Hall and Registration. Specifications for MR57s include a 6 GHz 4×4:4, 5 GHz 4×4:4 and 2.4 GHz 4×4:4 radio to offer a combined tri–radio aggregate frame rate of 8.35 Gbps, with up to 4,804 Mbps in 6GHz band, 2,402 Mbps 5 GHz band and, 1,147 Mbps / 574 Mbps in the 2.4 GHz band based on 40MHz / 20MHz configuration. Technologies like transmit beamforming and enhanced receive sensitivity allow the MR57 to support a higher client density than typical enterprise-class access points, resulting in better performance for more clients, from each AP.

We donated top of the line gear for use at Black Hat USA. So, what went wrong on the first day in the Expo Hall? The survey came back with the following map and suggestions of 34 MR57s in the locations below. Many assumptions were made in pre-planning, since we did not know the shapes, sizes and materials of the booths that would be present inside the allocated spaces. We added an AP in the Arsenal Lab on the far-left side, after discussing the needs with Black Hat NOC leadership.

In the Entrance area (Bayside Foyer) of the Expo Hall (bottom of the map), you can see that coverage drops. There were four MR57s placed in the Bayside Foyer for iPad Registration and attendee Wi-Fi, so they could access their emails and obtain their QR code for scanning and badge printing.

I believed that would be sufficient and we allocated other APs to the rest of the conference areas. We had positive reports on coverage in most areas of the rest of the conference. When there were reported issues, we quickly deployed Cisco Meraki engineers or NOC technical associates. to confirm and were able to make changes in radio strength, broadcasting bands, SSIDs, etc. to fine tune the network. All while managing a large amount of new or changing network requirements, as the show expanded due to its success and was fully hybrid, with the increased streaming of the sponsored sessions, briefings and keynotes and remote Registration areas in hotels.

As the attendees queued up in mass outside of the Expo Hall on the morning of 10 August, the number of attendee devices connecting to the four MR57s in the foyer grew into the thousands. This degraded the performance of the Registration network. We adjusted by making the APs closest to the registration iPads only dedicated to the Registration. This fixed Registration lag but reduced the performance of the network for the attendees, as they waited to rush into the Expo Hall. From the site survey map, it is clear that the replacement APs were now needed in the Entrance for a connected mesh network, as you entered the Expo Hall from the Bayside foyer. Here lies Lesson 1: expected people flow should be taken into account in the RF design process.

Another challenge the morning of the Expo Hall opening was that five of the 57MRs inside were not yet connected to the Internet when it opened at 10am. The APs were installed three days earlier, then placed up on tripods the afternoon prior. However, the volume of newly requested network additions, to support the expanded hybrid element required the deployment of extra cables and switches. This cascaded down and delayed the conference center team from finalizing the Expo Hall line drops until into the afternoon. Lesson 2: Layer 1 is still king; without it, no Wi-Fi or power.

A major concern for the sponsors in their booths was that as the Expo Hall filled with excited attendees, the connectivity of the 900+ iOS devices used for lead management dropped. Part of this congestion was thousands of 2.4Ghz devices connected to the Expo Hall network. We monitored this and pushed as many as possible to 5Ghz, to relieve pressure on those airwaves. Lesson 3: With Wi-Fi 6e now available in certain countries, clean spectrum awaits, but our devices need to come along as well.

We also adjusted in the Cisco Meraki Systems Manager Mobile Device Management, to allow the iPhones for scanning to connect securely to the Mandalay Bay conference network, while still protecting your personal information with Cisco SecureX, Security Connector and Umbrella DNS, to ensure access as we expanded the network capacity in the Expo Hall. Lesson 4: Extreme security by default where you can control the end point. Do not compromise when dealing with PPI.

Using the Cisco Meraki dashboard access point location heat map and the health status of the network, we identified three places in the front of the Expo Hall to deploy additional drops with the Mandalay Bay network team. Since adding network drops takes some time (and costs Black Hat extra money), we took immediate steps to deploy more MS120 switches and eight additional APs at hot spots inside the Expo Hall with the densest client traffic, at no expense to Black Hat. Lesson 5: Footfall is not only about sales analytics. It does play a role into RF planning. Thereby, allowing for a data-driven design decision.

Above is the heat map of the conference Expo Hall at noon on 11 August. You can see the extra APs at the Entrance of the Expo Hall, connected by the three drops set up by the Mandalay Bay to the Cisco Meraki switches in the closets. Also, you can see the clusters of APs connected to the extra MS120 switches. At the same time, our lead Meraki engineer, Evan Basta, did a speed test from the center left of the Expo Hall.

As I am sharing lessons learned, I want to provide visibility to another situation encountered. On the afternoon of 9 August, the last day of training, a Black Hat attendee walked the hallways outside several training rooms and deliberately attacked the network, causing students and instructors not to be able to connect to their classes. The training rooms have host isolation removed and we designed the network to provide as much safe access as possible. The attacker took advantage of this openness, spoofed the SSIDs of the many training rooms and launched malicious attacks against the network.

We must allow real malware on the network for training, demonstrations and briefing sessions; while protecting the attendees from attack within the network from their fellow attendees and prevent bad actors from using the network to attack the Internet. It is a critical balance to ensure everyone has a safe experience, while still being able to learn from real world malware, vulnerabilities and malicious websites.

The attack vector was identified by a joint investigation of the NOC teams, initiated by the Cisco Meraki Air Marshal review. Note the exact same MAC addresses of the spoofed SSIDs and malicious broadcasts. A network protection measure was suggested by the Cisco Meraki engineering team to the NOC leadership. Permission was granted to test on one classroom, to confirm it stopped the attack, while not also disrupting the training. Lesson 6: The network-as-a-sensor will help mitigate issues but will not fix the human element.

Once confirmed, the measure was implemented network wide to return resiliency and access. The NOC team continued the investigation on the spoofed MAC addresses, using syslogs, firewall logs, etc. and identified the likely app and device used. An automated security alerting workflow was put in place to quickly identify if the attacker resumed/returned, so physical security could also intervene to revoke the badge and eject the attacker from the conference for violation of the Black Hat code of conduct.

I am grateful to the 20+ Cisco engineers, plus Talos Threat Hunters, deployed to the Mandalay Bay Convention Center, from the United States, Canada, Qatar and United Kingdom who made the Cisco contributions to the Black Hat USA 2022 NOC possible. I hope you will read on, to learn more lessons learned about the network and the part two blog about Cisco Secure in the NOC

Building the Hacker Summer Camp Network, by Evan Basta

It was the challenge of my career to take on the role of the lead network engineer for Black Hat USA. The lead engineer, who I replaced, was unable to travel from Singapore, just notifying us two weeks before we were scheduled to deploy to Las Vegas.

We prepared as much as possible before arrival, using the floor plans and the inventory of equipment that was ordered and on its way from the warehouse. We met with the Black Hat NOC leadership, partners and Mandalay Bay network engineers weekly on conference calls, adjusted what we could and then went to Black Hat, ready for a rapidly changing environment.

Our team was able to remain flexible and meet all the Black Hat requests that came in, thanks to the ability of the Cisco Meraki dashboard to manage the APs and switches from the cloud. Often, we were configuring the AP or switch as it was being transported to the location of the new network segment, laptop in hand.

For the construction of the Black Hat network, let’s start with availability. Registration and training rooms had priority for connectivity. iPads and iPhones needed secure connectivity to scan QR codes of registering attendees. Badge printers needed hardline access to the registration system. Training rooms all needed their separate wireless networks, for a safe sandbox for network defense and attack. Thousands of attendees attended, ready to download and upload terabytes of data through the main conference wireless network. All the keynotes, briefings and sponsored sessions needed to be recorded and streamed. Below are all the APs stacked up for assignment, including those assigned to the Expo Hall in the foreground.

All this connectivity was provided by Cisco Meraki access points and switches along with integrations into SecureX, Umbrella, and other Cisco platforms. We fielded a literal army of engineers to stand up the network in six days.

Let’s talk security and visibility. For a few days, the Black Hat network is one of the most hostile in the world. Attendees learn new exploits, download new tools, and are encouraged to test them out. Being able to drill down on attendee connection details and traffic was instrumental in ensuring attendees followed the Black Hat code of conduct.

On the wireless front, we made extensive use of our Radio Profiles to reduce interference by tuning power and channel settings. We enabled band steering to get more clients on the 5GHz bands versus 2.4GHz and watched the Location Heatmap like a hawk looking for hotspots and dead areas. Handling the barrage of wireless change requests – enable or disabling this SSID, moving VLANs (Virtual Local Area Networks), enabling tunneling for host isolation on the general conference Wi-Fi, mitigating attacks – was a snap with the Cisco Meraki Dashboard.

Floor Plan and Location Heatmap

On the first day of NOC setup, the Cisco team worked with the Mandalay Bay networking engineers to deploy core switches and map out the switches for the closets, according to the number of cables coming in from the training and briefing rooms. The floor plans in PDF were uploaded into the Meraki Dashboard; and with a little fine tuning, aligned perfectly with the Google Map.

Cisco Meraki APs were then placed physically in the venue meeting and training rooms. Having the APs named, as mentioned above, made this an easy task. This enabled accurate heatmap capability.

The Location Heatmap provided the capability to drill into the four levels of the conference, including the Expo Hall, lower level (North Conference Center), 2nd Floor and 3rd Floor. Below is the view of the entire conference.

Network Visibility

We were able to monitor the number of connected clients, network usage, the people passing by the network and location analytics, throughout the conference days. We provided visibility access to the Black Hat NOC management and the technology partners, along with full API (Application Programming Interface) access, so they could integrate with the network platform.

Alerts

Cisco Meraki alerts provide notification when something happens in the Dashboard. Default behavior is to be emailed when something happens. Obviously, emails got lost in the noise, at Black Hat Asia 2022, we made a web hook in Cisco SecureX orchestration to be able to consume Cisco Meraki alerts and send it to Slack (the messaging platform within the Black Hat NOC), using the native template in the Cisco Meraki Dashboard.

The alert kicked off if an AP or a switch lost connectivity. At Black Hat USA, we modified this to text alerts, as these were a priority. In the following example, we knew at the audio-visual team unplugged a switch to move it and were able to deploy technical associates from the NOC to ensure it was reconnected properly.

The Cisco Stack’s Potential in Action, by Paul Fidler

As we planned for Black Hat USA, the number of iOS devices to manage and protect rose from 300+ to over 900, and finally over 1,000.

The first amongst these was the use of the Cisco Meraki API. We were able to import the list of MAC addresses of the Cisco Meraki APs, to ensure that the APs were named appropriately and tagged, using a single source of truth document shared with the NOC management and partners, with the ability to update en masse at any time. Over three quarters of the AP configuration was able to be completed before arriving on site. 

Meraki Systems Manager – Initial device enrollment and provisioning

We’ll start with the positive: When it comes to creating the design to manage X number of devices, it doesn’t matter if it’s 10 devices, or 10,000… And this was certainly true for Black Hat. The requirements were straightforward:

  • Have several apps installed on devices, which each had a particular role
  • Have a passcode policy on some devices
  • Use home screen layout to help the conferences associates know which app to use
  • Use Name synchronization, so that the name of the device (on a label on the back) was also in the SM dashboard and under Settings > General > About
  • Use restrictions to prevent modification of accounts, Wi-Fi and prevention of screenshots (to protect the personal information of attendees)
  • Prevent the devices from having their management profile removed
  • Ensure that the devices could connect to the initial WPA based network, but then also to the 802.1x based network (using certificates)

All this configuration was done ahead of time in the Meraki Dashboard, almost a month before the conference.

Now the negatives: Of all the events that the company who supplies the devices attends; Black Hat is the only one where devices are managed. Using mass deployment techniques like Apple’s Automated Device Enrollment, therefore, is not used. The company pre-stages the devices using Apple Configurator, which allows for both Supervision and Enrollment.

It became more difficult: Whilst the pre-staged devices were fine (other than having to handle all 1,000+ devices to turn Wi-Fi to Autojoin and opening the Meraki Systems Manager app [to give us Jailbreak and Location visibility]), an extra 100 devices were supplied that were not enrolled. As these devices were enrolled elsewhere from the prior Black Hat conferences, a team of around 10 people pitched in to restore each device, adding the Wi-Fi profile and then enrollment.

Fortunately, Apple Configurator can create Blueprints:

A Blueprint is essential a list of actions, in a particular order, that Apple Configurator can run through autonomously

But why did it need a team of ten? There were several limitations:

  • Number of USB ports on a computer
  • Number in USB-A to USB-C converters (the devices were supplied with USB-A cables)
  • Downloading of the restore image (although Airdrop was used to distribute the image quickly)
  • Speed of the devices to do the restore (the actual Wi-Fi and enrollment steps take less than 10 seconds)

However, the task was completed in around three hours, given the limitations! If there’s one lesson to learn from this: Use Apple’s Automated Device Enrollment. 

Command vs Profile

One of the slight nuances of Apple Mobile Device Manager is the difference between a ‘command’ and ‘profile’. Within the Meraki Systems Manager dashboard, we don’t highlight the difference between the two. But it’s important to know. A ‘profile’ is something that remains on the device: If there’s a state change on the device, or the user attempts something, the profile is always on there. However, a ‘command’ is exactly that: It’s sent once, and if something changes in the future, then the command won’t have any effect.

So, why is this highlighted here? Well, in some instances, some apps weren’t pushed successfully: You’d see them on the device, but with a cloud icon next to them. The only way to resolve this would be to remove the app, and then repost it. But we were also using a Homepage Layout, which put various apps on various pages. Pushing the app would result in it appearing on the wrong page. To ensure a consistent user experience, we would push the homepage profile again to devices to take effect.

Meraki BSSID Geolocation

We’ve mentioned this before in past Black Hat events, but, given the scale of The Mandalay Bay, it’s important to circle back to this. GPS is notoriously unreliable in conference centers like this, but it was still important to know where devices are. Because we’d ensured the correct placement of the Access Points on the floor plan, and because Systems Manager was in the same organisation, it ensured that the devices reported their location accurately! If one were to ‘walk’ we could wipe it remotely to protect your personal details.

Protection of PPI (Protected Private Information)

When the conference Registration closed on the last day and the Business Hall Sponsors all returned their iPhones, we were able to remotely wipe all the devices, removing all attendee data, prior to returning to the device contractor.

APIs

As mentioned elsewhere in this blog, this was a conference of APIs. Just the sheer scale of the conference resulted in the use of APIs. Various API projects included:

  • Getting any ports down events with the getNetworkEvents API call
  • Getting the port status of switches with a given tag with getDeviceSwitchPorts
  • Turning off all the Training SSIDs in one go with getNetworkWirelessSsids and updateNetworkWirelessSsids
  • From a CSV, claiming devices into various networks with tags being applied with claimNetworkDevices and updateDevice (to name it)
  • Creation of networks from CSV with createOrganizationNetwork
  • Creation of SSIDs from CSV with updateNetworkWirelessSsids: This was to accommodate the 70+ SSIDs just for training! This also included the Tag for the SSIDs
  • Adding the Attendee SSID to every training network with updateNetworkWirelessSsids: This was due to us having several networks to accommodate the sheer number of SSIDs
  • Amending the Training SSIDs with the correct PSK using updateNetworkWirelessSsids

From a Systems Manager perspective, there were:

  • The renaming of devices from CSV: Each of the devices had a unique code on the back which was NOT the serial number. Given that it’s possible to change the name of the device on the device with Systems Manager, this meant that the number could be seen on the lock screen too. It also made for the identical of devices in the Systems Manager dashboard quick and easy too. The last thing you want is 1,000 iPhones all called “iPhone!”

Port Security, by Ryan MacLennan, Ian Redden and Paul Fidler

During the Cisco Meraki deployment, we had a requirement to shutdown ports as they went inactive to prevent malicious actors from removing an official device and plugging in theirs. This ability is not directly built into the Cisco Meraki dashboard, so we built a workflow for the Black Hat customer, using the Cisco Meraki API. To achieve this, we created a small python script that was hosted as an AWS (Amazon Web Services) Lambda function and listened for webhooks from the Cisco Meraki Dashboard when a port went down. Initially this did solve our issue, but it was not fast enough, about five minutes from the time the port went down/a cable was unplugged. This proof of concept laid the groundwork to make the system better. We migrated from using a webhook in the Cisco Meraki Dashboard to using syslogs. We also moved the script from Lambda to a local server. Now, a python script was scanning for syslogs from the switches and when it saw a port down log, it will immediately call out to the locally hosted python script that calls out to the Cisco Meraki API and disabled the port.

This challenge had many setbacks and iterations while it was being built. Before we settled on listening for syslogs, we tried using SNMP polling. After figuring out the information we needed to use, we found that trying to poll SNMP would not work because SNMP would not report the port being down if the switch to another device was fast enough. This led us to believe we might not be able to do what we needed in a timely manner. After some deliberation with fellow NOC members, we started working on a script to listen for the port down syslogs. This became the best solution and provided immediate results. The ports would be disabled within milliseconds of going downThe diagram below shows an example of what will happen: If the Workshop Trainer’s device is un-plugged and a Threat Actor tries to plug into their port, a syslog is sent from the Cisco Meraki switch to our internal server hosting the python listener. Once the python script gets the request, it sends an API call to the Cisco Meraki API gateway and the Cisco Meraki cloud then tells the switch to disable the port that went down very briefly.

However, what was apparent was that the script was working TOO well! As discussed, several times already in this blog, the needs of the conference were very dynamic, changing on a minute-by-minute basis. This was certainly true in Registration and with the Audio-Visual teams. We discovered quickly that legitimate devices were being unplugged and plugged in to various ports, even if just temporarily. Of course, the script was so quick that it disabled ports before the users in registration knew what was happening. This resulted in NOC staff having to re-enable ports. So, more development was done. The task? For a given network tag, show the status of all the ports of all the switches. Given the number of switches at the conference, tags were used to reduce the amount of data being brought back, so it was easier to read and manage.

Mapping Meraki Location Data with Python, by Christian Clausen

In the blog post we published after Black Hat Asia 2022, we provided details on how to collect Bluetooth and Wi-Fi scanning data from a Meraki organization, for long-term storage and analysis. This augmented the location data provided by the Meraki dashboard, which is limited to 24-hours. Of course, the Meraki dashboard does more than just provide location data based on Wi-Fi and Bluetooth scanning from the access points. It also provides a neat heatmap generated from this data. We decided to take our long-term data project a step further and see if we could generate our own heatmap based on the data collected from the Meraki Scanning API.

The Folium Python library “builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the leaflet.js library” to provide all kinds of useful mapping functions. We can take location data (longitude and latitude) and plot them on lots of built-in map tiles from the likes of OpenStreetMap, MapBox, Stamen, and more. Among the available Folium plugins is a class called “HeatMapWithTime.” We can use this to plot our Meraki location data and have the resulting map animate the client’s movements.

Step 1: Collect the data

During the previous conference, we used a Docker container containing a couple Flask endpoints connected via ngrok to collect the large amount of data coming from Meraki. We re-used the same application stack this time around, but moved it out from behind ngrok into our own DMZ with a public domain and TLS (Transport Layer Security) certificate, to avoid any bandwidth limitations. We ended up with over 40GB of JSON data for the conference week to give to Black Hat!

Step 2: Format the data

Folium’s HeatMapWithTime plugin requires a “list of lists of points of time.” What we wanted to do is generate an ordered dictionary in Python that is indexed by the timestamp. The data we received from the Meraki API was formatted into “apFloor” labels provided by the admin when the access points are placed. Within each “apFloor” is a list of “observations” that contain information about individual clients spotted by the AP scanners, during the scanning interval.

Here’s what the data looked like straight from the Meraki API, with some dummy values:

The “observations” list is what we wanted to parse. It contains lots of useful information, but what we wanted is MAC address, latitude and longitude numbers, and timestamp:

We used Python to iterate through the observations and to eliminate the data we did not use. After a lot of data wrangling, de-duplicating MAC addresses, and bucketizing the observations into 15-minute increments, the resulting data structure looks like this:

Now that the data is in a usable format, we can feed it into Folium and see what kind of map we get back!

Step 3: Creating the map

Folium is designed to project points onto a map tile. Map tiles can show satellite images, streets, or terrain, and are projected onto a globe. In our case, however, we want to use the blueprint of the conference center. Folium’s allows for an image’s overlay to be added, and the bounds of the image to be set by specifying the coordinates for the top-left and bottom-right corners of image. Luckily, we can get this from the Meraki dashboard.  

This enabled us to overlay the floorplan image on the map. Unfortunately, the map tiles themselves limit the amount of zoom available to the map visualization. Lucky for us, we did not care about the map tile now that we have the floorplan image. We passed “None” as the map tile source and finally received our data visualization and saved the map as an HTML file for Black Hat leadership.

We opened the HTML file, and we had an auto-playing heatmap that lets us zoom at far in as we want:

Detail at 1:30pm PT, on 10 August 2022 below.

To improve this going forward, the logical next steps would be to insert the data into a database for the Black Hat conference organizers, for quick retrieval and map generation. We can then start looking at advanced use-cases in the NOC, such as tracking individual a MAC address that may be producing suspicious traffic, by cross-referencing data from other sources (Umbrella, NetWitness, etc.).

——————————————————————————————————

Network Recovery, by Jessica Bair Oppenheimer

Once the final session ended, the Expo Hall closed and the steaming switched off, dozens of conference associates, technical associates, Mandalay Bay engineers and Cisco staff spread out through two million square feet and numerous switching closets to recover the equipment for inventory and packing. It took less than four hours to tear down a network that was built and evolved 11 days prior. Matt Vander Horst made a custom app to scan in each item, separating equipment donated to Black Hat from that which needed to be returned to the warehouse for the next global Cisco event.

Adapt and overcome! Check out part two of this blog, Black Hat USA 2022 Continued: Innovation in the NOC.

Until then, thanks again to our Cisco Meraki engineers, pictured below with a MR57 access point.

Acknowledgements: Special thanks to the Cisco Meraki and Cisco Secure Black Hat NOC team.

Meraki Systems Manager: Paul Fidler (team leader), Paul Hasstedt and Kevin Carter

Meraki Network Engineering: Evan Basta (team leader), Gregory Michel, Richard Fung and CJ Ramsey

Network Design and Wireless Site Survey: Jeffry Handal, Humphrey Cheung, JW McIntire and Romulo Ferreira

Network Build/Tear Down: Dinkar Sharma, Ryan Maclennan, Ron Taylor and Leo Cruz

Critical support in sourcing and delivering the Meraki APs and switches: Lauren Frederick, Eric Goodwin, Isaac Flemate, Scott Pope and Morgan Mann

SecureX threat response, orchestration, device insights, custom integrations, and Malware Analytics: Ian Redden, Aditya Sankar, Ben Greenbaum, Matt Vander Horst and Robert Taylor

Umbrella DNS: Christian Clasen and Alejo Calaoagan

Talos Incident Response Threat Hunters: Jerzy ‘Yuri’ Kramarz and Michael Kelley

Also, to our NOC partners NetWitness (especially David Glover), Palo Alto Networks (especially Jason Reverri), Lumen, Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

Read Part 2:

Black Hat USA 2022 Continued: Innovation in the NOC

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Black Hat USA 2022 Continued: Innovation in the NOC

In part one of our Black Hat USA 2022 NOC blog, we discussed building the network with Meraki:

  • Adapt and Overcome
  • Building the Hacker Summer Camp network, by Evan Basta
  • The Cisco Stack’s Potential in Action, by Paul Fidler
  • Port Security, by Ryan MacLennan, Ian Redden and Paul Fiddler
  • Mapping Meraki Location Data with Python, by Christian Clausen

In this part two, we will discuss:

  • Bringing it all together with SecureX
  • Creating Custom Meraki Dashboard Tiles for SecureX, by Matt Vander Horst
  • Talos Threat Hunting, by Jerzy ‘Yuri’ Kramarz and Michael Kelley
  • Unmistaken Identity, by Ben Greenbaum
  • 25+ Years of Black Hat (and some DNS stats), by Alejo Calaoagan

Cisco is a Premium Partner of the Black Hat NOC, and is the Official Wired & Wireless Network Equipment, Mobile Device Management, DNS (Domain Name Service) and Malware Analysis Provider of Black Hat.

Watch the video: Building and Securing the Black Hat USA Network

Black Hat USA is my favorite part of my professional life each year. We had an incredible staff of 20 Cisco engineers to build and secure the network. Also, for the first time, we had two Talos Threat Hunters from the Talos Incident Response (TIR) team, providing unique perspectives and skills to the attacks on the network. I really appreciated the close collaboration with the Palo Alto Networks and NetWitness team members. We created new integrations and the NOC continued to serve as an incubator for innovation.

We must allow real malware on the network for training, demonstrations, and briefing sessions; while protecting the attendees from attack within the network from their fellow attendees and prevent bad actors using the network to attack the Internet. It is a critical balance to ensure everyone has a safe experience, while still being able to learn from real world malware, vulnerabilities, and malicious websites. So, context is what really matters when investigating a potential attack and bringing so many technologies together in SecureX really accelerated investigation and response (when needed).

All the Black Hat network traffic was supported by Meraki switches and wireless access points, using the latest Meraki gear donated by Cisco. Our Meraki team was able to block people from the Black Hat network, when an investigation showed they did something in violation of the attendee Code of Conduct, upon review and approval by the Black Hat NOC leadership.

Cisco Secure provided all the domain name service (DNS) requests on the Black Hat network through Umbrella, whenever attendees wanted to connect to a website. If there is a specific DNS attack that threatened the conference, we supported Black Hat in blocking it to protect the network. However, by default, we allow and monitor DNS requests to malware, command and control, phishing, crypto mining, and other dangerous domains, which would be blocked in a production environment. That balance of allowing cybersecurity training and demos to occur, but ready to block when needed.

In addition to the Meraki networking gear, Cisco Secure also shipped an Umbrella DNS virtual appliance to Black Hat USA, for internal network visibility with redundancy. The Intel NUC containing the virtual appliance also contained the bridge to the NetWitness on-premises SIEM, custom developed by Ian Redden.

We also deployed the following cloud-based security software:

We analyzed files that were downloaded on the network, checking them for malicious behavior. When malware is downloaded, we confirm it is for a training, briefing or demonstration, and not the start of an attack on attendees.

During an investigation, we used SecureX to visualize the threat intelligence and related artifacts, correlating data. In the example below, an attacker was attempting remote code execution on the Registration Servers, alerted by the Palo Alto team, investigated by the NOC threat hunters, and blocked by order of the NOC leadership upon the results of the investigation.

Cisco Secure Threat Intelligence (correlated through SecureX)

Donated Partner Threat Intelligence (correlated through SecureX)

Open-Source Threat Intelligence (correlated through SecureX)

Continued Integrations from past Black Hat events

  • NetWitness SIEM integration with SecureX
  • NetWitness PCAP file carving and submission to Cisco Secure Malware Analytics (formerly Threat Grid) for analysis
  • Meraki syslogs into NetWitness SIEM and Palo Alto Firewall
  • Umbrella DNS into NetWitness SIEM and Palo Alto Firewall 

New Integrations Created at Black Hat USA 2022

  • Secure Malware Analytics integration with Palo Alto Cortex XSOAR, extracting files from the network stream via the firewall

The NOC partners, especially NetWitness and Palo Alto Networks, were so collaborative and we left Vegas with more ideas for future integration development

Creating Custom Meraki Dashboard Tiles for SecureX, by Matt Vander Horst

One of the biggest benefits of Cisco SecureX is its open architecture. Anyone can build integrations for SecureX if they can develop an API with the right endpoints that speak the right language. In the case of SecureX, the language is the Cisco Threat Intelligence Model (CTIM). As mentioned above, Cisco Meraki powered Black Hat USA 2022 by providing wired and wireless networking for the entire conference. This meant a lot of equipment and users to keep track of. To avoid having to switch between two different dashboards in the NOC, we decided to build a SecureX integration that would provide Meraki dashboard tiles directly into our single pane of glass: SecureX.

Building an integration for SecureX is simple: decide what functionality you want your integration to offer, build an internet-accessible API that offers those functions, and then add the integration to SecureX. At Black Hat, our Meraki integration supported two capabilities: health and dashboard. Here’s a summary of those capabilities and the API endpoints they expect:

Capability Description API Endpoints
Health Enables SecureX to make sure the module is reachable and working properly. /health
Dashboard Provides a list of available dashboard tiles and, after a tile is added to a dashboard, the tile data itself. /tiles

/tile-data

 

With our capabilities decided, we moved on to building the API for SecureX to talk to. SecureX doesn’t care how you build this API if it has the expected endpoints and speaks the right language. You could build a SecureX-compatible API directly into your product, as a serverless Amazon Web Services (AWS) Lambda, as a Python script with Django, and so on. To enable rapid development at Black Hat, we chose to build our integration API on an existing Ubuntu server in AWS running Apache and PHP.

After building the API framework on our AWS server, we had to decide which dashboard tiles to offer. Here’s what we ended up supporting:

Tile Name Description
Top Applications Shows the top 10 applications by flow count
Client Statistics Shows a summary of clients
Top SSIDs by Usage in GB Shows the top 10 SSIDs by data usage in GB
Access Point Status Shows a summary of access points

 

Finally, once the API was up and running, we could add the integration to SecureX. To do this, you need to create a module definition and then push it to SecureX using its IROH-INT API. After the module is created, it appears in the Available Integration Modules section of SecureX and can be added. Here’s what our module looked like after being added to the Black Hat SecureX instance:

After adding our new tiles to the SecureX dashboard, SecureX would ask our API for data. The API we built would fetch the data from Meraki’s APIs, format the data from Meraki for SecureX, and then return the formatted data. Here’s the result:

These dashboard tiles gave us useful insights into what was going on in the Meraki network environment alongside our existing dashboard tiles for other products such as Cisco Secure Endpoint, Cisco Umbrella, Cisco Secure Malware Analytics, and so on.

If you want to learn more about building integrations with SecureX, check out these resources:

Talos Threat Hunting, by Jerzy ‘Yuri’ Kramarz and Michael Kelly

Black Hat USA 2022 was our first fully supported event, where we deployed an onsite threat hunting team from Talos Incident Response (TIR). Our colleagues and friends from various business units, connected by SecureX integration, granted us access to all the underlying consoles and API points to support the threat hunting efforts enhanced by Talos Intelligence.

The threat hunting team focused on answering three key hypothesis-driven questions and matched that with data modelling across all of the different technology stacks deployed in Black Hat NOC:

  • Are there any attendees attempting to breach each other’s systems in or outside of a classroom environment?
  • Are there any attendees attempting to subvert any NOC Systems?
  • Are there any attendees that are compromised and we could warn them about that?

To answer the above hypothesis, our analysis started with understanding of how the network architecture is laid out and what kind of data access is granted to NOC. We quickly realized that our critical partners are key to extending visibility beyond Cisco deployed technologies. Great many thanks go to our friends from NetWitness and Palo Alto Networks for sharing full access to their technologies, to ensure that hunting did not stop on just Cisco kit and contextual intelligence could be gathered across different security products.

Daily threat hunt started with gathering data from Meraki API to identify IP and DNS level requests leaving the devices connected to wireless access points across entire conference. Although Meraki does not directly filter the traffic, we wanted to find signs of malicious activity such as DNS exfiltration attempts or connections to known and malicious domains which were not part of the class teaching. Given the level of access, we were then able to investigate network traffic capture associated with suspicious connections and check for suspected Command and Control (C2) points (there were a few from different threat actors!) or attempts to connect back to malicious DNS or Fast Flux domains which indicated that some of the attendee devices were indeed compromised with malware.

That said, this is to be expected given hostility of the network we were researching and the fact that classroom environments have users who can bring their own devices for hands-on labs. SecureX allowed us to quickly plot this internally to find specific hosts which were connecting and talking with malicious endpoints while also showing a number of additional datapoints which were useful for the investigation and hunting. Below is one such investigation, using SecureX threat response.

While looking at internal traffic, we have also found and plotted quite a few different port-scans running across the internal network. While not stopping these, it was interesting to see different tries and attempts by students to find ports and devices across networks. Good thing that network isolation was in place to prevent that! We blurred out the IP and MAC addresses in the image below.

Here is another example of really nice port scan clusters that were running across both internal and external networks we have found. This time it was the case of multiple hosts scanning each other and looking to discovery ports locally and across many of the Internet-based systems. All of that was part of the class but we had to verify that as it looked quite suspicious from the outset. Again, blurred picture for anonymity.

In a few instances, we also identified remarkably interesting clear-text LDAP traffic leaving the environment and giving a clear indicator of which organization the specific device belonged to simply because of the domain name which was requested in the cleartext. It was quite interesting to see that in 2022, we still have a lot of devices talking clear text protocols such as POP3, LDAP, HTTP or FTP, which are easy to subvert via Man-In-The-Middle type of attacks and can easily disclose the content of important messages such as email or server credentials. Below is an example of the plain text email attachments, visible in NetWitness and Cisco Secure Malware Analytics.

In terms of the external attacks, Log4J exploitation attempts were pretty much a daily occurrence on the infrastructure and applications used for attendee registration along with other typical web-based attacks such as SQL injections or path traversals. Overall, we saw a good number of port scans, floods, probes and all kind of web application exploitation attempts showing up daily, at various peak hours. Fortunately, all of them were successfully identified for context (is this part of a training class or demonstration) and contained (if appropriate) before causing any harm to external systems. Given the fact that we could intercept boundary traffic and investigate specific PCAP dumps, we used all these attacks to identify various command-and-control servers for which we also hunted internally to ensure that no internal system is compromised.

The final piece of the puzzle we looked to address, while threat hunting during Black Hat 2022, was automation to discover interesting investigation avenues. Both of us investigated a possibility of threat hunting using Jupyter playbooks to find outliers that warrant a closer look. We have created and developed a set of scripts which would gather the data from API endpoints and create a data frames which could be modeled for further analysis. This allowed us to quickly gather and filter out systems and connections which were not that interesting. Then, focus on specific hosts we should be checking across different technology stacks such as NetWitness and Palo Alto.

Unmistaken Identity, by Ben Greenbaum

An unusual aspect of the Black Hat NOC and associated security operations activities is that this is an intentionally hostile network. People come to learn new tricks and to conduct what would in any other circumstance be viewed rightfully as malicious, unwanted behavior. So, determining whether this is “acceptable” or “unacceptable” malicious behavior is an added step. Additionally, this is a heavily BYOD environment and while we do not want attendees attacking each other, or our infrastructure, there is a certain amount of suspicious or indicative behavior we may need to overlook to focus on higher priority alerts.

In short, there are broadly speaking 3 levels of security event at Black Hat:

  • Allowed – classroom or demonstration activities; i.e. a large part of the purpose of Black Hat
  • Tolerated –C&C communications from BYOD systems, other evidence of infections that are not evidence of direct attacks; attendee cleartext communications that should be encrypted, but are not relevant to the operation of the conference.
  • Forbidden – direct attacks on attendees, instructors, or infrastructure; overt criminal activity, or other violations of the Code of Conduct

When Umbrella alerted us (via a SecureX orchestration Webex workflow) of DNS requests for a domain involved in “Illegal Activity” it was reminiscent of an event at a previous conference where an attendee was caught using the conference network to download forged vaccination documents.

Using the Cisco Secure Malware Analytics platform’s phishing investigation tools, I loaded and explored the subject domain and found it to be a tool that generates and provides pseudo-randomized fake identities, customizable in various ways to match on demographics. Certainly, something that could be used for nefarious purposes, but is not illegal in and of itself. Physical security and access control is, however, also important at Black Hat, and if this activity was part of an effort to undermine that, then this was still a concern.

This is, however, also the kind of thing that gets taught at Black Hat…

Using the reported internal host IP from Umbrella, Meraki’s connection records, and the Meraki access point map, we were able to narrow the activity down to a specific classroom. Looking up what was being taught in that room, we were able to confirm that the activity was related to the course’s subject matter

Network owners and administrators, especially businesses, typically don’t want their network to be used for crimes. However, here at Black Hat what some would consider “crimes” is just “the curriculum”. This adds a layer of complexity to securing and protecting not just Black Hat, but also Black Hat attendees. In security operations, not every investigation leads to a smoking gun. At Black Hat, even when it does, you may find that the smoking gun was fired in a safe manner at an approved target range. Having the right tools on hand can help you make these determinations quickly and free you up to investigate the next potential threat.

25 Years of Black Hat – Musings from the show (and some DNS stats), by Alejo Calaoagan

Back in Singapore, I wrote about cloud app usage and the potential threat landscape surrounding them.  My original plan at Black Hat USA was to dig deeper into this vector to see what interesting tidbits I could find on our attendee network. However, given that this was the 25th anniversary of Black Hat (and my 14th in total between Vegas, Singapore, and London), I’ve decided to pivot to talk about the show itself.

I think it’s safe to say, after two difficult pandemic years, Black Hat is back. Maybe it’s the fact that almost everyone has caught COVID by now (or that a lot of people just stopped caring). I caught it myself at RSA this year back in June, the first of consecutive summer super spread events (Cisco Live Vegas was the following week). Both of those shows were in the 15-18k attendee range, well below their pre-pandemic numbers. Black Hat USA 2022 was estimated at 27,000 attendees.

If I remember correctly, 2019 was in the 25-30K range. Last year in Vegas, there were ~3,000 people at the event, tops. 2021 in London, was even lower…it felt like there were less than 1,000 attendees. Things certainly picked up in Singapore (2-3k attendees), though that event doesn’t typically see attendee numbers as high as the other locations. All in all, while the pandemic certainly isn’t over, Las Vegas gave glimpses of what things were like before the “Rona” took over our lives.

The show floor was certainly back to the norm, with swag flying off the countertops and lines for Nike sneaker and Lego giveaways wrapping around different booths.  The smiles on people’s faces as they pitched, sold, hustled, and educated the masses reminded me how much I missed this level of engagement.  RSA gave me this feeling as well, before COVID sidelined me midway through the show anyway.

Not everything was quite the same. The Black Hat party scene certainly is not what it used to be. There was no Rapid 7 rager this year or last, or a happy hour event thrown by a security company you’ve never heard of at every bar you walk by on the strip. There were still some good networking events here and there, and there were some awesomely random Vanilla Ice, Sugar Ray, and Smashmouth shows. For those of you familiar with Jeremiah Grossman’s annual Black Hat BJJ throwdown, that’s still, thankfully, a thing. Hopefully, in the coming years, some of that old awesomeness returns….

Enough reminiscing, here are our DNS numbers from the show:

From a sheer traffic perspective, this was the busiest Black Hat ever, with over 50 million DNS requests made…

Digging into these numbers, Umbrella observed over 1.3 million security events, including various types of malware across the attendee network. Our threat hunting team was busy all week!

We’ve also seen an increase in app usage at Black Hat:

  • 2019: ~3,600
  • 2021: ~2,600
  • 2022: ~6,300

In a real-world production environment, Umbrella can block unapproved or high-risk apps via DNS.

The increases in DNS traffic volume and Cloud App usage obviously mirrors Black Hat’s return to the center stage of security conferences, following two years of pandemic uncertainty. I’m hopeful that things will continue to trend in a positive direction leading up to London and, hopefully, we’ll see you all there.

——

Hats off to the entire NOC team. Check out Black Hat Europe in London, 5-8 December 2022!

Acknowledgements: Special thanks to the Cisco Meraki and Cisco Secure Black Hat NOC team.

SecureX threat response, orchestration, device insights, custom integrations and Malware Analytics: Ian Redden, Aditya Sankar, Ben Greenbaum, Matt Vander Horst and Robert Taylor

Umbrella DNS: Christian Clasen and Alejo Calaoagan

Talos Incident Response Threat Hunters: Jerzy ‘Yuri’ Kramarz and Michael Kelley

Meraki Systems Manager: Paul Fidler (team leader), Paul Hasstedt and Kevin Carter

Meraki Network Engineering: Evan Basta (team leader), Gregory Michel, Richard Fung and CJ Ramsey

Network Design and Wireless Site Survey: Jeffry Handal, Humphrey Cheung, JW McIntire and Romulo Ferreira

Network Build/Tear Down: Dinkar Sharma, Ryan Maclennan, Ron Taylor and Leo Cruz

Critical support in sourcing and delivering the Meraki APs and switches: Lauren Frederick, Eric Goodwin, Isaac Flemate, Scott Pope and Morgan Mann

Also, to our NOC partners NetWitness (especially David Glover), Palo Alto Networks (especially Jason Reverri), Lumen, Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

Read Part 1:

Black Hat USA 2022: Creating Hacker Summer Camp

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

New Evil PLC Attack Weaponizes PLCs to Breach OT and Enterprise Networks

Cybersecurity researchers have elaborated a novel attack technique that weaponizes programmable logic controllers (PLCs) to gain an initial foothold in engineering workstations and subsequently invade the operational technology (OT) networks. Dubbed "Evil PLC" attack by industrial security firm Claroty, the issue impacts engineering workstation software from Rockwell Automation, Schneider

How to Stay One Step Ahead of Hackers

By: McAfee

Whether using the internet for play or work, you want to spend your time online enjoying the peace of mind that comes with having a secure network. 

You don’t want to contend with someone taking your personal data — whether it’s credit card information, passwords, or bank account details — via malware or a data breach on your Android, Windows, or Apple iOS device. 

Fortunately, with some sensible precautions and simple steps, you can use your connected devices productively without worrying about cybercriminals and malicious software. This article explains how to stop hackers from getting access to your sensitive data 

8 ways to protect your identity from hackers

You can take steps to protect your different computing and mobile devices and operating systems. These steps can be divided into technological solutions and the right awareness and information to provide a comforting measure of self-protection. 

It’s like learning karate for self-defense, giving you confidence as you negotiate the wider world (and hoping that you never have to use it). 

Use identity protection software

When it comes to identity protection software, McAfee provides a proven solution with our identity protection and privacy services. The protection includes alerts if your sensitive information is found on the dark web (up to 10 months sooner than other providers), personal data cleanup from sites gathering and selling your information, and an unlimited virtual public network (VPN) service that protects your privacy as you use public Wi-Fi networks. 

You’ll also get up to $1 million in identity theft coverage and hands-on restoration support to help you reclaim your identity.  

Use complex passwords

Simple, obvious passwords and passcodes (like your street address, your birthday, your kids’ or pets’ names, or “1234” or “abcd”) are easy for cybercriminals to crack, giving them unwanted access to your private data. 

The stronger your password, the better your protection. Some best password practices include: 

  • Use a different password for all your online accounts, including your email accounts, social media platforms, and bank accounts. 
  • Create a password that’s at least eight characters long, combining lowercase and uppercase letters, numbers, and symbols. 
  • Don’t use consecutive keystrokes, such as “qwerty.” 
  • Don’t share your passwords with anyone. 
  • Avoid entering your password on unsecured public Wi-Fi, such as at an airport or in a coffee shop. 

Regularly update passwords

It’s important not to be a standing target. Just as you should use different passwords for everything, you should regularly change your passwords. You should do this a few times a year (although some cyber experts say this might not be necessary if you have a long and very complicated password). 

If you have a number of passwords that you update often, it might be worth getting a password manager like McAfee True Key to keep track of them. Not only will you not be faced with remembering all your different passwords or writing them down (also a no-no), but it can also help you create and store unique passwords 

The software uses the strongest encryption algorithms available to protect your passwords, scrambling them so no one else can access them. It’ll also suggest new passwords and automatically log you into your online accounts with just one master password. 

Use multi-factor authentication

Another important line of defense is multi-factor authentication (sometimes known as two-factor authentication). This system uses a password and a second piece of verification — often an SMS message sent to your Android device or iPhone — to authenticate your identity. 

This provides hard-to-beat protection even if a hacker has your password. Besides receiving SMS codes, there are also code-generating apps and physical security keys. 

Learn to spot potential scams

Thinking before you click on an email or text is a very important defense against phishing scams. Your bank won’t send you an email or text notifying you that there’s been suspicious activity on your account.  

Does getting a large refund from your phone company sound too good to be true? It is. Similarly, the Internal Revenue Service (IRS) won’t text to tell you that you owe them money, and princes aren’t going to give you a fortune out of the blue. 

Internet users beware: If you’re not absolutely certain that the text message you received is from a legitimate and trusted source, delete it. You can always contact the business or person directly to confirm that the message is legit. 

Keep device software up to date

Any operating system or app you use is open to malicious cyberattacks. This is why you should keep all your software up to date with the latest versions. Software developers are continually fixing holes in their products and offering cybersecurity patches to make them as safe and hacker-proof as possible. 

Make sure your software, firmware, and security settings are up to date on your home’s Wi-Fi router, as well. You can often change your settings to allow for automatic updates. 

Be cautious when using public Wi-Fi

Sure, who doesn’t like to go to a cafe, library, or hotel lobby to use the free Wi-Fi? But security is often weak in these public networks. If you open your online banking account or access personal information, you may unwittingly be giving a personal invitation to eavesdropping cybercriminals 

This is where the bank-grade level of protection of McAfee Secure VPN comes in, which automatically turns on when you need it and keeps you safe on public Wi-Fi networks. 

Use encryption

Even if your device does get hacked, you can protect vital information on your Windows or macOS system with an encryption program like BitLocker or FileVault. You can protect any hard drive you use, including portable ones and USB keys. 

It’s also a good idea to only shop at encrypted websites marked with the prefix “HTTPS” in their URLs. 

Discover how McAfee keeps you secure online

One of the best ways to surf the web in comfort while keeping hackers at bay is with the comprehensive solutions provided by McAfee Total Protection. 

Your protection includes proactive measures (meaning we’ll guide you to the best choices for prevention), early detection, and expert identity theft support.  

This means you’ll get identity monitoring, up to $1 million in identity theft coverage, lost wallet protection, premium antivirus software, a secure VPN, and personal data removal. In particular, our Personal Data Cleanup service will help find and remove your personal information from data broker websites and people search sites.  

With McAfee, you don’t have to be afraid of hackers. Let us deal with them.  

The post How to Stay One Step Ahead of Hackers appeared first on McAfee Blog.

❌