FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

APKDeepLens - Android Security Insights In Full Spectrum

By: Zion3R


APKDeepLens is a Python based tool designed to scan Android applications (APK files) for security vulnerabilities. It specifically targets the OWASP Top 10 mobile vulnerabilities, providing an easy and efficient way for developers, penetration testers, and security researchers to assess the security posture of Android apps.


Features

APKDeepLens is a Python-based tool that performs various operations on APK files. Its main features include:

  • APK Analysis -> Scans Android application package (APK) files for security vulnerabilities.
  • OWASP Coverage -> Covers OWASP Top 10 vulnerabilities to ensure a comprehensive security assessment.
  • Advanced Detection -> Utilizes custom python code for APK file analysis and vulnerability detection.
  • Sensitive Information Extraction -> Identifies potential security risks by extracting sensitive information from APK files, such as insecure authentication/authorization keys and insecure request protocols.
  • In-depth Analysis -> Detects insecure data storage practices, including data related to the SD card, and highlights the use of insecure request protocols in the code.
  • Intent Filter Exploits -> Pinpoint vulnerabilities by analyzing intent filters extracted from AndroidManifest.xml.
  • Local File Vulnerability Detection -> Safeguard your app by identifying potential mishandlings related to local file operations
  • Report Generation -> Generates detailed and easy-to-understand reports for each scanned APK, providing actionable insights for developers.
  • CI/CD Integration -> Designed for easy integration into CI/CD pipelines, enabling automated security testing in development workflows.
  • User-Friendly Interface -> Color-coded terminal outputs make it easy to distinguish between different types of findings.

Installation

To use APKDeepLens, you'll need to have Python 3.8 or higher installed on your system. You can then install APKDeepLens using the following command:

For Linux

git clone https://github.com/d78ui98/APKDeepLens/tree/main
cd /APKDeepLens
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python APKDeepLens.py --help

For Windows

git clone https://github.com/d78ui98/APKDeepLens/tree/main
cd \APKDeepLens
python3 -m venv venv
.\venv\Scripts\activate
pip install -r .\requirements.txt
python APKDeepLens.py --help

Usage

To simply scan an APK, use the below command. Mention the apk file with -apk argument. Once the scan is complete, a detailed report will be displayed in the console.

python3 APKDeepLens.py -apk file.apk

If you've already extracted the source code and want to provide its path for a faster scan you can use the below command. Mention the source code of the android application with -source parameter.

python3 APKDeepLens.py -apk file.apk -source <source-code-path>

To generate detailed PDF and HTML reports after the scan you can pass -report argument as mentioned below.

python3 APKDeepLens.py -apk file.apk -report

Contributing

We welcome contributions to the APKDeepLens project. If you have a feature request, bug report, or proposal, please open a new issue here.

For those interested in contributing code, please follow the standard GitHub process. We'll review your contributions as quickly as possible :)

Featured at



Pyxamstore - Python Utility For Parsing Xamarin AssemblyStore Blob Files

By: Zion3R


This is an alpha release of an assemblies.blob AssemblyStore parser written in Python. The tool is capable of unpack and repackaging assemblies.blob and assemblies.manifest Xamarin files from an APK.


Installing

Run the installer script:

python setup.py install

You can then use the tool by calling pyxamstore

Usage

Unpacking

I recommend using the tool in conjunction with apktool. The following commands can be used to unpack an APK and unpack the Xamarin DLLs:

apktool d yourapp.apk
pyxamstore unpack -d yourapp/unknown/assemblies/

Assemblies that are detected as compressed with LZ4 will be automatically decompressed in the extraction process.

Repacking

If you want to make changes to the DLLs within the AssemblyStore, you can use pyxamstore along with the assemblies.json generated during the unpack to create a new assemblies.blob file(s). The following command from the directory where your assemblies.json file exists:

pyxamstore pack

From here you'll need to copy the new manifest and blobs as well as repackage/sign the APK.

Additional Details

Additional file format details can be found on my personal website.

Known Limitations

  • Python3 support (working on it!)
  • DLLs that have debug/config data associated with them


Hackers Exploit WebAPK to Deceive Android Users into Installing Malicious Apps

By: THN
Threat actors are taking advantage of Android'sΒ WebAPK technologyΒ to trick unsuspecting users into installing malicious web apps on Android phones that are designed to capture sensitive personal information. "The attack began with victims receiving SMS messages suggesting the need to update a mobile banking application," researchers from CSIRT KNFΒ saidΒ in an analysis released last week. "The

QuadraInspect - Android Framework That Integrates AndroPass, APKUtil, And MobFS, Providing A Powerful Tool For Analyzing The Security Of Android Applications


The security of mobile devices has become a critical concern due to the increasing amount of sensitive data being stored on them. With the rise of Android OS as the most popular mobile platform, the need for effective tools to assess its security has also increased. In response to this need, a new Android framework has emerged that combines three powerful tools - AndroPass, APKUtil, RMS, and MobFS - to conduct comprehensive vulnerability analysis of Android applications. This framework is known as QuadraInspect.

QuadraInspect is an Android framework that integrates AndroPass, APKUtil, RMS and MobFS, providing a powerful tool for analyzing the security of Android applications. AndroPass is a tool that focuses on analyzing the security of Android applications' authentication and authorization mechanisms, while APKUtil is a tool that extracts valuable information from an APK file. Lastly, MobFS and RMS facilitates the analysis of an application's filesystem by mounting its storage in a virtual environment.

By combining these three tools, QuadraInspect provides a comprehensive approach to vulnerability analysis of Android applications. This framework can be used by developers, security researchers, and penetration testers to assess the security of their own or third-party applications. QuadraInspect provides a unified interface for all three tools, making it easier to use and reducing the time required to conduct comprehensive vulnerability analysis. Ultimately, this framework aims to increase the security of Android applications and protect users' sensitive data from potential threats.


Requirements

  • Windows, Linux or Mac
  • NodeJs installed
  • Python 3 installed
  • OpenSSL-3 installed
  • Wkhtmltopdf installed

Installation

To install the tools you need to: First : git clone https://github.com/morpheuslord/QuadraInspect

Second Open a Administrative cmd or powershell (for Mobfs setup) and run : pip install -r requirements.txt && python3 main.py

Third : Once QuadraInspect loads run this command QuadraInspect Main>> : START install_tools

The tools will be downloaded to the tools directory and also the setup.py and setup.bat commands will run automatically for the complete installation.

Usage

Each module has a help function so that the commands and the discriptions are detailed and can be altered for operation.

These are the key points that must be addressed for smooth working:

  • The APK file or target must be declared before starting any attack
  • The Attacks are seperate entities combined via this framework doing research on how to use them is recommended.
  • The APK file can be ether declared ether using args or using SET target withing the tool.
  • The target APK file must be placed in the target folder as all the tool searches for the target file with that folder.

Modes

There are 2 modes:

|
└─> F mode
└─> A mode

F mode

The f mode is a mode where you get the active interface for using the interactive vaerion of the framework with the prompt, etc.

F mode is the normal mode and can be used easily

A mode

A mode or argumentative mode takes the input via arguments and runs the commands without any intervention by the user this is limited to the main menu in the future i am planning to extend this feature to even the encorporated codes.

python main.py --target <APK_file> --mode a --command install_tools/tools_name/apkleaks/mobfs/rms/apkleaks

Main Module

the main menu of the entire tool has these options and commands:

Command Discription
SET target SET the name of the targetfile
START install_tools If not installed this will install the tools
LIST tools_name List out the Tools Intigrated
START apkleaks Use APKLeaks tool
START mobfs Use MOBfs for dynamic and static analysis
START andropass Use AndroPass APK analizer
help Display help menu
SHOW banner Display banner
quit Quit the program

As mentioned above the target must be set before any tool is used.

Apkleaks menu

The APKLeaks menu is also really straight forward and only a few things to consider:

  • The options SET output and SET json-out takes file names not the actual files it creates an output in the result directory.
  • The SET pattern option takes a name of a json pattern file. The JSON file must be located in the pattern directory
OPTION SET Value
SET output Output for the scan data file name
SET arguments Additional Disassembly arguments
SET json-out JSON output file name
SET pattern The pre-searching pattern for secrets
help Displays help menu
return Return to main menu
quit Quit the tool

Mobfs

Mobfs is pritty straight forward only the port number must be taken care of which is by default on port 5000 you just need to start the program and connect to it on 127.0.0.1:5000 over your browser.

AndroPass

AndroPass is also really straight forward it just takes the file as input and does its job without any other inputs.

Architecture:

The APK analysis framework will follow a modular architecture, similar to Metasploit. It will consist of the following modules:

  • Core module: The core module will provide the basic functionality of the framework, such as command-line interface, input/output handling, and logging.
  • Static analysis module: The static analysis module will be responsible for analyzing the structure and content of APK files, such as the manifest file, resources, and code.
  • Dynamic analysis module: The dynamic analysis module will be responsible for analyzing the behavior of APK files, such as network traffic, API calls, and file system interactions.
  • Reverse engineering module: The reverse engineering module will be responsible for decompiling and analyzing the source code of APK files.
  • Vulnerability testing module: The vulnerability testing module will be responsible for testing the security of APK files, such as identifying vulnerabilities and exploits.

Adding more

Currentluy there only 3 but if wanted people can add more tools to this these are the things to be considered:

  • Installer function
  • Seperate tool function
  • Main function

Installer Function

  • Must edit in the config/installer.py
  • The things to consider in the installer is the link for the repository.
  • keep the cloner and the directory in a try-except condition to avoide errors.
  • choose an appropriate command for further installation

Seperate tool function

  • Must edit in the config/mobfs.py , config/androp.py, config/apkleaks.py
  • Write a new function for the specific tool
  • File handeling is up to you I recommend passing the file name as an argument and then using the name to locate the file using the subprocess function
  • the tools must also recommended to be in a try-except condition to avoide unwanted errors.

Main Function

  • A new case must be added to the switch function to act as a main function holder
  • the help menu listing and commands are up to your requirements and comfort

If wanted you could do your upgrades and add it to this repository for more people to use kind of growing this tool.



Apk.Sh - Makes Reverse Engineering Android Apps Easier, Automating Some Repetitive Tasks Like Pulling, Decoding, Rebuilding And Patching An APK


apk.sh is a Bash script that makes reverse engineering Android apps easier, automating some repetitive tasks like pulling, decoding, rebuilding and patching an APK.


Features

apk.sh basically uses apktool to disassemble, decode and rebuild resources and some bash to automate the frida gadget injection process. It also supports app bundles/split APKs.

  • 
    Patching APKs to load frida-gadget.so on start.
  • 
    Support for app bundles/split APKs.
  • 
    Disassembling resources to nearly original form with apktool.
  • ο”©
    Rebuilding decoded resources back to binary APK/JAR with apktool.
  • ️
    Code signing the apk with apksigner.
  • ο–₯️
    Multiple arch support (arm, arm64, x86, x86_64).
  • ο“΅
    No rooted Android device needed.

Getting started

Pulling an APK from a device is simple as running ./apk.sh pull <package_name>

Decoding an APK is simple as running ./apk.sh decode <apk_name>

Rebuilding an APK is simple as running ./apk.sh build <apk_dir>

apk.sh pull

apk.sh pull pull an APK from a device. It supports app bundles/split APKs, which means that split APKs will be joined in a single APK (this is useful for patching). If the package is an app bundle/split APK, apk.sh will combine the APKs into a single APK, fixing all public resource identifiers.

apk.sh patch

apk.sh patch patch an APK to load frida-gadget.so on start.

frida-gadget.so is a Frida's shared library meant to be loaded by programs to be instrumented (when the Injected mode of operation isn’t suitable). By simply loading the library it will allow you to interact with it using existing Frida-based tools like frida-trace. It also supports a fully autonomous approach where it can run scripts off the filesystem without any outside communication.

Patching an APK is simple as running ./apk.sh patch <apk_name> --arch arm.

You can calso specify a Frida gadget configuration in a json ./apk.sh patch <apk_name> --arch arm --gadget-conf <config.json>


Frida's Gadget configurations

In the default interaction, Frida Gadget exposes a frida-server compatible interface, listening on localhost:27042 by default. In order to achieve early instrumentation Frida let Gadget’s constructor function block until you either attach() to the process, or call resume() after going through the usual spawn() -> attach() -> ...apply instrumentation... steps.

If you don’t want this blocking behavior and want to let the program boot right up, or you’d prefer it listening on a different interface or port, you can customize this through a json configuration file.

The default configuration is:

{
"interaction": {
"type": "listen",
"address": "127.0.0.1",
"port": 27042,
"on_port_conflict": "fail",
"on_load": "wait"
}
}

You can pass the gadget configuration file to apk.sh with the --gadget-conf option.

Script interaction

A typically suggested configuration might be:

{
"interaction": {
"type": "script",
"path": "/data/local/tmp/script.js",
"on_change":"reload"
}
}

script.js could be something like:

var android_log_write = new NativeFunction(
Module.getExportByName(null, '__android_log_write'),
'int',
['int', 'pointer', 'pointer']
);

var tag = Memory.allocUtf8String("[frida-script][ax]");

var work = function() {
setTimeout(function() {
android_log_write(3, tag, Memory.allocUtf8String("ping @ " + Date.now()));
work();
}, 1000);
}

work();

android_log_write(3, tag, Memory.allocUtf8String(">--(O.o)-<"));

adb push script.js /data/local/tmp

./apk.sh patch <apk_name> --arch arm --gadget-conf <config.json>

adb install file.gadget.apk

Note

Add the following code to print to logcat the console.log output of any script from the frida codeshare when using the Script interaction type.

// print to logcat the console.log output
// see: https://github.com/frida/frida/issues/382
var android_log_write = new NativeFunction(
Module.getExportByName(null, '__android_log_write'),
'int',
['int', 'pointer', 'pointer']
);
var tag = Memory.allocUtf8String("[frida-script][ax]");
console.log = function(str) {
android_log_write(3, tag, Memory.allocUtf8String(str));
}

Requirements

  • apktool
  • apksigner
  • unxz
  • zipalign
  • aapt
  • adb

Usage

SYNOPSIS

apk.sh [SUBCOMMAND] [APK FILE|APK DIR|PKG NAME] [FLAGS]
apk.sh pull [PKG NAME] [FLAGS]
apk.sh decode [APK FILE] [FLAGS]
apk.sh build [APK DIR] [FLAGS]
apk.sh patch [APK FILE] [FLAGS]
apk.sh rename [APK FILE] [PKG NAME] [FLAGS]

SUBCOMMANDS

pull	Pull an apk from device/emulator.
decode Decode an apk.
build Re-build an apk.
patch Patch an apk.
rename Rename the apk package.

FLAGS

-a, --arch <arch> Specify the target architecture, mandatory when patching.

-g, --gadget-conf <json_file> Specify a frida-gadget configuration file, optional when patching.

-n, --net Add a permissive network security config when building, optional. It can be used with patch, pull and rename also.

-s, --safe Do not decode resources when decoding (i.e. apktool -r). Cannot be used when patching.

-d, --no-dis Do not disassemble dex, optional when decoding (i.e. apktool -s). Cannot be used when patching.


Links of Interest

https://frida.re/docs/gadget/

https://lief-project.github.io/doc/latest/tutorials/09_frida_lief.html

https://koz.io/using-frida-on-android-without-root/

https://github.com/sensepost/objection/

https://github.com/NickstaDB/patch-apk/

https://neo-geo2.gitbook.io/adventures-on-security/frida-scripting-guide/frida-scripting-guide



Slicer - Tool To Automate The Boring Process Of APK Recon


A tool to automate the recon process on an APK file.

Slicer accepts a path to an extracted APK file and then returns all the activities, receivers, and services which are exported and have null permissions and can be externally provoked.

Note: The APK has to be extracted via jadx or apktool.


Summary

Why?

I started bug bounty like 3 weeks ago(in June 2020) and I have been trying my best on android apps. But I noticed one thing that in all the apps there were certain things which I have to do before diving in deep. So I just thought it would be nice to automate that process with a simple tool.

Why not drozer?

Well, drozer is a different beast. Even though it does finds out all the accessible components but I was tired of running those commands again and again.

Why not automate using drozer?

I actually wrote a bash script for running certain drozer commands so I won't have to run them manually but there was still some boring stuff that had to be done. Like Checking the strings.xml for various API keys, testing if firebase DB was publically accessible or if those google API keys have setup any cap or anything on their usage and lot of other stuff.

Why not search all the files?

I think that a tool like grep or ripgrep would be much faster to search through all the files. So if there is something specific that you want to search it would be better to use those tools. But if you think that there is something which should be checked in all the android files then feel free to open an issue.

Features

  • Check if the APK has set the android:allowbackup to true

  • Check if the APK has set the android:debuggable to true.

  • Return all the activities, services and broadcast receivers which are exported and have null permission set. This is decided on the basis of two things:

    • android:exporte=true is present in any of the component and have no permission set.
    • If exported is not mention then slicer check if any Intent-filters are defined for that component, if yes that means that component is exported by default(This is the rule given in android documentation.)
  • Check the Firebase URL of the APK by testing it for .json trick.

    • If the firebase URL is myapp.firebaseio.com then it will check if https://myapp.firebaseio.com/.json returns something or gives permission denied.
    • If this thing is open then that can be reported as high severity.
  • Check if the google API keys are publically accessible or not.

    • This can be reported on some bounty programs but have a low severity.
    • But most of the time reporting this kind of thing will bring out the pain of Duplicate.
    • Also sometimes the company can just close it as not applicable and will claim that the KEY has a usage cap - r/suspiciouslyspecific
      ο˜‰
  • Return other API keys that are present in strings.xml and in AndroidManifest.xml

  • List all the file names present in /res/raw and res/xml directory.

  • Extracts all the URLs and paths.

    • These can be used with tool like dirsearch or ffuf.

Installation

  • Clone this repository
git clone https://github.com/mzfr/slicer
  • cd slicer
  • Now you can run it: python3 slicer.py -h

Usage

It's very simple to use. Following options are available:

Extract information from Manifest and strings of an APK

Usage:
slicer [OPTION] [Extracted APK directory]

Options:

-d, --dir path to jadx output directory
-o, --output Name of the output file(not implemented)

I have not implemented the output flag yet because I think if you can redirect slicer output to a yaml file it will a proper format.

Usage Example

  • Extract information from the APK and display it on the screen.
python3 slicer.py -d path/to/extact/apk -c config.json

Acknowledgements and Credits

The extractor module used to extract URLs and paths is taken from apkurlgrep by @ndelphit

Contribution

All the features implemented in this are things that I've learned in past few weeks, so if you think that there are various other things which should be checked in an APK then please open an issue for that feature and I'd be happy to implement that :)

Support

If you'd like you can buy me some coffee:



❌