MasterParser stands as a robust Digital Forensics and Incident Response tool meticulously crafted for the analysis of Linux logs within the var/log directory. Specifically designed to expedite the investigative process for security incidents on Linux systems, MasterParser adeptly scans supported logs, such as auth.log for example, extract critical details including SSH logins, user creations, event names, IP addresses and much more. The tool's generated summary presents this information in a clear and concise format, enhancing efficiency and accessibility for Incident Responders. Beyond its immediate utility for DFIR teams, MasterParser proves invaluable to the broader InfoSec and IT community, contributing significantly to the swift and comprehensive assessment of security events on Linux platforms.
Love MasterParser as much as we do? Dive into the fun and jazz up your screen with our exclusive MasterParser wallpaper! Click the link below and get ready to add a splash of excitement to your device! Download Wallpaper
This is the list of supported log formats within the var/log directory that MasterParser can analyze. In future updates, MasterParser will support additional log formats for analysis. |Supported Log Formats List| | --- | | auth.log |
If you wish to propose the addition of a new feature \ log format, kindly submit your request by creating an issue Click here to create a request
# How to navigate to "MasterParser-main" folder from the PS terminal
PS C:\> cd "C:\Users\user\Desktop\MasterParser-main\"
# How to show MasterParser menu
PS C:\Users\user\Desktop\MasterParser-main> .\MasterParser.ps1 -O Menu
# How to run MasterParser
PS C:\Users\user\Desktop\MasterParser-main> .\MasterParser.ps1 -O Start
https://github.com/YosfanEilay/MasterParser/assets/132997318/d26b4b3f-7816-42c3-be7f-7ee3946a2c70
MemTracer is a tool that offers live memory analysis capabilities, allowing digital forensic practitioners to discover and investigate stealthy attack traces hidden in memory. The MemTracer is implemented in Python language, aiming to detect reflectively loaded native .NET framework Dynamic-Link Library (DLL). This is achieved by looking for the following abnormal memory regionβs characteristics:
The tool starts by scanning the running processes, and by analyzing the allocated memory regions characteristics to detect reflective DLL loading symptoms. Suspicious memory regions which are identified as DLL modules are dumped for further analysis and investigation.
Furthermore, the tool features the following options:
python.exe memScanner.py [-h] [-r] [-m MODULE]
-h, --help show this help message and exit
-r, --reflectiveScan Looking for reflective DLL loading
-m MODULE, --module MODULE Looking for spcefic loaded DLL
The script needs administrator privileges in order incepect all processes.