Evade EDR's the simple way, by not touching any of the API's they hook.
I've noticed that most EDRs fail to scan scripting files, treating them merely as text files. While this might be unfortunate for them, it's an opportunity for us to profit.
Flashy methods like residing in memory or thread injection are heavily monitored. Without a binary signed by a valid Certificate Authority, execution is nearly impossible.
Enter BYOSI (Bring Your Own Scripting Interpreter). Every scripting interpreter is signed by its creator, with each certificate being valid. Testing in a live environment revealed surprising results: a highly signatured PHP script from this repository not only ran on systems monitored by CrowdStrike and Trellix but also established an external connection without triggering any EDR detections. EDRs typically overlook script files, focusing instead on binaries for implant delivery. They're configured to detect high entropy or suspicious sections in binaries, not simple scripts.
This attack method capitalizes on that oversight for significant profit. The PowerShell script's steps mirror what a developer might do when first entering an environment. Remarkably, just four lines of PowerShell code completely evade EDR detection, with Defender/AMSI also blind to it. Adding to the effectiveness, GitHub serves as a trusted deployer.
The PowerShell script achieves EDR/AV evasion through four simple steps (technically 3):
1.) It fetches the PHP archive for Windows and extracts it into a new directory named 'php' within 'C:\Temp'.
2.) The script then proceeds to acquire the implant PHP script or shell, saving it in the same 'C:\Temp\php' directory.
3.) Following this, it executes the implant or shell, utilizing the whitelisted PHP binary (which exempts the binary from most restrictions in place that would prevent the binary from running to begin with.)
With these actions completed, congratulations: you now have an active shell on a Crowdstrike-monitored system. What's particularly amusing is that, if my memory serves me correctly, Sentinel One is unable to scan PHP file types. So, feel free to let your imagination run wild.
I am in no way responsible for the misuse of this. This issue is a major blind spot in EDR protection, i am only bringing it to everyones attention.
A big thanks to @im4x5yn74x for affectionately giving it the name BYOSI, and helping with the env to test in bringing this attack method to life.
It appears as though MS Defender is now flagging the PHP script as malicious, but still fully allowing the Powershell script full execution. so, modify the PHP script.
hello sentinel one :) might want to make sure that you are making links not embed.
Tool for obfuscating PowerShell scripts written in Go. The main objective of this program is to obfuscate PowerShell code to make its analysis and detection more difficult. The script offers 5 levels of obfuscation, from basic obfuscation to script fragmentation. This allows users to tailor the obfuscation level to their specific needs.
./psobf -h
βββββββ ββββββββ βββββββ βββββββ ββββββββ
βββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββ βββββββββββββββββ
βββββββ βββββββββββ βββββββββββββββββ
βββ ββββββββββββββββββββββββββββ
βββ ββββββββ βββββββ βββββββ βββ
@TaurusOmar
v.1.0
Usage: ./obfuscator -i <inputFile> -o <outputFile> -level <1|2|3|4|5>
Options:
-i string
Name of the PowerShell script file.
-level int
Obfuscation level (1 to 5). (default 1)
-o string
Name of the output file for the obfuscated script. (default "obfuscated.ps1")
Obfuscation levels:
1: Basic obfuscation by splitting the script into individual characters.
2: Base64 encoding of the script.
3: Alternative Base64 encoding with a different PowerShell decoding method.
4: Compression and Base64 encoding of the script will be decoded and decompressed at runtime.
5: Fragmentation of the script into multiple parts and reconstruction at runtime.
go install github.com/TaurusOmar/psobf@latest
The obfuscation levels are divided into 5 options. First, you need to have a PowerShell file that you want to obfuscate. Let's assume you have a file named script.ps1
with the following content:
Write-Host "Hello, World!"
Run the script with level 1 obfuscation.
./obfuscator -i script.ps1 -o obfuscated_level1.ps1 -level 1
This will generate a file named obfuscated_level1.ps1
with the obfuscated content. The result will be a version of your script where each character is separated by commas and combined at runtime.
Result (level 1)
$obfuscated = $([char[]]("`W`,`r`,`i`,`t`,`e`,`-`,`H`,`o`,`s`,`t`,` `,`"`,`H`,`e`,`l`,`l`,`o`,`,` `,`W`,`o`,`r`,`l`,`d`,`!`,`"`") -join ''); Invoke-Expression $obfuscated
Run the script with level 2 obfuscation:
./obfuscator -i script.ps1 -o obfuscated_level2.ps1 -level 2
This will generate a file named obfuscated_level2.ps1
with the content encoded in base64. When executing this script, it will be decoded and run at runtime.
Result (level 2)
$obfuscated = [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String('V3JpdGUtSG9zdCAiSGVsbG8sIFdvcmxkISI=')); Invoke-Expression $obfuscated
Execute the script with level 3 obfuscation:
./obfuscator -i script.ps1 -o obfuscated_level3.ps1 -level 3
This level uses a slightly different form of base64 encoding and decoding in PowerShell, adding an additional layer of obfuscation.
Result (level 3)
$e = [System.Convert]::FromBase64String('V3JpdGUtSG9zdCAiSGVsbG8sIFdvcmxkISI='); $obfuscated = [System.Text.Encoding]::UTF8.GetString($e); Invoke-Expression $obfuscated
Execute the script with level 4 obfuscation:
./obfuscator -i script.ps1 -o obfuscated_level4.ps1 -level 4
This level compresses the script before encoding it in base64, making analysis more complicated. The result will be decoded and decompressed at runtime.
Result (level 4)
$compressed = 'H4sIAAAAAAAAC+NIzcnJVyjPL8pJUQQAlRmFGwwAAAA='; $bytes = [System.Convert]::FromBase64String($compressed); $stream = New-Object IO.MemoryStream(, $bytes); $decompressed = New-Object IO.Compression.GzipStream($stream, [IO.Compression.CompressionMode]::Decompress); $reader = New-Object IO.StreamReader($decompressed); $obfuscated = $reader.ReadToEnd(); Invoke-Expression $obfuscated
Run the script with level 5 obfuscation:
./obfuscator -i script.ps1 -o obfuscated_level5.ps1 -level 5
This level fragments the script into multiple parts and reconstructs it at runtime.
Result (level 5)
$fragments = @(
'Write-',
'Output "',
'Hello,',
' Wo',
'rld!',
'"'
);
$script = $fragments -join '';
Invoke-Expression $script
This program is provided for educational and research purposes. It should not be used for malicious activities.
A tool to generate a wordlist from the information present in LDAP, in order to crack non-random passwords of domain accounts.
Β
The bigger the domain is, the better the wordlist will be.
name
and sAMAccountName
name
and sAMAccountName
name
name
name
and descriptions
descriptions
--outputfile
To generate a wordlist from the LDAP of the domain domain.local
you can use this command:
./LDAPWordlistHarvester.py -d 'domain.local' -u 'Administrator' -p 'P@ssw0rd123!' --dc-ip 192.168.1.101
You will get the following output if using the Python version:
You will get the following output if using the Powershell version:
Once you have this wordlist, you should crack your NTDS using hashcat, --loopback
and the rule clem9669_large.rule.
./hashcat --hash-type 1000 --potfile-path ./client.potfile ./client.ntds ./wordlist.txt --rules ./clem9669_large.rule --loopback
$ ./LDAPWordlistHarvester.py -h
LDAPWordlistHarvester.py v1.1 - by @podalirius_
usage: LDAPWordlistHarvester.py [-h] [-v] [-o OUTPUTFILE] --dc-ip ip address [-d DOMAIN] [-u USER] [--ldaps] [--no-pass | -p PASSWORD | -H [LMHASH:]NTHASH | --aes-key hex key] [-k]
options:
-h, --help show this help message and exit
-v, --verbose Verbose mode. (default: False)
-o OUTPUTFILE, --outputfile OUTPUTFILE
Path to output file of wordlist.
Authentication & connection:
--dc-ip ip address IP Address of the domain controller or KDC (Key Distribution Center) for Kerberos. If omitted it will use the domain part (FQDN) specified in the identity parameter
-d DOMAIN, --domain DOMAIN
(FQDN) domain to authenticate to
-u USER, --user USER user to authenticate with
--ldaps Use LDAPS instead of LDAP
Credentials:
--no- pass Don't ask for password (useful for -k)
-p PASSWORD, --password PASSWORD
Password to authenticate with
-H [LMHASH:]NTHASH, --hashes [LMHASH:]NTHASH
NT/LM hashes, format is LMhash:NThash
--aes-key hex key AES key to use for Kerberos Authentication (128 or 256 bits)
-k, --kerberos Use Kerberos authentication. Grabs credentials from .ccache file (KRB5CCNAME) based on target parameters. If valid credentials cannot be found, it will use the ones specified in the command line
LOLSpoof is a an interactive shell program that automatically spoof the command line arguments of the spawned process. Just call your incriminate-looking command line LOLBin (e.g. powershell -w hidden -enc ZwBlAHQALQBwAHIAbwBjAGUA....
) and LOLSpoof will ensure that the process creation telemetry appears legitimate and clear.
Process command line is a very monitored telemetry, being thoroughly inspected by AV/EDRs, SOC analysts or threat hunters.
lolbin.exe " " * sizeof(real arguments)
Although this simple technique helps to bypass command line detection, it may introduce other suspicious telemetry: 1. Creation of suspended process 2. The new process has trailing spaces (but it's really easy to make it a repeated character or even random data instead) 3. Write to the spawned process with WriteProcessMemory
Built with Nim 1.6.12 (compiling with Nim 2.X yields errors!)
nimble install winim
Programs that clear or change the previous printed console messages (such as timeout.exe 10
) breaks the program. when such commands are employed, you'll need to restart the console. Don't know how to fix that, open to suggestions.
ThievingFox is a collection of post-exploitation tools to gather credentials from various password managers and windows utilities. Each module leverages a specific method of injecting into the target process, and then hooks internals functions to gather crendentials.
The accompanying blog post can be found here
Rustup must be installed, follow the instructions available here : https://rustup.rs/
The mingw-w64 package must be installed. On Debian, this can be done using :
apt install mingw-w64
Both x86 and x86_64 windows targets must be installed for Rust:
rustup target add x86_64-pc-windows-gnu
rustup target add i686-pc-windows-gnu
Mono and Nuget must also be installed, instructions are available here : https://www.mono-project.com/download/stable/#download-lin
After adding Mono repositories, Nuget can be installed using apt :
apt install nuget
Finally, python dependancies must be installed :
pip install -r client/requirements.txt
ThievingFox works with python >= 3.11
.
Rustup must be installed, follow the instructions available here : https://rustup.rs/
Both x86 and x86_64 windows targets must be installed for Rust:
rustup target add x86_64-pc-windows-msvc
rustup target add i686-pc-windows-msvc
.NET development environment must also be installed. From Visual Studio, navigate to Tools > Get Tools And Features > Install ".NET desktop development"
Finally, python dependancies must be installed :
pip install -r client/requirements.txt
ThievingFox works with python >= 3.11
NOTE : On a Windows host, in order to use the KeePass module, msbuild must be available in the PATH. This can be achieved by running the client from within a Visual Studio Developper Powershell (Tools > Command Line > Developper Powershell)
All modules have been tested on the following Windows versions :
Windows Version |
---|
Windows Server 2022 |
Windows Server 2019 |
Windows Server 2016 |
Windows Server 2012R2 |
Windows 10 |
Windows 11 |
[!CAUTION] Modules have not been tested on other version, and are expected to not work.
Application | Injection Method |
---|---|
KeePass.exe | AppDomainManager Injection |
KeePassXC.exe | DLL Proxying |
LogonUI.exe (Windows Login Screen) | COM Hijacking |
consent.exe (Windows UAC Popup) | COM Hijacking |
mstsc.exe (Windows default RDP client) | COM Hijacking |
RDCMan.exe (Sysinternals' RDP client) | COM Hijacking |
MobaXTerm.exe (3rd party RDP client) | COM Hijacking |
[!CAUTION] Although I tried to ensure that these tools do not impact the stability of the targeted applications, inline hooking and library injection are unsafe and this might result in a crash, or the application being unstable. If that were the case, using the
cleanup
module on the target should be enough to ensure that the next time the application is launched, no injection/hooking is performed.
ThievingFox contains 3 main modules : poison
, cleanup
and collect
.
For each application specified in the command line parameters, the poison
module retrieves the original library that is going to be hijacked (for COM hijacking and DLL proxying), compiles a library that has matches the properties of the original DLL, uploads it to the server, and modify the registry if needed to perform COM hijacking.
To speed up the process of compilation of all libraries, a cache is maintained in client/cache/
.
--mstsc
, --rdcman
, and --mobaxterm
have a specific option, respectively --mstsc-poison-hkcr
, --rdcman-poison-hkcr
, and --mobaxterm-poison-hkcr
. If one of these options is specified, the COM hijacking will replace the registry key in the HKCR
hive, meaning all users will be impacted. By default, only all currently logged in users are impacted (all users that have a HKCU
hive).
--keepass
and --keepassxc
have specific options, --keepass-path
, --keepass-share
, and --keepassxc-path
, --keepassxc-share
, to specify where these applications are installed, if it's not the default installation path. This is not required for other applications, since COM hijacking is used.
The KeePass modules requires the Visual C++ Redistributable
to be installed on the target.
Multiple applications can be specified at once, or, the --all
flag can be used to target all applications.
[!IMPORTANT] Remember to clean the cache if you ever change the
--tempdir
parameter, since the directory name is embedded inside native DLLs.
$ python3 client/ThievingFox.py poison -h
usage: ThievingFox.py poison [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-path KEEPASS_PATH]
[--keepass-share KEEPASS_SHARE] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--mstsc-poison-hkcr]
[--consent] [--logonui] [--rdcman] [--rdcman-poison-hkcr] [--mobaxterm] [--mobaxterm-poison-hkcr] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to poison KeePass.exe
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepassxc Try to poison KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--ke epassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to poison mstsc.exe
--mstsc-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for mstsc, which will also work for user that are currently not
logged in (Default: False)
--consent Try to poison Consent.exe
--logonui Try to poison LogonUI.exe
--rdcman Try to poison RDCMan.exe
--rdcman-poison-hkcr Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for RDCMan, which will also work for user that are currently not
logged in (Default: False)
--mobaxterm Try to poison MobaXTerm.exe
--mobaxterm-poison-hkcr
Instead of poisonning all currently logged in users' HKCU hives, poison the HKCR hive for MobaXTerm, which will also work for user that are currently not
logged in (Default: False)
--all Try to poison all applications
For each application specified in the command line parameters, the cleanup
first removes poisonning artifacts that force the target application to load the hooking library. Then, it tries to delete the library that were uploaded to the remote host.
For applications that support poisonning of both HKCU
and HKCR
hives, both are cleaned up regardless.
Multiple applications can be specified at once, or, the --all
flag can be used to cleanup all applications.
It does not clean extracted credentials on the remote host.
[!IMPORTANT] If the targeted application is in use while the
cleanup
module is ran, the DLL that are dropped on the target cannot be deleted. Nonetheless, thecleanup
module will revert the configuration that enables the injection, which should ensure that the next time the application is launched, no injection is performed. Files that cannot be deleted byThievingFox
are logged.
$ python3 client/ThievingFox.py cleanup -h
usage: ThievingFox.py cleanup [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepass-share KEEPASS_SHARE]
[--keepass-path KEEPASS_PATH] [--keepassxc] [--keepassxc-path KEEPASSXC_PATH] [--keepassxc-share KEEPASSXC_SHARE] [--mstsc] [--consent] [--logonui]
[--rdcman] [--mobaxterm] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and cons ent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of the domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Try to cleanup all poisonning artifacts related to KeePass.exe
--keepass-share KEEPASS_SHARE
The share on which KeePass is installed (Default: c$)
--keepass-path KEEPASS_PATH
The path where KeePass is installed, without the share name (Default: /Program Files/KeePass Password Safe 2/)
--keepassxc Try to cleanup all poisonning artifacts related to KeePassXC.exe
--keepassxc-path KEEPASSXC_PATH
The path where KeePassXC is installed, without the share name (Default: /Program Files/KeePassXC/)
--keepassxc-share KEEPASSXC_SHARE
The share on which KeePassXC is installed (Default: c$)
--mstsc Try to cleanup all poisonning artifacts related to mstsc.exe
--consent Try to cleanup all poisonning artifacts related to Consent.exe
--logonui Try to cleanup all poisonning artifacts related to LogonUI.exe
--rdcman Try to cleanup all poisonning artifacts related to RDCMan.exe
--mobaxterm Try to cleanup all poisonning artifacts related to MobaXTerm.exe
--all Try to cleanup all poisonning artifacts related to all applications
For each application specified on the command line parameters, the collect
module retrieves output files on the remote host stored inside C:\Windows\Temp\<tempdir>
corresponding to the application, and decrypts them. The files are deleted from the remote host, and retrieved data is stored in client/ouput/
.
Multiple applications can be specified at once, or, the --all
flag can be used to collect logs from all applications.
$ python3 client/ThievingFox.py collect -h
usage: ThievingFox.py collect [-h] [-hashes HASHES] [-aesKey AESKEY] [-k] [-dc-ip DC_IP] [-no-pass] [--tempdir TEMPDIR] [--keepass] [--keepassxc] [--mstsc] [--consent]
[--logonui] [--rdcman] [--mobaxterm] [--all]
target
positional arguments:
target Target machine or range [domain/]username[:password]@<IP or FQDN>[/CIDR]
options:
-h, --help show this help message and exit
-hashes HASHES, --hashes HASHES
LM:NT hash
-aesKey AESKEY, --aesKey AESKEY
AES key to use for Kerberos Authentication
-k Use kerberos authentication. For LogonUI, mstsc and consent modules, an anonymous NTLM authentication is performed, to retrieve the OS version.
-dc-ip DC_IP, --dc-ip DC_IP
IP Address of th e domain controller
-no-pass, --no-pass Do not prompt for password
--tempdir TEMPDIR The name of the temporary directory to use for DLLs and output (Default: ThievingFox)
--keepass Collect KeePass.exe logs
--keepassxc Collect KeePassXC.exe logs
--mstsc Collect mstsc.exe logs
--consent Collect Consent.exe logs
--logonui Collect LogonUI.exe logs
--rdcman Collect RDCMan.exe logs
--mobaxterm Collect MobaXTerm.exe logs
--all Collect logs from all applications
A PowerShell function to perform timestomping on specified files and directories. The function can modify timestamps recursively for all files in a directory.
I've ported Stompy to C#, Python and Go and the relevant versions are linked in this repo with their own readme.
-Path
: The path to the file or directory whose timestamps you wish to modify.-NewTimestamp
: The new DateTime value you wish to set for the file or directory.-Credentials
: (Optional) If you need to specify a different user's credentials.-Recurse
: (Switch) If specified, apply the timestamp recursively to all files in the given directory.Specify the -Recurse
switch to apply timestamps recursively:
Invoke-Stompy -Path "C:\path\to\file.txt" -NewTimestamp "01/01/2023 12:00:00 AM"
Invoke-Stompy -Path "C:\path\to\file.txt" -NewTimestamp "01/01/2023 12:00:00 AM" -Recurse
LightsOut will generate an obfuscated DLL that will disable AMSI & ETW while trying to evade AV. This is done by randomizing all WinAPI functions used, xor encoding strings, and utilizing basic sandbox checks. Mingw-w64 is used to compile the obfuscated C code into a DLL that can be loaded into any process where AMSI or ETW are present (i.e. PowerShell).
LightsOut is designed to work on Linux systems with python3
and mingw-w64
installed. No other dependencies are required.
Features currently include:
_______________________
| |
| AMSI + ETW |
| |
| LIGHTS OUT |
| _______ |
| || || |
| ||_____|| |
| |/ /|| |
| / / || |
| /____/ /-' |
| |____|/ |
| |
| @icyguider |
| |
| RG|
`-----------------------'
usage: lightsout.py [-h] [-m <method>] [-s <option>] [-sa <value>] [-k <key>] [-o <outfile>] [-p <pid>]
Generate an obfuscated DLL that will disable AMSI & ETW
options:
-h, --help show this help message and exit
-m <method>, --method <method>
Bypass technique (Options: patch, hwbp, remote_patch) (Default: patch)
-s <option>, --sandbox < ;option>
Sandbox evasion technique (Options: mathsleep, username, hostname, domain) (Default: mathsleep)
-sa <value>, --sandbox-arg <value>
Argument for sandbox evasion technique (Ex: WIN10CO-DESKTOP, testlab.local)
-k <key>, --key <key>
Key to encode strings with (randomly generated by default)
-o <outfile>, --outfile <outfile>
File to save DLL to
Remote options:
-p <pid>, --pid <pid>
PID of remote process to patch
Intended Use/Opsec Considerations
This tool was designed to be used on pentests, primarily to execute malicious powershell scripts without getting blocked by AV/EDR. Because of this, the tool is very barebones and a lot can be added to improve opsec. Do not expect this tool to completely evade detection by EDR.
Usage Examples
You can transfer the output DLL to your target system and load it into powershell various ways. For example, it can be done via P/Invoke with LoadLibrary:
Or even easier, copy powershell to an arbitrary location and side load the DLL!
Greetz/Credit/Further Reference:
This tools detects the artifact of the PowerShell based malware from the eventlog of PowerShell logging.
Online Demo
git clone https://github.com/Sh1n0g1/z9
usage: z9.py [-h] [--output OUTPUT] [-s] [--no-viewer] [--utf8] input
positional arguments:
input Input file path
options:
-h, --help show this help message and exit
--output OUTPUT, -o OUTPUT
Output file path
-s, --static Enable Static Analysis mode
--no-viewer Disable opening the JSON viewer in a web browser
--utf8 Read scriptfile in utf-8 (deprecated)
python z9.py <input file> -o <output json>
python z9.py <input file> -o <output json> --no-viewer
Arguments | Meaning |
---|---|
input file | XML file exported from eventlog |
-o output json | filename of z9 result |
--no-viewer | do not open the viewer |
Example)
python z9.py util\log\mwpsop.xml -o sample1.json
python z9.py <input file> -o <output json> -s
python z9.py <input file> -o <output json> -s --utf8
python z9.py <input file> -o <output json> -s --no-viewer
Arguments | Meaning |
---|---|
input file | PowerShell file to be analyzed |
-o output json | filename of z9 result |
-s | perform static analysis |
--utf8 | specify when the input file is in UTF-8 |
--no-viewer | do not open the viewer |
Example)
python z9.py malware.ps1 -o sample1.json -s
util/enable_powershell_logging.reg
.util/collect_psevent.bat
.util/log
directory.util/collect_psevent.bat
with "Run as Admin"hanataro-miz
si-tm
take32457
Bigdrea6
azaberrypi
Sh1n0g1
HTTP-Shell is Multiplatform Reverse Shell. This tool helps you to obtain a shell-like interface on a reverse connection over HTTP. Unlike other reverse shells, the main goal of the tool is to use it in conjunction with Microsoft Dev Tunnels, in order to get a connection as close as possible to a legitimate one.
This shell is not fully interactive, but displays any errors on screen (both Windows and Linux), is capable of uploading and downloading files, has command history, terminal cleanup (even with CTRL+L), automatic reconnection and movement between directories.
It is recommended to clone the complete repository or download the zip file. You can do this by running the following command:
git clone https://github.com/JoelGMSec/HTTP-Shell
https://darkbyte.net/obteniendo-shells-con-microsoft-dev-tunnels
This project is licensed under the GNU 3.0 license - see the LICENSE file for more details.
This tool has been created and designed from scratch by Joel GΓ‘mez Molina (@JoelGMSec).
This software does not offer any kind of guarantee. Its use is exclusive for educational environments and / or security audits with the corresponding consent of the client. I am not responsible for its misuse or for any possible damage caused by it.
For more information, you can find me on Twitter as @JoelGMSec and on my blog darkbyte.net.
Easy to use PowerShell script to enumerate access permissions in an Azure Active Directory environment.
Background details can be found in the accompanied blog posts:
To run this script you'll need these two PowerShell modules:
All of these can be installed directly within PowerShell:
PS:> Install-Module Microsoft.Graph
PS:> Install-Module AADInternals
PS:> Install-Module AzureADPreview
The script uses a browser-based Login UI to connect to Azure. If you run the tool for the first time you might experience the following error
[*] Connecting to Microsoft Graph...
WARNING: WebBrowser control emulation not set for PowerShell or PowerShell ISE!
Would you like set the emulation to IE 11? Otherwise the login form may not work! (Y/N): Y
Emulation set. Restart PowerShell/ISE!
To solve this simply allow PowerShell to emulate the browser and rerun your command.
Import and run, no argumentes needed.
Note: On your first run you will likely have to authenticate twice (once Microsoft Graph and once against Azure AD Graph). I might wrap this into a single login in the future...
PS:> Import-Module .\Azure-AccessPermissions.ps1