FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdaySecurity

What Is a Botnet?

What is a botnet? And what does it have to do with a toaster?

We’ll get to that. First, a definition:

A botnet is a group of internet-connected devices that bad actors hijack with malware. Using remote controls, bad actors can harness the power of the network to perform several types of attacks. These include distributed denial-of-service (DDoS) attacks that shut down internet services, breaking into other networks to steal data, and sending massive volumes of spam.

In a way, the metaphor of an “army of devices” leveling a cyberattack works well. With thousands or even millions of compromised devices working in concert, bad actors can do plenty of harm. As we’ll see in a moment, they’ve done their share already.

Which brings us back to that toaster.

The pop-up toaster as we know it first hit the shelves in 1926, under the brand name “Toastmaster.”[i] With a familiar springy *pop*, it has ejected toast just the way we like it for nearly a century. Given that its design was so simple and effective, it’s remained largely unchanged. Until now. Thanks to the internet and so-called “smart home” devices.

Toasters, among other things, are all getting connected. And have been for a few years now, to the point where the number of connected Internet of Things (IoT) devices reaches well into the billions worldwide — which includes smart home devices.[ii]

Businesses use IoT devices to track shipments and various aspects of their supply chain. Cities use them to manage traffic flow and monitor energy use. (Does your home have a smart electric meter?) And for people like us, we use them to play music on smart speakers, see who’s at the front door with smart doorbells, and order groceries from an LCD screen on our smart refrigerators — just to name a few ways we’ve welcomed smart home devices into our households.

In the U.S. alone, smart home devices make up a $30-plus billion marketplace per year.[iii] However, it’s still a relatively young marketplace. And with that comes several security issues.

IoT security issues and big-time botnet attacks 

First and foremost, many of these devices still lack sophisticated security measures, which makes them easy pickings for cybercriminals. Why would a cybercriminal target that smart lightbulb in your living room reading lamp? Networks are only as secure as their least secure device. Thus, if a cybercriminal can compromise that smart lightbulb, it can potentially give them access to the entire home network it is on — along with all the other devices and data on it.

More commonly, though, hackers target smart home devices for another reason. They conscript them into botnets. It’s a highly automated affair. Hackers use bots to add devices to their networks. They scan the internet in search of vulnerable devices and use brute-force password attacks to take control of them.

At issue: many of these devices ship with factory usernames and passwords. Fed with that info, a hacker’s bot can have a relatively good success rate because people often leave the factory password unchanged. It’s an easy in.

Results from one real-life test show just how active these hacker bots are:

We created a fake smart home and set up a range of real consumer devices, from televisions to thermostats to smart security systems and even a smart kettle – and hooked it up to the internet.

What happened next was a deluge of attempts by cybercriminals and other unknown actors to break into our devices, at one stage, reaching 14 hacking attempts every single hour.

Put another way, that hourly rate added up to more than 12,000 unique scans and attack attempts a week.[iv] Imagine all that activity pinging your smart home devices.

Now, with a botnet in place, hackers can wage the kinds of attacks we mentioned above, particularly DDoS attacks. DDoS attacks can shut down websites, disrupt service and even choke traffic across broad swathes of the internet.

Remember the “Mirai” botnet attack of 2016, where hackers targeted a major provider of internet infrastructure?[v] It ended up crippling traffic in concentrated areas across the U.S., including the northeast, Great Lakes, south-central, and western regions. Millions of internet users were affected, people, businesses, and government workers alike.

Another more recent set of headline-makers are the December 2023 and July 2024 attacks on Amazon Web Services (AWS).[vi],[vii] AWS provides cloud computing services to millions of businesses and organizations, large and small. Those customers saw slowdowns and disruptions for three days, which in turn slowed down and disrupted the people and services that wanted to connect with them.

Also in July 2024, Microsoft likewise fell victim to a DDoS attack. It affected everything from Outlook email to Azure web services, and Microsoft Office to online games of Minecraft. They all got swept up in it.[viii]

These attacks stand out as high-profile DDoS attacks, yet smaller botnet attacks abound, ones that don’t make headlines. They can disrupt the operations of websites, public infrastructure, and businesses, not to mention the well-being of people who rely on the internet.

Botnet attacks: Security shortcomings in IoT and smart home devices 

Earlier we mentioned the problem of unchanged factory usernames and passwords. These include everything from “admin123” to the product’s name. Easy to remember, and highly insecure. The practice is so common that they get posted in bulk on hacking websites, making it easy for cybercriminals to simply look up the type of device they want to attack.

Complicating security yet further is the fact that some IoT and smart home device manufacturers introduce flaws in their design, protocols, and code that make them susceptible to attacks.[ix] The thought gets yet more unsettling when you consider that some of the flaws were found in things like smart door locks.

The ease with which IoT devices can be compromised is a big problem. The solution, however, starts with manufacturers that develop IoT devices with security in mind. Everything in these devices will need to be deployed with the ability to accept security updates and embed strong security solutions from the get-go.

Until industry standards get established to ensure such basic security, a portion of securing your IoT and smart home devices falls on us, as people and consumers.

Steps for a more secure network and smart devices 

As for security, you can take steps that can help keep you safer. Broadly speaking, they involve two things: protecting your devices and protecting the network they’re on. These security measures will look familiar, as they follow many of the same measures you can take to protect your computers, tablets, and phones.

Grab online protection for your smartphone. 

Many smart home devices use a smartphone as a sort of remote control, not to mention as a place for gathering, storing, and sharing data. So whether you’re an Android owner or iOS owner, use online protection software on your phone to help keep it safe from compromise and attack.

Don’t use the default — Set a strong, unique password. 

One issue with many IoT devices is that they often come with a default username and password. This could mean that your device and thousands of others just like it all share the same credentials, which makes it painfully easy for a hacker to gain access to them because those default usernames and passwords are often published online. When you purchase any IoT device, set a fresh password using a strong method of password creation, such as ours. Likewise, create an entirely new username for additional protection as well.

Use multi-factor authentication. 

Online banks, shops, and other services commonly offer multi-factor authentication to help protect your accounts — with the typical combination of your username, password, and a security code sent to another device you own (often a mobile phone). If your IoT device supports multi-factor authentication, consider using it there too. It throws a big barrier in the way of hackers who simply try and force their way into your device with a password/username combination.

Secure your internet router too. 

Another device that needs good password protection is your internet router. Make sure you use a strong and unique password as well to help prevent hackers from breaking into your home network. Also, consider changing the name of your home network so that it doesn’t personally identify you. Fun alternatives to using your name or address include everything from movie lines like “May the Wi-Fi be with you” to old sitcom references like “Central Perk.” Also check that your router is using an encryption method, like WPA2 or the newer WPA3, which keeps your signal secure.

Upgrade to a newer internet router. 

Older routers might have outdated security measures, which might make them more prone to attacks. If you’re renting yours from your internet provider, contact them for an upgrade. If you’re using your own, visit a reputable news or review site such as Consumer Reports for a list of the best routers that combine speed, capacity, and security.

Update your apps and devices regularly. 

In addition to fixing the odd bug or adding the occasional new feature, updates often fix security gaps. Out-of-date apps and devices might have flaws that hackers can exploit, so regular updating is a must from a security standpoint. If you can set your smart home apps and devices to receive automatic updates, that’s even better.

Set up a guest network specifically for your IoT devices. 

Just as you can offer your guests secure access that’s separate from your own devices, creating an additional network on your router allows you to keep your computers and smartphones separate from IoT devices. This way, if an IoT device is compromised, a hacker will still have difficulty accessing your other devices on your primary network, the one where you connect your computers and smartphones.

Shop smart. 

Read trusted reviews and look up the manufacturer’s track record online. Have their devices been compromised in the past? Do they provide regular updates for their devices to ensure ongoing security? What kind of security features do they offer? And privacy features too? Resources like Consumer Reports can provide extensive and unbiased information that can help you make a sound purchasing decision.

Don’t let botnets burn your toast

As more and more connected devices make their way into our homes, the need to ensure that they’re secure only increases. More devices mean more potential avenues of attack, and your home network is only as secure as the least secure device that’s on it.

While standards put forward by industry groups such as UL and Matter have started to take root, a good portion of keeping IoT and smart home devices secure falls on us as consumers. Taking the steps above can help prevent your connected toaster from playing its part in a botnet army attack — and it can also protect your network and your home from getting hacked.

It’s no surprise that IoT and smart home devices have raked in billions of dollars over the years. They introduce conveniences and little touches into our homes that make life more comfortable and enjoyable. However, they’re still connected devices. And like anything that’s connected, they must be protected.

[i] https://www.hagley.org/librarynews/history-making-toast

[ii] https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[iii] https://www.statista.com/outlook/dmo/smart-home/united-states

[iv] https://www.which.co.uk/news/article/how-the-smart-home-could-be-at-risk-from-hackers-akeR18s9eBHU

[v] https://en.wikipedia.org/wiki/Mirai_(malware)

[vi] https://www.darkreading.com/cloud-security/eight-hour-ddos-attack-struck-aws-customers

[vii] https://www.forbes.com/sites/emilsayegh/2024/07/31/microsoft-and-aws-outages-a-wake-up-call-for-cloud-dependency/

[viii] https://www.bbc.com/news/articles/c903e793w74o

[ix] https://news.fit.edu/academics-research/apps-for-popular-smart-home-devices-contain-security-flaws-new-research-finds/

 

The post What Is a Botnet? appeared first on McAfee Blog.

New 0-Day Attacks Linked to China’s ‘Volt Typhoon’

Malicious hackers are exploiting a zero-day vulnerability in Versa Director, a software product used by many Internet and IT service providers. Researchers believe the activity is linked to Volt Typhoon, a Chinese cyber espionage group focused on infiltrating critical U.S. networks and laying the groundwork for the ability to disrupt communications between the United States and Asia during any future armed conflict with China.

Image: Shutterstock.com

Versa Director systems are primarily used by Internet service providers (ISPs), as well as managed service providers (MSPs) that cater to the IT needs of many small to mid-sized businesses simultaneously. In a security advisory published Aug. 26, Versa urged customers to deploy a patch for the vulnerability (CVE-2024-39717), which the company said is fixed in Versa Director 22.1.4 or later.

Versa said the weakness allows attackers to upload a file of their choosing to vulnerable systems. The advisory placed much of the blame on Versa customers who “failed to implement system hardening and firewall guidelines…leaving a management port exposed on the internet that provided the threat actors with initial access.”

Versa’s advisory doesn’t say how it learned of the zero-day flaw, but its vulnerability listing at mitre.org acknowledges “there are reports of others based on backbone telemetry observations of a 3rd party provider, however these are unconfirmed to date.”

Those third-party reports came in late June 2024 from Michael Horka, senior lead information security engineer at Black Lotus Labs, the security research arm of Lumen Technologies, which operates one of the global Internet’s largest backbones.

In an interview with KrebsOnSecurity, Horka said Black Lotus Labs identified a web-based backdoor on Versa Director systems belonging to four U.S. victims and one non-U.S. victim in the ISP and MSP sectors, with the earliest known exploit activity occurring at a U.S. ISP on June 12, 2024.

“This makes Versa Director a lucrative target for advanced persistent threat (APT) actors who would want to view or control network infrastructure at scale, or pivot into additional (or downstream) networks of interest,” Horka wrote in a blog post published today.

Black Lotus Labs said it assessed with “medium” confidence that Volt Typhoon was responsible for the compromises, noting the intrusions bear the hallmarks of the Chinese state-sponsored espionage group — including zero-day attacks targeting IT infrastructure providers, and Java-based backdoors that run in memory only.

In May 2023, the National Security Agency (NSA), the Federal Bureau of Investigation (FBI), and the Cybersecurity Infrastructure Security Agency (CISA) issued a joint warning (PDF) about Volt Typhoon, also known as “Bronze Silhouette” and “Insidious Taurus,” which described how the group uses small office/home office (SOHO) network devices to hide their activity.

In early December 2023, Black Lotus Labs published its findings on “KV-botnet,” thousands of compromised SOHO routers that were chained together to form a covert data transfer network supporting various Chinese state-sponsored hacking groups, including Volt Typhoon.

In January 2024, the U.S. Department of Justice disclosed the FBI had executed a court-authorized takedown of the KV-botnet shortly before Black Lotus Labs released its December report.

In February 2024, CISA again joined the FBI and NSA in warning Volt Typhoon had compromised the IT environments of multiple critical infrastructure organizations — primarily in communications, energy, transportation systems, and water and wastewater sectors — in the continental and non-continental United States and its territories, including Guam.

“Volt Typhoon’s choice of targets and pattern of behavior is not consistent with traditional cyber espionage or intelligence gathering operations, and the U.S. authoring agencies assess with high confidence that Volt Typhoon actors are pre-positioning themselves on IT networks to enable lateral movement to OT [operational technology] assets to disrupt functions,” that alert warned.

In a speech at Vanderbilt University in April, FBI Director Christopher Wray said China is developing the “ability to physically wreak havoc on our critical infrastructure at a time of its choosing,” and that China’s plan is to “land blows against civilian infrastructure to try to induce panic.”

Ryan English, an information security engineer at Lumen, said it’s disappointing his employer didn’t at least garner an honorable mention in Versa’s security advisory. But he said he’s glad there are now a lot fewer Versa systems exposed to this attack.

“Lumen has for the last nine weeks been very intimate with their leadership with the goal in mind of helping them mitigate this,” English said. “We’ve given them everything we could along the way, so it kind of sucks being referenced just as a third party.”

Researchers Uncover 11 Security Flaws in GE HealthCare Ultrasound Machines

Security researchers have disclosed almost a dozen security flaws impacting the GE HealthCare Vivid Ultrasound product family that could be exploited by malicious actors to tamper with patient data and even install ransomware under certain circumstances. "The impacts enabled by these flaws are manifold: from the implant of ransomware on the ultrasound machine to the access and manipulation of

Researchers Discover LG Smart TV Vulnerabilities Allowing Root Access

Multiple security vulnerabilities have been disclosed in LG webOS running on its smart televisions that could be exploited to bypass authorization and gain root access on the devices. The findings come from Romanian cybersecurity firm Bitdefender, which discovered and reported the flaws in November 2023. The issues were fixed by LG as part of updates released on March 22, 2024. The

Considerations for Operational Technology Cybersecurity

Operational Technology (OT) refers to the hardware and software used to change, monitor, or control the enterprise's physical devices, processes, and events. Unlike traditional Information Technology (IT) systems, OT systems directly impact the physical world. This unique characteristic of OT brings additional cybersecurity considerations not typically present in conventional IT security

Riding the AI Waves: The Rise of Artificial Intelligence to Combat Cyber Threats

In nearly every segment of our lives, AI (artificial intelligence) now makes a significant impact: It can deliver better healthcare diagnoses and treatments; detect and reduce the risk of financial fraud; improve inventory management; and serve up the right recommendation for a streaming movie on Friday night. However, one can also make a strong case that some of AI’s most significant impacts

Getting off the Attack Surface Hamster Wheel: Identity Can Help

IT professionals have developed a sophisticated understanding of the enterprise attack surface – what it is, how to quantify it and how to manage it.  The process is simple: begin by thoroughly assessing the attack surface, encompassing the entire IT environment. Identify all potential entry and exit points where unauthorized access could occur. Strengthen these vulnerable points using

New NKAbuse Malware Exploits NKN Blockchain Tech for DDoS Attacks

A novel multi-platform threat called NKAbuse has been discovered using a decentralized, peer-to-peer network connectivity protocol known as NKN (short for New Kind of Network) as a communications channel. "The malware utilizes NKN technology for data exchange between peers, functioning as a potent implant, and equipped with both flooder and backdoor capabilities," Russian

Top 5 Things to Know About Recent IoT Attacks

Recent Internet attacks have caused several popular sites to become unreachable. These include Twitter, Etsy, Spotify, Airbnb, Github, and The New York Times. These incidents have highlighted a new threat to online services: botnets powered by the Internet of Things (IoT). Distributed denial of service (DDoS) attacks have been around for over a decade and, for the most part, have been handled by network providers’ security services. However, the landscape is changing.

The primary strategy in these attacks is to control a number of devices which then simultaneously flood a destination with network requests. The target becomes overloaded and legitimate requests cannot be processed. Traditional network filters typically handle this by recognizing and blocking systems exhibiting this malicious behavior. However, when thousands of systems mount an attack, these traditional filters fail to differentiate between legitimate and malicious traffic, causing system availability to crumble.

Cybercriminals, Hacktivists, and IoT

Cybercriminals and hacktivists have found a new weapon in this war: the IoT. Billions of IoT devices exist, ranging in size from a piece of jewelry to a tractor. These devices all have one thing in common: they connect to the internet. While this connection offers tremendous benefits, such as allowing users to monitor their homes or check the contents of their refrigerators remotely, it also presents a significant risk. For hackers, each IoT device represents a potential recruit for their bot armies.

A recent attack against a major DNS provider shed light on this vulnerability. Botnets containing tens or hundreds of thousands of hijacked IoT devices have the potential to bring down significant sections of the internet. Over the coming months, we’ll likely discover just how formidable a threat these devices pose. For now, let’s dig into the key aspects of recent IoT DDoS attacks.

5 Key Points to Understand

The proliferation of Internet of Things (IoT) devices has ushered in a new era of digital convenience, but it has also opened the floodgates to a range of cybersecurity concerns. To navigate the complexities of this digital landscape, it’s essential to grasp five key points:

1. Insecure IoT devices pose new risks to everyone

Each device that can be hacked is a potential soldier for a botnet army, which could be used to disrupt essential parts of the internet. Such attacks can interfere with your favorite sites for streaming, socializing, shopping, healthcare, education, banking, and more. They have the potential to undermine the very foundations of our digital society. This underscores the need for proactive measures to protect our digital way of life and ensure the continued availability of essential services that have become integral to modern living. 

Dig Deeper: How Valuable Is Your Health Care Data?

2. IoT devices are coveted by hackers

Hackers will fight to retain control over them. Though the malware used in the Mirai botnets is simple, it will evolve as quickly as necessary to allow attackers to maintain control. IoT devices are significantly valuable to hackers as they can enact devastating DDoS attacks with minimal effort. As we embrace the convenience of IoT, we must also grapple with the responsibility of securing these devices to maintain the integrity and resilience of our increasingly digitized way of life.

3. DDoS Attacks from IoT Devices Are Intense and Difficult to Defend Against

Identifying and mitigating attacks from a handful of systems is manageable. However, when tens or hundreds of thousands of devices are involved, it becomes nearly impossible. The resources required to defend against such an attack are immense and expensive. For instance, a recent attack that aimed to incapacitate Brian Krebs’ security-reporting site led to Akamai’s Vice President of Web Security stating that if such attacks were sustained, they could easily cost millions in cybersecurity services to keep the site available. Attackers are unlikely to give up these always-connected devices that are ideal for forming powerful DDoS botnets.

There’s been speculation that nation-states are behind some of these attacks, but this is highly unlikely. The authors of Mirai, a prominent botnet, willingly released their code to the public, something a governmental organization would almost certainly not do. However, it’s plausible that after observing the power of IoT botnets, nation-states are developing similar strategies—ones with even more advanced capabilities. In the short term, however, cybercriminals and hacktivists will continue to be the primary drivers of these attacks.

Dig Deeper: Mirai Botnet Creates Army of IoT Orcs

4. Cybercriminals and Hacktivists Are the Main Perpetrators

In the coming months, it’s expected that criminals will discover ways to profit from these attacks, such as through extortion. The authors of Mirai voluntarily released their code to the public—an action unlikely from a government-backed team. However, the effectiveness of IoT botnets hasn’t gone unnoticed, and it’s a good bet that nation-states are already working on similar strategies but with significantly more advanced capabilities.

Over time, expect cybercriminals and hacktivists to remain the main culprits behind these attacks. In the immediate future, these groups will continue to exploit insecure IoT devices to enact devastating DDoS attacks, constantly evolving their methods to stay ahead of defenses.

Dig Deeper: Hacktivists Turn to Phishing to Fund Their Causes

5. It Will Likely Get Worse Before It Gets Better

Unfortunately, the majority of IoT devices lack robust security defenses. The devices currently being targeted are the most vulnerable, many of which have default passwords easily accessible online. Unless the owner changes the default password, hackers can quickly and easily gain control of these devices. With each device they compromise, they gain another soldier for their botnet.

To improve this situation, several factors must be addressed. Devices must be designed with security at the forefront; they must be configured correctly and continuously managed to keep their security up-to-date. This will require both technical advancements and behavioral changes to stay in line with the evolving tactics of hackers.

McAfee Pro Tip: Software updates not only enhance security but also bring new features, better compatibility, stability improvements, and feature removal. While frequent update reminders can be bothersome, they ultimately enhance the user experience, ensuring you make the most of your technology. Know more about the importance of software updates.

Final Thoughts

Securing IoT devices is now a critical issue for everyone. The sheer number of IoT devices, combined with their vulnerability, provides cybercriminals and hacktivists with a vast pool of resources to fuel potent DDoS campaigns. We are just beginning to observe the attacks and issues surrounding IoT security. Until the implementation of comprehensive controls and responsible behaviors becomes commonplace, we will continue to face these challenges. By understanding these issues, we take the first steps toward a more secure future.

Take more steps with McAfee to secure your digital future. Explore our security solutions or read our cybersecurity blogs and reports.

The post Top 5 Things to Know About Recent IoT Attacks appeared first on McAfee Blog.

KmsdBot Malware Gets an Upgrade: Now Targets IoT Devices with Enhanced Capabilities

By: THN
An updated version of a botnet malware called KmsdBot is now targeting Internet of Things (IoT) devices, simultaneously branching out its capabilities and the attack surface. "The binary now includes support for Telnet scanning and support for more CPU architectures," Akamai security researcher Larry W. Cashdollar said in an analysis published this month. <!--adsense--> The latest iteration,

Who and What is Behind the Malware Proxy Service SocksEscort?

Researchers this month uncovered a two-year-old Linux-based remote access trojan dubbed AVrecon that enslaves Internet routers into botnet that bilks online advertisers and performs password-spraying attacks. Now new findings reveal that AVrecon is the malware engine behind a 12-year-old service called SocksEscort, which rents hacked residential and small business devices to cybercriminals looking to hide their true location online.

Image: Lumen’s Black Lotus Labs.

In a report released July 12, researchers at Lumen’s Black Lotus Labs called the AVrecon botnet “one of the largest botnets targeting small-office/home-office (SOHO) routers seen in recent history,” and a crime machine that has largely evaded public attention since first being spotted in mid-2021.

“The malware has been used to create residential proxy services to shroud malicious activity such as password spraying, web-traffic proxying and ad fraud,” the Lumen researchers wrote.

Malware-based anonymity networks are a major source of unwanted and malicious web traffic directed at online retailers, Internet service providers (ISPs), social networks, email providers and financial institutions. And a great many of these “proxy” networks are marketed primarily to cybercriminals seeking to anonymize their traffic by routing it through an infected PC, router or mobile device.

Proxy services can be used in a legitimate manner for several business purposes — such as price comparisons or sales intelligence — but they are massively abused for hiding cybercrime activity because they make it difficult to trace malicious traffic to its original source. Proxy services also let users appear to be getting online from nearly anywhere in the world, which is useful if you’re a cybercriminal who is trying to impersonate someone from a specific place.

Spur.us, a startup that tracks proxy services, told KrebsOnSecurity that the Internet addresses Lumen tagged as the AVrecon botnet’s “Command and Control” (C2) servers all tie back to a long-running proxy service called SocksEscort.

SocksEscort[.]com, is what’s known as a “SOCKS Proxy” service. The SOCKS (or SOCKS5) protocol allows Internet users to channel their Web traffic through a proxy server, which then passes the information on to the intended destination. From a website’s perspective, the traffic of the proxy network customer appears to originate from a rented/malware-infected PC tied to a residential ISP customer, not from the proxy service customer.

The SocksEscort home page says its services are perfect for people involved in automated online activity that often results in IP addresses getting blocked or banned, such as Craigslist and dating scams, search engine results manipulation, and online surveys.

Spur tracks SocksEscort as a malware-based proxy offering, which means the machines doing the proxying of traffic for SocksEscort customers have been infected with malicious software that turns them into a traffic relay. Usually, these users have no idea their systems are compromised.

Spur says the SocksEscort proxy service requires customers to install a Windows based application in order to access a pool of more than 10,000 hacked devices worldwide.

“We created a fingerprint to identify the call-back infrastructure for SocksEscort proxies,” Spur co-founder Riley Kilmer said. “Looking at network telemetry, we were able to confirm that we saw victims talking back to it on various ports.”

According to Kilmer, AVrecon is the malware that gives SocksEscort its proxies.

“When Lumen released their report and IOCs [indicators of compromise], we queried our system for which proxy service call-back infrastructure overlapped with their IOCs,” Kilmer continued. “The second stage C2s they identified were the same as the IPs we labeled for SocksEscort.”

Lumen’s research team said the purpose of AVrecon appears to be stealing bandwidth – without impacting end-users – in order to create a residential proxy service to help launder malicious activity and avoid attracting the same level of attention from Tor-hidden services or commercially available VPN services.

“This class of cybercrime activity threat may evade detection because it is less likely than a crypto-miner to be noticed by the owner, and it is unlikely to warrant the volume of abuse complaints that internet-wide brute-forcing and DDoS-based botnets typically draw,” Lumen’s Black Lotus researchers wrote.

Preserving bandwidth for both customers and victims was a primary concern for SocksEscort in July 2022, when 911S5 — at the time the world’s largest known malware proxy network — got hacked and imploded just days after being exposed in a story here. Kilmer said after 911’s demise, SocksEscort closed its registration for several months to prevent an influx of new users from swamping the service.

Danny Adamitis, principal information security researcher at Lumen and co-author of the report on AVrecon, confirmed Kilmer’s findings, saying the C2 data matched up with what Spur was seeing for SocksEscort dating back to September 2022.

Adamitis said that on July 13 — the day after Lumen published research on AVrecon and started blocking any traffic to the malware’s control servers — the people responsible for maintaining the botnet reacted quickly to transition infected systems over to a new command and control infrastructure.

“They were clearly reacting and trying to maintain control over components of the botnet,” Adamitis said. “Probably, they wanted to keep that revenue stream going.”

Frustratingly, Lumen was not able to determine how the SOHO devices were being infected with AVrecon. Some possible avenues of infection include exploiting weak or default administrative credentials on routers, and outdated, insecure firmware that has known, exploitable security vulnerabilities.

WHO’S BEHIND SOCKSESCORT?

KrebsOnSecurity briefly visited SocksEscort last year and promised a follow-up on the history and possible identity of its proprietors. A review of the earliest posts about this service on Russian cybercrime forums suggests the 12-year-old malware proxy network is tied to a Moldovan company that also offers VPN software on the Apple Store and elsewhere.

SocksEscort began in 2009 as “super-socks[.]com,” a Russian-language service that sold access to thousands of compromised PCs that could be used to proxy traffic. Someone who picked the nicknames “SSC” and “super-socks” and email address “michvatt@gmail.com” registered on multiple cybercrime forums and began promoting the proxy service.

According to DomainTools.com, the apparently related email address “michdomain@gmail.com” was used to register SocksEscort[.]com, super-socks[.]com, and a few other proxy-related domains, including ip-score[.]com, segate[.]org seproxysoft[.]com, and vipssc[.]us. Cached versions of both super-socks[.]com and vipssc[.]us show these sites sold the same proxy service, and both displayed the letters “SSC” prominently at the top of their homepages.

Image: Archive.org. Page translation from Russian via Google Translate.

According to cyber intelligence firm Intel 471, the very first “SSC” identity registered on the cybercrime forums happened in 2009 at the Russian language hacker community Antichat, where SSC asked fellow forum members for help in testing the security of a website they claimed was theirs: myiptest[.]com, which promised to tell visitors whether their proxy address was included on any security or anti-spam block lists.

Myiptest[.]com is no longer responding, but a cached copy of it from Archive.org shows that for about four years it included in its HTML source a Google Analytics code of US-2665744, which was also present on more than a dozen other websites.

Most of the sites that once bore that Google tracking code are no longer online, but nearly all of them centered around services that were similar to myiptest[.]com, such as abuseipdb[.]com, bestiptest[.]com, checkdnslbl[.]com, dnsbltools[.]com and dnsblmonitor[.]com.

Each of these services were designed to help visitors quickly determine whether the Internet address they were visiting the site from was listed by any security firms as spammy, malicious or phishous. In other words, these services were designed so that proxy service users could easily tell if their rented Internet address was still safe to use for online fraud.

Another domain with the Google Analytics code US-2665744 was sscompany[.]net. An archived copy of the site says SSC stands for “Server Support Company,” which advertised outsourced solutions for technical support and server administration.

Leaked copies of the hacked Antichat forum indicate the SSC identity registered on the forum using the IP address 71.229.207.214. That same IP was used to register the nickname “Deem3n®,” a prolific poster on Antichat between 2005 and 2009 who served as a moderator on the forum.

There was a Deem3n® user on the webmaster forum Searchengines.guru whose signature in their posts says they run a popular community catering to programmers in Moldova called sysadmin[.]md, and that they were a systems administrator for sscompany[.]net.

That same Google Analytics code is also now present on the homepages of wiremo[.]co and a VPN provider called HideIPVPN[.]com.

Wiremo sells software and services to help website owners better manage their customer reviews. Wiremo’s Contact Us page lists a “Server Management LLC” in Wilmington, DE as the parent company. Server Management LLC is currently listed in Apple’s App Store as the owner of a “free” VPN app called HideIPVPN.

“The best way to secure the transmissions of your mobile device is VPN,” reads HideIPVPN’s description on the Apple Store. “Now, we provide you with an even easier way to connect to our VPN servers. We will hide your IP address, encrypt all your traffic, secure all your sensitive information (passwords, mail credit card details, etc.) form [sic] hackers on public networks.”

When asked about the company’s apparent connection to SocksEscort, Wiremo responded, “We do not control this domain and no one from our team is connected to this domain.” Wiremo did not respond when presented with the findings in this report.

New Cryptocurrency Mining Campaign Targets Linux Systems and IoT Devices

Internet-facing Linux systems and Internet of Things (IoT) devices are being targeted as part of a new campaign designed to illicitly mine cryptocurrency. "The threat actors behind the attack use a backdoor that deploys a wide array of tools and components such as rootkits and an IRC bot to steal device resources for mining operations," Microsoft threat intelligence researcher Rotem Sde-Or said.

Hear no evil: Ultrasound attacks on voice assistants

How your voice assistant could do the bidding of a hacker – without you ever hearing a thing

The post Hear no evil: Ultrasound attacks on voice assistants appeared first on WeLiveSecurity

Serious Unpatched Vulnerability Uncovered in Popular Belkin Wemo Smart Plugs

The second generation version of Belkin's Wemo Mini Smart Plug has been found to contain a buffer overflow vulnerability that could be weaponized by a threat actor to inject arbitrary commands remotely. The issue, assigned the identifier CVE-2023-27217, was discovered and reported to Belkin on January 9, 2023, by Israeli IoT security company Sternum, which reverse-engineered the device and

Black Hat Trip Report – Trend Micro

At Black Hat USA 2020, Trend Micro presented two important talks on vulnerabilities in Industrial IoT (IIoT). The first discussed weaknesses in proprietary languages used by industrial robots, and the second talked about vulnerabilities in protocol gateways. Any organization using robots, and any organization running a multi-vendor OT environment, should be aware of these attack surfaces. Here is a summary of the key points from each talk.

Rogue Automation

Presented at Black Hat, Wednesday, August 5. https://www.blackhat.com/us-20/briefings/schedule/index.html#otrazor-static-code-analysis-for-vulnerability-discovery-in-industrial-automation-scripts-19523 and the corresponding research paper is available at https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/unveiling-the-hidden-risks-of-industrial-automation-programming

Industrial robots contain powerful, fully capable computers. Unlike most contemporary computers, though, industrial robots lack basic information security capabilities. First, at the architectural level, they lack any mechanism to isolate certain instructions or memory. That is, any program can alter any piece of storage, or run any instruction. In traditional mainframes, no application could access, change, or run any code in another application or in the operating system. Even smartphone operating systems have privilege separation. An application cannot access a smartphone’s camera, for instance, without being specifically permitted to do so. Industrial robots allow any code to read, access, modify, or run any device connected to the system, including the clock. That eliminates data integrity in industrial robots and invalidates any audit of malfunctions; debugging becomes exceptionally difficult.

Industrial robots do not use conventional programming languages, like C or Python. Instead, each manufacturer provides its own proprietary programming language. That means a specialist using one industrial robot cannot use another vendor’s machine without training. There are no common information security tools for code validation, since vendors do not develop products for fragmented markets. These languages describe programs telling the robot how to move. They also support reading and writing data, analyzing and modifying files, opening and closing input/output devices, getting and sending information over a network, and accessing and changing status indicators on connected sensors. Once a program starts to run on an industrial robot, it can do anything any fully functional computer can do, without any security controls at all. Contemporary industrial robots do not have any countermeasures against this threat.

Most industrial robot owners do not write their own programs. The supply chain for industrial robot programs involves many third-party actors. See Figure 1 below for a simplified diagram. In each community, users of a particular vendor’s languages share code informally, and rely on user’s groups for hints and tips to solve common tasks. These forums rarely discuss security measures. Many organizations hire third-party contractors to implement particular processes, but there are no security certifications relevant to these proprietary languages. Most programmers learned their trade in an air-gapped world, and still rely on a perimeter which separates the safe users and code inside from the untrusted users and code outside. The languages offer no code scanners to identify potential weaknesses, such as not validating inputs, modifying system services, altering device state, or replacing system functions. The machines do not have a software asset management capability, so knowing where the components of a running program originated from is uncertain.

Figure 1: The Supply Chain for Industrial Robot Programming

All is not lost – not quite. In the short term, Trend Micro Research has developed a static code analysis tool called OTRazor, which examines robotic code for unsafe code patterns. This was demonstrated during our session at Black Hat.

Over time, vendors will have to introduce basic security checks, such as authentication, authorization, data integrity, and data confidentiality. The vendors will also have to introduce architectural restrictions – for instance, an application should be able to read the clock but not change it.. Applications should not be able to modify system files, programs, or data, nor should they be able to modify other applications. These changes will take years to arrive in the market, however. Until then, CISOs should audit industrial robot programs for vulnerabilities, and segment networks including industrial robots, and apply baseline security programs, as they do now, for both internally developed and procured software.

Protocol Gateway Vulnerabilities

Presented at Black Hat, Wednesday, August 5, https://www.blackhat.com/us-20/briefings/schedule/index.html#industrial-protocol-gateways-under-analysis-20632, with the corresponding research paper available here: https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/lost-in-translation-when-industrial-protocol-translation-goes-wrong.

Industry 4.0 leverages the power of automation alongside the rich layer of software process control tools, particularly Enterprise Resource Planning (ERP), and its bigger cousin, Supply Chain Management (SCM). By bringing together dynamic industrial process control with hyper-efficient “just-in-time” resource scheduling, manufacturers can achieve minimum cost, minimum delay, and optimal production. But these integration projects require that IIoT devices speak with other technology, including IIoT from other manufacturers and legacy equipment. Since each equipment or device may have their own communication protocol, Industry 4.0 relies heavily on protocol converters.

Protocol converters are simple, highly efficient, low-cost devices that translate one protocol into another. Protocol converters are ubiquitous, but they lack any basic security capabilities – authentication, authorization, data integrity or data confidentiality – and they sit right in the middle of the OT network. Attackers can subvert protocol converters to hijack the communication or change configuration. An attacker can disable a safety thresholds, generate a denial of service attack, and misdirect an attached piece of equipment.

In the course of this research, we found nine vulnerabilities and are working with vendors to remediate the issues. Through our TXOne subsidiary, we are developing rules and intelligence specifically for IIoT message traffic, which are then embedded in our current network security offerings, providing administrators with better visibility and the ability to enforce security policies in their OT networks.

Protocol converters present a broad attack surface, as they have limited native information security capabilities. They don’t validate senders or receivers, nor do they scan or verify message contents. Due to their crucial position in the middle of the OT network, they are an exceptionally appealing target for malicious actors. Organizations using protocol converters – especially those on the way to Industry 4.0 – must address these weak but critical components of their evolving infrastructure.

What do you think? Let me know in the comments below or @WilliamMalikTM

The post Black Hat Trip Report – Trend Micro appeared first on .

ISO/SAE 21434: It’s time to put the brakes on connected car cyber-threats

Connected cars are on the move. Globally their number is set to grow 270% between 2018 and 2022 to reach an estimated 125 million in a couple of years. Increasingly, these vehicles are more akin to high-performance mobile computers with wheels than traditional cars, with features including internet access, app-based remote monitoring and management, advanced driver-assistance, and autonomous driving capabilities. But this also leaves them exposed to sensitive data theft and remote manipulation, which could create serious physical safety issues.

This is where a new standard comes in. ISO/SAE 21434 creates detailed guidance for the automotive industry to help it navigate these challenges and reduce reputational and cyber-risk. A new report from Trend Micro details what industry stakeholders need to, along with our recommendations as cybersecurity experts.

Packed with power

Modern automobiles do far more than transport their occupants from A to B. They are filled with computing power, sensors, infotainment systems and connectivity to help improve the car experience, traffic safety, vehicle maintenance and much more. This all creates complexity, which in turn leads to the emergence of cybersecurity gaps.

For example, there are now more than 100 engine control units (ECUs) in many modern vehicles, packed with software to control everything from the engine and suspension to the brakes. By hijacking the execution of any ECU an attacker could move laterally to any target in the vehicle, potentially allowing them to remotely cause life-threatening accidents.

As our report explains, there are three fundamental issues that make securing connected cars challenging:

Vulnerabilities are difficult to patch due to the highly tiered mature of car supply chains, firmware interoperability and long update times. If updates fail, as they can, a vehicle may be left inoperable.

Protocols used for connectivity between ECUs were not designed with security in mind, allowing attackers to conduct lateral movement.

Aftermarket products and services represent a third area of risk exposure. Akin to unsecured IoT devices in the smart home, they can be abused by attackers to pivot to more sensitive parts of the vehicle.

These vulnerabilities have been highlighted in research dating back years, but as connected cars grow in number, real-world attacks are now starting to emerge. Attack scenarios target everything from user applications to network protocols, to the CAN bus, on-board software and more. In short, there’s much for the bad guys to gain and plenty for carmakers to lose.

Here to help

This is where the new standard comes in. ISO/SAE 21434 “Road vehicles – Cybersecurity engineering” is a typically long and detailed document designed to improve automotive cybersecurity and risk mitigation across the entire supply chain — from vehicle design and engineering through to decommissioning.

As a long-time collaborator with the automotive industry, Trend Micro welcomes the new standard as a way to enhance security-by-design in an area coming under the increasing scrutiny of attackers. In fact, eight out of the world’s top 10 automotive companies have adopted Trend Micro solutions for their enterprise IT.

In order to follow ISO/SAE 21434 and protect connected cars, organizations need comprehensive visibility and control of the entire connected car ecosystem, including: vehicle, network and backend systems. They should then consider developing a Vehicle Security Operations Center (VSOC) to manage notifications coming in from all three areas and to create a bird’s eye view of the entire ecosystem.

Consider the following capabilities in each of these key areas:

Vehicle: Detect in-vehicle vulnerabilities and possible exploitation, including those in critical devices that connected the in-vehicle network to outside networks, for instance, in-vehicle infotainment systems (IVI) and telematic control units (TCUs).

Network: Apply network security policy, monitoring traffic to detect and prevent threats including connections between vehicle and backend cloud and data centers.

Backend: Secure data centers, cloud and containers from known and unknown threats and bugs without compromising performance.

Vehicle SOC: Take quick and effective action by correlating threats detected from the endpoint, network, and backend with individual notifications from each, enabling a bird’s eye view of comprehensive elements.

In uncertain times for the industry, it pays to get ahead of the game, and any prospective changes in local laws that the new ISO/SAE standard may encourage. For carmakers looking to differentiate in a tough market, and do the right thing by protecting their customers, Trend Micro is here to help.

To find out more, read the full report here.

The post ISO/SAE 21434: It’s time to put the brakes on connected car cyber-threats appeared first on .

Connected Car Standards – Thank Goodness!

Intelligent transportation systems (ITS) require harmonization among manufacturers to have any chance of succeeding in the real world. No large-scale car manufacturer, multimodal shipper, or MaaS (Mobility as a Service) provider will risk investing in a single-vendor solution. Successful ITS require interoperable components, especially for managing cybersecurity issues. See https://www.trendmicro.com/vinfo/us/security/news/intelligent-transportation-systems for a set of reports on ITS cybersecurity.

The good news is we now have a standard for automotive cybersecurity, ISA/SAE 21434. This standard addresses all the major elements of connected car security including V2X, reaching from the internals of ECUs and communications busses including CAN to the broader issues of fleet management and public safety. See https://www.iso.org/standard/70918.html for the current draft version of this standard.

Intelligent transport systems rely on complex, contemporary infrastructure elements, including cloud (for data aggregation, traffic analysis, and system-wide recommendations) and 5G (for inter-component networking and real-time sensing). ITS also rely on aging industrial control systems and components, for vehicle detection, weather reporting, and traffic signaling, some dating back forty years or more. This profound heterogeneity makes the cybersecurity problem unwieldy. Automotive systems generally are the most complex public-facing applications of industrial IoT. Any information security problems with them will erode public trust in this important and ultimately critical infrastructure.

Robert Bosch GmbH began working on the first automotive bus architecture in 1986. Automobiles gained increasing electronic functions (smog controls, seat belt monitors, electric window controls, climate controls, and so on). With each new device, the manufacturers had to install additional point-to-point wiring to monitor and control them. This led to increasing complexity, the possibility for error, extended manufacturing time, more costly diagnosis and repair post-sales, and added weight. See Figure 1 for details. By replacing point-to-point wiring with a simple bus, manufacturers could introduce new features connected with one pair of wires for control. This simplified design, manufacturing, diagnosis, and improved quality and maintainability.

Figure 1: CAN Networks Significantly Reduce Wiring (from National Instruments https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network–can–overview.html)

The bus was simple: all devices saw all traffic and responded to messages relevant to them. Each message has a standard format, with a header describing the message content and priority (the arbitration IDs), the body which contains the relevant data, and a cyclic redundancy check (CRC), which is a code to verify that the message contents are accurate. This CRC uses a mathematical formula to determine if any bits have flipped, and for small numbers of errors can correct the message, like a checksum. This is not as powerful as a digital signature. It has no cryptographic power. Every device on the bus can use the CRC algorithm to create a code for messages it sends and to verify the data integrity of messages it receives. Other than this, there is no data confidentiality, authentication, authorization, data integrity, or non-repudiation in CAN bus messages – or any other automotive bus messages. The devices used in cars are generally quite simple, lightweight, and inexpensive: 8-bit processors with little memory on board. Any device connected to the network is trusted. Figure 2 shows the layout of a CAN bus message.

Figure 2: The Standard CAN Frame Format, from National Instruments

Today’s automobiles have more sophisticated devices on board. The types of messages and the services the offer are becoming more complex. In-vehicle infotainment (IVI) systems provide maps, music, Bluetooth connectivity for smartphones and other devices, in addition to increasingly more elaborate driving assistance and monitoring systems all add more traffic to the bus. But given the diversity of manufacturers and suppliers, impeding security measures over the automotive network. No single vendor could today achieve what Robert Bosch did nearly forty years ago. Yet the need for stronger vehicle security is growing.

The ISO/SAE 21434 standard describes a model for securing the supply chain for automotive technology, for validating the integrity of the development process, detecting vulnerabilities and cybersecurity attacks in automotive systems, and managing the deployment of fixes as needed. It is comprehensive. ISO/SAE 21434 builds on decades of work in information security. By applying that body of knowledge to the automotive case, the standard will move the industry towards a safer and more trustworthy connected car world.

But the standard’s value doesn’t stop with cars and intelligent transport systems. Domains far beyond connected cars will benefit from having a model for securing communications among elements from diverse manufacturers sharing a common bus. The CAN bus and related technologies are used onboard ships, in aircraft, in railroad management, in maritime port systems, and even in controlling prosthetic limbs. The vulnerabilities are common, the complexity of the supply chain is equivalent, and the need for a comprehensive architectural solution is as great. So this standard is a superb achievement and will go far to improve the quality, reliability, and trustworthiness of critical systems globally.

What do you think? Let me know in the comments below or @WilliamMalikTM.

The post Connected Car Standards – Thank Goodness! appeared first on .

Securing Smart Manufacturing

IIoT

“Alexa, turn on the TV.”

”Get it yourself.”

This nightmare scenario could play out millions of times unless people take steps to protect their IoT devices. The situation is even worse in industrial settings. Smart manufacturing, that is, Industry 4.0, relies on tight integration between IT systems and OT systems. Enterprise resource planning (ERP) software has evolved into supply chain management (SCM) systems, reaching across organizational and national boundaries to gather all forms of inputs, parting out subcomponent development and production, and delivering finished products, payments, and capabilities across a global canvas.

Each of these synergies fulfills a rational business goal: optimize scarce resources across diverse sources; minimize manufacturing, shipping, and warehousing expense across regions; preserve continuity of operations by diversifying suppliers; maximize sales among multiple delivery channels. The supply chain includes not only raw materials for manufacturing, but also third party suppliers of components, outsourced staff for non-core business functions, open source software to optimize development costs, and subcontractors to fulfill specialized design, assembly, testing, and distribution tasks. Each element of the supply chain is an attack surface.

Software development has long been a team effort. Not since the 1970s have companies sought out the exceptional talented solo developer whose code was exquisite, flawless, ineffable, undocumented, and impossible to maintain.  Now designs must be clear across the team, and testing requires close collaboration between architects, designers, developers, and production. Teams identify business requirements, then compose a solution from components sourced from publically shared libraries. These libraries may contain further dependencies on yet other third-party code of unknown provenance. Simplified testing relies on the quality of the shared libraries, but shared library routines may have latent (or intentionally hidden) defects that do not come to life until in a vulnerable production environment. Who tests GitHub? The scope of these vulnerabilities is daunting. Trend Micro just published a report, “Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis,” that surveys the Industry 4.0 attack surface.

Within the manufacturing operation, the blending of IT and OT exposes additional attack surfaces. Industrial robots provide a clear example. Industrial robots are tireless, precision machines programmed to perform exacting tasks rapidly and flawlessly. What did industry do before robots? Factories either relied on hand-built products or on non-programmable machines that had to be retooled for any change in product specifications. Hand-built technology required highly skilled machinists, who are expensive and require time to deliver. See Figure 1 for an example.

Figure 1: The cost of precision

Non-programmable robots require factory down time for retooling, a process that can take weeks. Before programmable industrial robots, automobile factories would deliver a single body style across multiple years of production. Programmable robots can produce different configurations of materials with no down time. They are used everywhere in manufacturing, warehousing, distribution centers, farming, mining, and soon guiding delivery vehicles. The supply chain is automated.

However, the supply chain is not secure. The protocols industrial robots depend on assumed the environment was isolated. One controller would govern the machines in one location. Since the connection between the controller and the managed robots was hard-wired, there was no need for operator identification or message verification. My controller would never see your robot. My controller would only connect to my robot, so the messages they exchanged needed no authentication. Each device assumed all its connections were externally verified. Even the safety systems assumed the network was untainted and trustworthy. No protocols included any security or privacy controls. Then Industry 4.0 adopted wireless communications.

The move, which saved the cost of laying cable in the factory, opened those networks to eavesdropping and attacks. Every possible attack against industrial robots is happening now. Bad guys are forging commands, altering specifications, changing or suppressing error alerts, modifying output statistics, and rewriting logs. The consequences can be vast yet nearly undetectable. In the current report on Rogue Robots, our Forward-looking Threat Research team, collaborating with the Politecnico di Milano (POLIMI), analyzes the range of specific attacks today’s robots face, and the potential consequences those attacks may have.

Owners and operators of programmable robots should heed the warnings of this research, and consider various suggested remedies. Forewarned is forearmed.

The Rogue Robots research is here: https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security.

The new report, Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis, is here: https://www.trendmicro.com/vinfo/us/security/threat-intelligence-center/internet-of-things/threats-and-consequences-a-security-analysis-of-smart-manufacturing-systems.

What do you think? Let me know in the comments below, or @WilliamMalikTM.

The post Securing Smart Manufacturing appeared first on .

❌