Clone the repository: bash git clone https://github.com/ALW1EZ/PANO.git cd PANO
Run the application:
./start_pano.sh
start_pano.bat
The startup script will automatically: - Check for updates - Set up the Python environment - Install dependencies - Launch PANO
In order to use Email Lookup transform You need to login with GHunt first. After starting the pano via starter scripts;
source venv/bin/activate
call venv\Scripts\activate
Visual node and edge styling
Timeline Analysis
Temporal relationship analysis
Map Integration
Connected services discovery
Username Analysis
Web presence analysis
Image Analysis
Entities are the fundamental building blocks of PANO. They represent distinct pieces of information that can be connected and analyzed:
π Text: Generic text content
Properties System
Transforms are automated operations that process entities to discover new information and relationships:
π Enrichment: Add data to existing entities
Features
Helpers are specialized tools with dedicated UIs for specific investigation tasks:
π Translator: Translate text between languages
Helper Features
We welcome contributions! To contribute to PANO:
Note: We use a single
main
branch for development. All pull requests should be made directly tomain
.
from dataclasses import dataclass
from typing import ClassVar, Dict, Any
from .base import Entity
@dataclass
class PhoneNumber(Entity):
name: ClassVar[str] = "Phone Number"
description: ClassVar[str] = "A phone number entity with country code and validation"
def init_properties(self):
"""Initialize phone number properties"""
self.setup_properties({
"number": str,
"country_code": str,
"carrier": str,
"type": str, # mobile, landline, etc.
"verified": bool
})
def update_label(self):
"""Update the display label"""
self.label = self.format_label(["country_code", "number"])
### Custom Transforms Transforms are operations that process entities and generate new insights or relationships. To create a custom transform: 1. Create a new file in the `transforms` folder (e.g., `transforms/phone_lookup.py`) 2. Implement your transform class: from dataclasses import dataclass
from typing import ClassVar, List
from .base import Transform
from entities.base import Entity
from entities.phone_number import PhoneNumber
from entities.location import Location
from ui.managers.status_manager import StatusManager
@dataclass
class PhoneLookup(Transform):
name: ClassVar[str] = "Phone Number Lookup"
description: ClassVar[str] = "Lookup phone number details and location"
input_types: ClassVar[List[str]] = ["PhoneNumber"]
output_types: ClassVar[List[str]] = ["Location"]
async def run(self, entity: PhoneNumber, graph) -> List[Entity]:
if not isinstance(entity, PhoneNumber):
return []
status = StatusManager.get()
operation_id = status.start_loading("Phone Lookup")
try:
# Your phone number lookup logic here
# Example: query an API for phone number details
location = Location(properties={
"country": "Example Country",
"region": "Example Region",
"carrier": "Example Carrier",
"source": "PhoneLookup transform"
})
return [location]
except Exception as e:
status.set_text(f"Error during phone lookup: {str(e)}")
return []
finally:
status.stop_loading(operation_id)
### Custom Helpers Helpers are specialized tools that provide additional investigation capabilities through a dedicated UI interface. To create a custom helper: 1. Create a new file in the `helpers` folder (e.g., `helpers/data_analyzer.py`) 2. Implement your helper class: from PySide6.QtWidgets import (
QWidget, QVBoxLayout, QHBoxLayout, QPushButton,
QTextEdit, QLabel, QComboBox
)
from .base import BaseHelper
from qasync import asyncSlot
class DummyHelper(BaseHelper):
"""A dummy helper for testing"""
name = "Dummy Helper"
description = "A dummy helper for testing"
def setup_ui(self):
"""Initialize the helper's user interface"""
# Create input text area
self.input_label = QLabel("Input:")
self.input_text = QTextEdit()
self.input_text.setPlaceholderText("Enter text to process...")
self.input_text.setMinimumHeight(100)
# Create operation selector
operation_layout = QHBoxLayout()
self.operation_label = QLabel("Operation:")
self.operation_combo = QComboBox()
self.operation_combo.addItems(["Uppercase", "Lowercase", "Title Case"])
operation_layout.addWidget(self.operation_label)
operation_layout.addWidget(self.operation_combo)
# Create process button
self.process_btn = QPushButton("Process")
self.process_btn.clicked.connect(self.process_text)
# Create output text area
self.output_label = QLabel("Output:")
self.output_text = QTextEdit()
self.output_text.setReadOnly(True)
self.output_text.setMinimumHeight(100)
# Add widgets to main layout
self.main_layout.addWidget(self.input_label)
self.main_layout.addWidget(self.input_text)
self.main_layout.addLayout(operation_layout)
self.main_layout.addWidget(self.process_btn)
self.main_layout.addWidget(self.output_label)
self.main_layout.addWidget(self.output_text)
# Set dialog size
self.resize(400, 500)
@asyncSlot()
async def process_text(self):
"""Process the input text based on selected operation"""
text = self.input_text.toPlainText()
operation = self.operation_combo.currentText()
if operation == "Uppercase":
result = text.upper()
elif operation == "Lowercase":
result = text.lower()
else: # Title Case
result = text.title()
self.output_text.setPlainText(result)
This project is licensed under the Creative Commons Attribution-NonCommercial (CC BY-NC) License.
You are free to: - β Share: Copy and redistribute the material - β Adapt: Remix, transform, and build upon the material
Under these terms: - βΉοΈ Attribution: You must give appropriate credit - π« NonCommercial: No commercial use - π No additional restrictions
Special thanks to all library authors and contributors who made this project possible.
Created by ALW1EZ with AI β€οΈ
MR.Handler is a specialized tool designed for responding to security incidents on Linux systems. It connects to target systems via SSH to execute a range of diagnostic commands, gathering crucial information such as network configurations, system logs, user accounts, and running processes. At the end of its operation, the tool compiles all the gathered data into a comprehensive HTML report. This report details both the specifics of the incident response process and the current state of the system, enabling security analysts to more effectively assess and respond to incidents.
$ pip3 install colorama
$ pip3 install paramiko
$ git clone https://github.com/emrekybs/BlueFish.git
$ cd MrHandler
$ chmod +x MrHandler.py
$ python3 MrHandler.py