FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayTools

SSH-Private-Key-Looting-Wordlists - A Collection Of Wordlists To Aid In Locating Or Brute-Forcing SSH Private Key File Names

By: Zion3R


SSH Private Key Looting Wordlists. A Collection Of Wordlists To Aid In Locating Or Brute-Forcing SSH Private Key File Names.


LFI for Lateral Movement? Gain SSH Access?
?file=../../../../../../../../home/user/.ssh/id_rsa
?file=../../../../../../../../home/user/.ssh/id_rsa-cert

SSH Private Key Looting Wordlists πŸ”’πŸ—οΈ

This repository contains a collection of wordlists to aid in locating or brute-forcing SSH private key file names. These wordlists can be useful for penetration testers, security researchers, and anyone else interested in assessing the security of SSH configurations.


Wordlist Files πŸ“
  • ssh-priv-key-loot-common.txt: Default and common naming conventions for SSH private key files.
  • ssh-priv-key-loot-medium.txt: Probable file names without backup file extensions.
  • ssh-priv-key-loot-extended.txt: Probable file names with backup file extensions.
  • ssh-priv-key-loot-*_w_gui.txt: Includes file names simulating Ctrl+C and Ctrl+V on servers with a GUI.

Usage πŸš€

These wordlists can be used with tools such as Burp Intruder, Hydra, custom python scripts, or any other bruteforcing tool that supports custom wordlists. They can help expand the scope of your brute-forcing or enumeration efforts when targeting SSH private key files.


Acknowledgements πŸ™

This wordlist repository was inspired by John Hammond in his vlog "Don't Forget This One Hacking Trick."


Disclaimer ⚠️

Please use these wordlists responsibly and only on systems you are authorized to test. Unauthorized use is illegal.



Airgorah - A WiFi Auditing Software That Can Perform Deauth Attacks And Passwords Cracking

By: Zion3R


Airgorah is a WiFi auditing software that can discover the clients connected to an access point, perform deauthentication attacks against specific clients or all the clients connected to it, capture WPA handshakes, and crack the password of the access point.

It is written in Rust and uses GTK4 for the graphical part. The software is mainly based on aircrack-ng tools suite.

⭐ Don't forget to put a star if you like the project!

Legal

Airgorah is designed to be used in testing and discovering flaws in networks you are owner of. Performing attacks on WiFi networks you are not owner of is illegal in almost all countries. I am not responsible for whatever damage you may cause by using this software.

Requirements

This software only works on linux and requires root privileges to run.

You will also need a wireless network card that supports monitor mode and packet injection.

Installation

The installation instructions are available here.

Usage

The documentation about the usage of the application is available here.

License

This project is released under MIT license.

Contributing

If you have any question about the usage of the application, do not hesitate to open a discussion

If you want to report a bug or provide a feature, do not hesitate to open an issue or submit a pull request



Pmkidcracker - A Tool To Crack WPA2 Passphrase With PMKID Value Without Clients Or De-Authentication

By: Zion3R


This program is a tool written in Python to recover the pre-shared key of a WPA2 WiFi network without any de-authentication or requiring any clients to be on the network. It targets the weakness of certain access points advertising the PMKID value in EAPOL message 1.


Program Usage

python pmkidcracker.py -s <SSID> -ap <APMAC> -c <CLIENTMAC> -p <PMKID> -w <WORDLIST> -t <THREADS(Optional)>

NOTE: apmac, clientmac, pmkid must be a hexstring, e.g b8621f50edd9

How PMKID is Calculated

The two main formulas to obtain a PMKID are as follows:

  1. Pairwise Master Key (PMK) Calculation: passphrase + salt(ssid) => PBKDF2(HMAC-SHA1) of 4096 iterations
  2. PMKID Calculation: HMAC-SHA1[pmk + ("PMK Name" + bssid + clientmac)]

This is just for understanding, both are already implemented in find_pw_chunk and calculate_pmkid.

Obtaining the PMKID

Below are the steps to obtain the PMKID manually by inspecting the packets in WireShark.

*You may use Hcxtools or Bettercap to quickly obtain the PMKID without the below steps. The manual way is for understanding.

To obtain the PMKID manually from wireshark, put your wireless antenna in monitor mode, start capturing all packets with airodump-ng or similar tools. Then connect to the AP using an invalid password to capture the EAPOL 1 handshake message. Follow the next 3 steps to obtain the fields needed for the arguments.

Open the pcap in WireShark:

  • Filter with wlan_rsna_eapol.keydes.msgnr == 1 in WireShark to display only EAPOL message 1 packets.
  • In EAPOL 1 pkt, Expand IEEE 802.11 QoS Data Field to obtain AP MAC, Client MAC
  • In EAPOL 1 pkt, Expand 802.1 Authentication > WPA Key Data > Tag: Vendor Specific > PMKID is below

If access point is vulnerable, you should see the PMKID value like the below screenshot:

Demo Run

Disclaimer

This tool is for educational and testing purposes only. Do not use it to exploit the vulnerability on any network that you do not own or have permission to test. The authors of this script are not responsible for any misuse or damage caused by its use.



PassBreaker - Command-line Password Cracking Tool Developed In Python

By: Zion3R


PassBreaker is a command-line password cracking tool developed in Python. It allows you to perform various password cracking techniques such as wordlist-based attacks and brute force attacks.Β 

Features

  • Wordlist-based password cracking
  • Brute force password cracking
  • Support for multiple hash algorithms
  • Optional salt value
  • Parallel processing option for faster cracking
  • Password complexity evaluation
  • Customizable minimum and maximum password length
  • Customizable character set for brute force attacks

Installation

  1. Clone the repository:

    git clone https://github.com/HalilDeniz/PassBreaker.git
  2. Install the required dependencies:

    pip install -r requirements.txt

Usage

python passbreaker.py <password_hash> <wordlist_file> [--algorithm]

Replace <password_hash> with the target password hash and <wordlist_file> with the path to the wordlist file containing potential passwords.

Options

  • --algorithm <algorithm>: Specify the hash algorithm to use (e.g., md5, sha256, sha512).
  • -s, --salt <salt>: Specify a salt value to use.
  • -p, --parallel: Enable parallel processing for faster cracking.
  • -c, --complexity: Evaluate password complexity before cracking.
  • -b, --brute-force: Perform a brute force attack.
  • --min-length <min_length>: Set the minimum password length for brute force attacks.
  • --max-length <max_length>: Set the maximum password length for brute force attacks.
  • --character-set <character_set>: Set the character set to use for brute force attacks.

Elbette! İşte İngilizce olarak yazılmış başlık ve küçük bir bilgi ile daha fazla kullanım ârneği:

Usage Examples

Wordlist-based Password Cracking

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5

This command attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the MD5 algorithm and a wordlist from the "passwords.txt" file.

Brute Force Attack

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 --brute-force --min-length 6 --max-length 8 --character-set abc123

This command performs a brute force attack to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" by trying all possible combinations of passwords with a length between 6 and 8 characters, using the character set "abc123".

Password Complexity Evaluation

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha256 --complexity

This command evaluates the complexity of passwords in the "passwords.txt" file and attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the SHA-256 algorithm. It only tries passwords that meet the complexity requirements.

Using Salt Value

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5 --salt mysalt123

This command uses a specific salt value ("mysalt123") for the password cracking process. Salt is used to enhance the security of passwords.

Parallel Processing

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha512 --parallel

This command performs password cracking with parallel processing for faster cracking. It utilizes multiple processing cores, but it may consume more system resources.

These examples demonstrate different features and use cases of the "PassBreaker" password cracking tool. Users can customize the parameters based on their needs and goals.

Disclaimer

This tool is intended for educational and ethical purposes only. Misuse of this tool for any malicious activities is strictly prohibited. The developers assume no liability and are not responsible for any misuse or damage caused by this tool.

Contributing

Contributions are welcome! To contribute to PassBreaker, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

If you have any questions, comments, or suggestions about PassBreaker, please feel free to contact me:

License

PassBreaker is released under the MIT License. See LICENSE for more information.



Graphcat - Generate Graphs And Charts Based On Password Cracking Result

By: Zion3R


Simple script to generate graphs and charts on hashcat (and john) potfile and ntds


Install

git clone https://github.com/Orange-Cyberdefense/graphcat
cd graphcat
pip install .

Helper

$ graphcat.py -h
usage: graphcat.py [-h] -potfile hashcat.potfile -hashfile hashfile.txt [-john] [-format FORMAT] [-export-charts] [-output-dir OUTPUT_DIR] [-debug]

Password Cracking Graph Reporting

options:
-h, --help show this help message and exit
-potfile hashcat.potfile
Hashcat Potfile
-hashfile hashfile.txt
File containing hashes (one per line)
-john John potfile
-format FORMAT hashfile format (default 3): 1 for hash; 2 for username:hash; 3 for secretsdump (username:uid:lm:ntlm)
-export-charts Output also charts in png
-output-dir OUTPUT_DIR
Output directory
-debug Turn DEB UG output ON

Usage

Graphcat just need a potfile with -potfile (default is hashcat, but you can use -john to submit a john potfile) and a hashfile with -hashfile. The hashfile should be in a specific format from the 3 availables formats with -format flag. Default is Secretsdump.

The tool will generate a report with multiple password cracking charts. You can get charts in png with the -export-charts flag.

$ graphcat.py -hashfile entreprise.local.ntds -potfile hashcat.pot
[-] Parsing potfile
[-] 164 entries in potfile
[-] Parsing hashfile
[-] 1600 entries in hashfile
[-] Generating graphs...
[-] Generating report...
[-] Report available at graphcat_1672941324.pdf

Formats

1: Only Hash

aad3b435b51404eeaad3b435b51404ee
aad3b435b51404eeaad3b435b51404ee
aad3b435b51404eeaad3b435b51404ee

2: Username + Hash

test1:aad3b435b51404eeaad3b435b51404ee
test2:aad3b435b51404eeaad3b435b51404ee
test3:aad3b435b51404eeaad3b435b51404ee

3: Secretsdump

waza.local\test1:4268:aad3b435b51404eeaad3b435b51404ee:aad3b435b51404eeaad3b435b51404ee:::
waza.local\test2:4269:aad3b435b51404eeaad3b435b51404ee:aad3b435b51404eeaad3b435b51404ee:::
waza.local\test3:4270:aad3b435b51404eeaad3b435b51404ee:aad3b435b51404eeaad3b435b51404ee:::

If a hash occurs more than once in the hash file, it will be counted that many times.

Moreover, if you submit secretsdump with password history (-history in secretsdump command), it will analyze similarity in password history

Charts example



PassMute - PassMute - A Multi Featured Password Transmutation/Mutator Tool

By: Zion3R


This is a command-line tool written in Python that applies one or more transmutation rules to a given password or a list of passwords read from one or more files. The tool can be used to generate transformed passwords for security testing or research purposes. Also, while you doing pentesting it will be very useful tool for you to brute force the passwords!!


How Passmute can also help to secure our passwords more?

PassMute can help to generate strong and complex passwords by applying different transformation rules to the input password. However, password security also depends on other factors such as the length of the password, randomness, and avoiding common phrases or patterns.

The transformation rules include:

reverse: reverses the password string

uppercase: converts the password to uppercase letters

lowercase: converts the password to lowercase letters

swapcase: swaps the case of each letter in the password

capitalize: capitalizes the first letter of the password

leet: replaces some letters in the password with their leet equivalents

strip: removes all whitespace characters from the password

The tool can also write the transformed passwords to an output file and run the transformation process in parallel using multiple threads.

Installation

git clone https://HITH-Hackerinthehouse/PassMute.git
cd PassMute
chmod +x PassMute.py

Usage To use the tool, you need to have Python 3 installed on your system. Then, you can run the tool from the command line using the following options:

python PassMute.py [-h] [-f FILE [FILE ...]] -r RULES [RULES ...] [-v] [-p PASSWORD] [-o OUTPUT] [-t THREAD_TIMEOUT] [--max-threads MAX_THREADS]

Here's a brief explanation of the available options:

-h or --help: shows the help message and exits

-f (FILE) [FILE ...], --file (FILE) [FILE ...]: one or more files to read passwords from

-r (RULES) [RULES ...] or --rules (RULES) [RULES ...]: one or more transformation rules to apply

-v or --verbose: prints verbose output for each password transformation

-p (PASSWORD) or --password (PASSWORD): transforms a single password

-o (OUTPUT) or --output (OUTPUT): output file to save the transformed passwords

-t (THREAD_TIMEOUT) or --thread-timeout (THREAD_TIMEOUT): timeout for threads to complete (in seconds)

--max-threads (MAX_THREADS): maximum number of threads to run simultaneously (default: 10)

NOTE: If you are getting any error regarding argparse module then simply install the module by following command: pip install argparse

Examples

Here are some example commands those read passwords from a file, applies two transformation rules, and saves the transformed passwords to an output file:

Single Password transmutation: python PassMute.py -p HITHHack3r -r leet reverse swapcase -v -t 50

Multiple Password transmutation: python PassMute.py -f testwordlists.txt -r leet reverse -v -t 100 -o testupdatelists.txt

Here Verbose and Thread are recommended to use in case you're transmutating big files and also it depends upon your microprocessor as well, it's not required every time to use threads and verbose mode.

Legal Disclaimer:

You might be super excited to use this tool, we too. But here we need to confirm! Hackerinthehouse, any contributor of this project and Github won't be responsible for any actions made by you. This tool is made for security research and educational purposes only. It is the end user's responsibility to obey all applicable local, state and federal laws.



Wifi_Db - Script To Parse Aircrack-ng Captures To A SQLite Database


Script to parse Aircrack-ng captures into a SQLite database and extract useful information like handshakes (in 22000 hashcat format), MGT identities, interesting relations between APs, clients and it's Probes, WPS information and a global view of all the APs seen.

           _   __  _             _  _     
__ __(_) / _|(_) __| || |__
\ \ /\ / /| || |_ | | / _` || '_ \
\ V V / | || _|| | | (_| || |_) |
\_/\_/ |_||_| |_| _____ \__,_||_.__/
|_____|
by r4ulcl

Features

  • Displays if a network is cloaked (hidden) even if you have the ESSID.
  • Shows a detailed table of connected clients and their respective APs.
  • Identifies client probes connected to APs, providing insight into potential security risks usin Rogue APs.
  • Extracts handshakes for use with hashcat, facilitating password cracking.
  • Displays identity information from enterprise networks, including the EAP method used for authentication.
  • Generates a summary of each AP group by ESSID and encryption, giving an overview of the security status of nearby networks.
  • Provides a WPS info table for each AP, detailing information about the Wi-Fi Protected Setup configuration of the network.
  • Logs all instances when a client or AP has been seen with the GPS data and timestamp, enabling location-based analysis.
  • Upload files with capture folder or file. This option supports the use of wildcards (*) to select multiple files or folders.
  • Docker version in Docker Hub to avoid dependencies.
  • Obfuscated mode for demonstrations and conferences.
  • Possibility to add static GPS data.

Install

From DockerHub (RECOMMENDED)

docker pull r4ulcl/wifi_db

Manual installation

Debian based systems (Ubuntu, Kali, Parrot, etc.)

Dependencies:

  • python3
  • python3-pip
  • tshark
  • hcxtools
sudo apt install tshark
sudo apt install python3 python3-pip

git clone https://github.com/ZerBea/hcxtools.git
cd hcxtools
make
sudo make install
cd ..

Installation

git clone https://github.com/r4ulcl/wifi_db
cd wifi_db
pip3 install -r requirements.txt

Arch

Dependencies:

  • python3
  • python3-pip
  • tshark
  • hcxtools
sudo pacman -S wireshark-qt
sudo pacman -S python-pip python

git clone https://github.com/ZerBea/hcxtools.git
cd hcxtools
make
sudo make install
cd ..

Installation

git clone https://github.com/r4ulcl/wifi_db
cd wifi_db
pip3 install -r requirements.txt

Usage

Scan with airodump-ng

Run airodump-ng saving the output with -w:

sudo airodump-ng wlan0mon -w scan --manufacturer --wps --gpsd

Create the SQLite database using Docker

#Folder with captures
CAPTURESFOLDER=/home/user/wifi

# Output database
touch db.SQLITE

docker run -t -v $PWD/db.SQLITE:/db.SQLITE -v $CAPTURESFOLDER:/captures/ r4ulcl/wifi_db
  • -v $PWD/db.SQLITE:/db.SQLITE: To save de output in current folder db.SQLITE file
  • -v $CAPTURESFOLDER:/captures/: To share the folder with the captures with the docker

Create the SQLite database using manual installation

Once the capture is created, we can create the database by importing the capture. To do this, put the name of the capture without format.

python3 wifi_db.py scan-01

In the event that we have multiple captures we can load the folder in which they are directly. And with -d we can rename the output database.

python3 wifi_db.py -d database.sqlite scan-folder

Open database

The database can be open with:

Below is an example of a ProbeClientsConnected table.

Arguments

usage: wifi_db.py [-h] [-v] [--debug] [-o] [-t LAT] [-n LON] [--source [{aircrack-ng,kismet,wigle}]] [-d DATABASE] capture [capture ...]

positional arguments:
capture capture folder or file with extensions .csv, .kismet.csv, .kismet.netxml, or .log.csv. If no extension is provided, all types will
be added. This option supports the use of wildcards (*) to select multiple files or folders.

options:
-h, --help show this help message and exit
-v, --verbose increase output verbosity
--debug increase output verbosity to debug
-o, --obfuscated Obfuscate MAC and BSSID with AA:BB:CC:XX:XX:XX-defghi (WARNING: replace all database)
-t LAT, --lat LAT insert a fake lat in the new elements
-n LON, --lon LON insert a fake lon i n the new elements
--source [{aircrack-ng,kismet,wigle}]
source from capture data (default: aircrack-ng)
-d DATABASE, --database DATABASE
output database, if exist append to the given database (default name: db.SQLITE)

Kismet

TODO

Wigle

TODO

Database

wifi_db contains several tables to store information related to wireless network traffic captured by airodump-ng. The tables are as follows:

  • AP: This table stores information about the access points (APs) detected during the captures, including their MAC address (bssid), network name (ssid), whether the network is cloaked (cloaked), manufacturer (manuf), channel (channel), frequency (frequency), carrier (carrier), encryption type (encryption), and total packets received from this AP (packetsTotal). The table uses the MAC address as a primary key.

  • Client: This table stores information about the wireless clients detected during the captures, including their MAC address (mac), network name (ssid), manufacturer (manuf), device type (type), and total packets received from this client (packetsTotal). The table uses the MAC address as a primary key.

  • SeenClient: This table stores information about the clients seen during the captures, including their MAC address (mac), time of detection (time), tool used to capture the data (tool), signal strength (signal_rssi), latitude (lat), longitude (lon), altitude (alt). The table uses the combination of MAC address and detection time as a primary key, and has a foreign key relationship with the Client table.

  • Connected: This table stores information about the wireless clients that are connected to an access point, including the MAC address of the access point (bssid) and the client (mac). The table uses a combination of access point and client MAC addresses as a primary key, and has foreign key relationships with both the AP and Client tables.

  • WPS: This table stores information about access points that have Wi-Fi Protected Setup (WPS) enabled, including their MAC address (bssid), network name (wlan_ssid), WPS version (wps_version), device name (wps_device_name), model name (wps_model_name), model number (wps_model_number), configuration methods (wps_config_methods), and keypad configuration methods (wps_config_methods_keypad). The table uses the MAC address as a primary key, and has a foreign key relationship with the AP table.

  • SeenAp: This table stores information about the access points seen during the captures, including their MAC address (bssid), time of detection (time), tool used to capture the data (tool), signal strength (signal_rssi), latitude (lat), longitude (lon), altitude (alt), and timestamp (bsstimestamp). The table uses the combination of access point MAC address and detection time as a primary key, and has a foreign key relationship with the AP table.

  • Probe: This table stores information about the probes sent by clients, including the client MAC address (mac), network name (ssid), and time of probe (time). The table uses a combination of client MAC address and network name as a primary key, and has a foreign key relationship with the Client table.

  • Handshake: This table stores information about the handshakes captured during the captures, including the MAC address of the access point (bssid), the client (mac), the file name (file), and the hashcat format (hashcat). The table uses a combination of access point and client MAC addresses, and file name as a primary key, and has foreign key relationships with both the AP and Client tables.

  • Identity: This table represents EAP (Extensible Authentication Protocol) identities and methods used in wireless authentication. The bssid and mac fields are foreign keys that reference the AP and Client tables, respectively. Other fields include the identity and method used in the authentication process.

Views

  • ProbeClients: This view selects the MAC address of the probe, the manufacturer and type of the client device, the total number of packets transmitted by the client, and the SSID of the probe. It joins the Probe and Client tables on the MAC address and orders the results by SSID.

  • ConnectedAP: This view selects the BSSID of the connected access point, the SSID of the access point, the MAC address of the connected client device, and the manufacturer of the client device. It joins the Connected, AP, and Client tables on the BSSID and MAC address, respectively, and orders the results by BSSID.

  • ProbeClientsConnected: This view selects the BSSID and SSID of the connected access point, the MAC address of the probe, the manufacturer and type of the client device, the total number of packets transmitted by the client, and the SSID of the probe. It joins the Probe, Client, and ConnectedAP tables on the MAC address of the probe, and filters the results to exclude probes that are connected to the same SSID that they are probing. The results are ordered by the SSID of the probe.

  • HandshakeAP: This view selects the BSSID of the access point, the SSID of the access point, the MAC address of the client device that performed the handshake, the manufacturer of the client device, the file containing the handshake, and the hashcat output. It joins the Handshake, AP, and Client tables on the BSSID and MAC address, respectively, and orders the results by BSSID.

  • HandshakeAPUnique: This view selects the BSSID of the access point, the SSID of the access point, the MAC address of the client device that performed the handshake, the manufacturer of the client device, the file containing the handshake, and the hashcat output. It joins the Handshake, AP, and Client tables on the BSSID and MAC address, respectively, and filters the results to exclude handshakes that were not cracked by hashcat. The results are grouped by SSID and ordered by BSSID.

  • IdentityAP: This view selects the BSSID of the access point, the SSID of the access point, the MAC address of the client device that performed the identity request, the manufacturer of the client device, the identity string, and the method used for the identity request. It joins the Identity, AP, and Client tables on the BSSID and MAC address, respectively, and orders the results by BSSID.

  • SummaryAP: This view selects the SSID, the count of access points broadcasting the SSID, the encryption type, the manufacturer of the access point, and whether the SSID is cloaked. It groups the results by SSID and orders them by the count of access points in descending order.

TODO

  • Aircrack-ng

  • All in 1 file (and separately)

  • Kismet

  • Wigle

  • install

  • parse all files in folder -f --folder

  • Fix Extended errors, tildes, etc (fixed in aircrack-ng 1.6)

  • Support bash multi files: "capture*-1*"

  • Script to delete client or AP from DB (mac). - (Whitelist)

  • Whitelist to don't add mac to DB (file whitelist.txt, add macs, create DB)

  • Overwrite if there is new info (old ESSID='', New ESSID='WIFI')

  • Table Handhsakes and PMKID

  • Hashcat hash format 22000

  • Table files, if file exists skip (full path)

  • Get HTTP POST passwords

  • DNS querys


This program is a continuation of a part of: https://github.com/T1GR3S/airo-heat

Author

  • RaΓΊl Calvo Laorden (@r4ulcl)

License

GNU General Public License v3.0



❌