FreshRSS

πŸ”’
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

PassBreaker - Command-line Password Cracking Tool Developed In Python

By: Zion3R


PassBreaker is a command-line password cracking tool developed in Python. It allows you to perform various password cracking techniques such as wordlist-based attacks and brute force attacks.Β 

Features

  • Wordlist-based password cracking
  • Brute force password cracking
  • Support for multiple hash algorithms
  • Optional salt value
  • Parallel processing option for faster cracking
  • Password complexity evaluation
  • Customizable minimum and maximum password length
  • Customizable character set for brute force attacks

Installation

  1. Clone the repository:

    git clone https://github.com/HalilDeniz/PassBreaker.git
  2. Install the required dependencies:

    pip install -r requirements.txt

Usage

python passbreaker.py <password_hash> <wordlist_file> [--algorithm]

Replace <password_hash> with the target password hash and <wordlist_file> with the path to the wordlist file containing potential passwords.

Options

  • --algorithm <algorithm>: Specify the hash algorithm to use (e.g., md5, sha256, sha512).
  • -s, --salt <salt>: Specify a salt value to use.
  • -p, --parallel: Enable parallel processing for faster cracking.
  • -c, --complexity: Evaluate password complexity before cracking.
  • -b, --brute-force: Perform a brute force attack.
  • --min-length <min_length>: Set the minimum password length for brute force attacks.
  • --max-length <max_length>: Set the maximum password length for brute force attacks.
  • --character-set <character_set>: Set the character set to use for brute force attacks.

Elbette! İşte İngilizce olarak yazılmış başlık ve küçük bir bilgi ile daha fazla kullanım ârneği:

Usage Examples

Wordlist-based Password Cracking

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5

This command attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the MD5 algorithm and a wordlist from the "passwords.txt" file.

Brute Force Attack

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 --brute-force --min-length 6 --max-length 8 --character-set abc123

This command performs a brute force attack to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" by trying all possible combinations of passwords with a length between 6 and 8 characters, using the character set "abc123".

Password Complexity Evaluation

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha256 --complexity

This command evaluates the complexity of passwords in the "passwords.txt" file and attempts to crack the password with the hash value "5f4dcc3b5aa765d61d8327deb882cf99" using the SHA-256 algorithm. It only tries passwords that meet the complexity requirements.

Using Salt Value

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm md5 --salt mysalt123

This command uses a specific salt value ("mysalt123") for the password cracking process. Salt is used to enhance the security of passwords.

Parallel Processing

python passbreaker.py 5f4dcc3b5aa765d61d8327deb882cf99 passwords.txt --algorithm sha512 --parallel

This command performs password cracking with parallel processing for faster cracking. It utilizes multiple processing cores, but it may consume more system resources.

These examples demonstrate different features and use cases of the "PassBreaker" password cracking tool. Users can customize the parameters based on their needs and goals.

Disclaimer

This tool is intended for educational and ethical purposes only. Misuse of this tool for any malicious activities is strictly prohibited. The developers assume no liability and are not responsible for any misuse or damage caused by this tool.

Contributing

Contributions are welcome! To contribute to PassBreaker, follow these steps:

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and commit them.
  4. Push your changes to your forked repository.
  5. Open a pull request in the main repository.

Contact

If you have any questions, comments, or suggestions about PassBreaker, please feel free to contact me:

License

PassBreaker is released under the MIT License. See LICENSE for more information.



PassMute - PassMute - A Multi Featured Password Transmutation/Mutator Tool

By: Zion3R


This is a command-line tool written in Python that applies one or more transmutation rules to a given password or a list of passwords read from one or more files. The tool can be used to generate transformed passwords for security testing or research purposes. Also, while you doing pentesting it will be very useful tool for you to brute force the passwords!!


How Passmute can also help to secure our passwords more?

PassMute can help to generate strong and complex passwords by applying different transformation rules to the input password. However, password security also depends on other factors such as the length of the password, randomness, and avoiding common phrases or patterns.

The transformation rules include:

reverse: reverses the password string

uppercase: converts the password to uppercase letters

lowercase: converts the password to lowercase letters

swapcase: swaps the case of each letter in the password

capitalize: capitalizes the first letter of the password

leet: replaces some letters in the password with their leet equivalents

strip: removes all whitespace characters from the password

The tool can also write the transformed passwords to an output file and run the transformation process in parallel using multiple threads.

Installation

git clone https://HITH-Hackerinthehouse/PassMute.git
cd PassMute
chmod +x PassMute.py

Usage To use the tool, you need to have Python 3 installed on your system. Then, you can run the tool from the command line using the following options:

python PassMute.py [-h] [-f FILE [FILE ...]] -r RULES [RULES ...] [-v] [-p PASSWORD] [-o OUTPUT] [-t THREAD_TIMEOUT] [--max-threads MAX_THREADS]

Here's a brief explanation of the available options:

-h or --help: shows the help message and exits

-f (FILE) [FILE ...], --file (FILE) [FILE ...]: one or more files to read passwords from

-r (RULES) [RULES ...] or --rules (RULES) [RULES ...]: one or more transformation rules to apply

-v or --verbose: prints verbose output for each password transformation

-p (PASSWORD) or --password (PASSWORD): transforms a single password

-o (OUTPUT) or --output (OUTPUT): output file to save the transformed passwords

-t (THREAD_TIMEOUT) or --thread-timeout (THREAD_TIMEOUT): timeout for threads to complete (in seconds)

--max-threads (MAX_THREADS): maximum number of threads to run simultaneously (default: 10)

NOTE: If you are getting any error regarding argparse module then simply install the module by following command: pip install argparse

Examples

Here are some example commands those read passwords from a file, applies two transformation rules, and saves the transformed passwords to an output file:

Single Password transmutation: python PassMute.py -p HITHHack3r -r leet reverse swapcase -v -t 50

Multiple Password transmutation: python PassMute.py -f testwordlists.txt -r leet reverse -v -t 100 -o testupdatelists.txt

Here Verbose and Thread are recommended to use in case you're transmutating big files and also it depends upon your microprocessor as well, it's not required every time to use threads and verbose mode.

Legal Disclaimer:

You might be super excited to use this tool, we too. But here we need to confirm! Hackerinthehouse, any contributor of this project and Github won't be responsible for any actions made by you. This tool is made for security research and educational purposes only. It is the end user's responsibility to obey all applicable local, state and federal laws.



Klyda - Highly Configurable Script For Dictionary/Spray Attacks Against Online Web Applications


The Klyda project has been created to aid in quick credential based attacks against online web applications.
Klyda supports the use from simple password sprays, to large multithreaded dictionary attacks.

Klyda is a new project, and I am looking for any contributions. Any help is very appreciated.

Klyda offers simple, easy to remember usage; however, still offers configurability for your needs:

  • Mulithreaded tasks
  • Combine wordlists for larger scale attacks
  • Blacklisting data to narrow down results
  • Limit thread speed for sneaky purposes

Installation & Usage

1) Clone the Git repo to your machine, git clone https://github.com/Xeonrx/Klyda
2) Cd into the Klyda directory, cd Klyda
3) Install the neccessary modules via Pip, pip install requests beautifulsoup4 colorama numpy
4) Display the Klyda help prompt for usage, python3 klyda.py -h

Klyda has been mainly designed for Linux, but should work on any machine capable of running Python.

What Klyda needs to work are only four simple dependencies: URL to attack, username(s), password(s), and formdata.

The URL

You can parse the URL via the --url tag. It should look something like this, --url http://127.0.0.1
Remember to never launch an attack on a webpage, that you don't have proper permission to do so.

Usernames

Usernames are the main target to these dictionary attacks. It could be a whole range of usernames, a few in specific, or perhaps just one. That's all your decision when using the script. You can specify usernames in a few ways...

1) Specify them manually, -u Admin User123 Guest
2) Give a file to use, or a few to combine, -U users.txt extra.txt
3) Give both a file & manual entry, -U users.txt -u Johnson924

Passwords

Passwords are the hard part to these attacks. You don't know them, hence why dictionary & brute force attacks exists. Like the usernames, you can give from just one password, up to however many you want. You can specify passwords in a few ways...

1) Specify them manually, -p password 1234 letmein
2) Give a file to use, or a few to combine, -P passwords.txt extra.txt
3) Give both a file & manual entry, -P passwords.txt -p redklyda24

FormData

FormData is how you form the request, so the target website can take it in, and process the given information. Usually you would need to specify a: username value, a password value, and sometimes an extra value. You can see the FormData your target uses by reviewing the network tab, of your browsers inspect element. For Klyda, you use the -d tag.

You need to use placeholders to Klyda knows where to inject in the username & password, when fowarding out its requests. It may look something like this... -d username:xuser password:xpass Login:Login

xuser is the placeholder to inject the usernames, & xpass is the placeholder to inject the passwords. Make sure you know these, or Klyda won't be able to work.

Format the FormData as (key):(value)

Blacklists

In order to Klyda to know if it hit a successful strike or not, you need to give it data to dig through. Klyda takes use of given blacklists from failed login attempts, so it can tell the difference between a failed or complete request. You can blacklist three different types of data...

1) Strings, --bstr "Login failed"
2) Status Codes, --bcde 404
3) Content Length, --blen 11

You can specify as much data for each blacklist as needed. If any of the given data is not found from the response, Klyda gives it a "strike", saying it was a successful login attempt. Otherwise if data in the blacklists is found, Klyda marks it as an unsuccessful login attempt. Since you give the data for Klyda to evaluate, false positives are non-apparent.

If you don't give any data to blacklist, then every request will be marked as a strike from Klyda!

Rate limiting & Threads

By default, Klyda only uses a single thread to run; but, you can specify more, using the -t tag. This can be helpful for speeding up your work.

However, credential attacks can be very loud on a network; hence, are detected easily. A targeted account could simply just receieve a simple lock due to too many login attempts. This creates a DoS attack, but prevents you from gaining the users's credentials, which is the goal of Klyda.

So to make these attacks a little less loud, you can take use of the --rate tag. This allows you to limit your threads to a certain number of requests per minute.
It will be formatted like this, --rate (# of requests) (minutes)

For example, --rate 5 1 will only send out 5 requests for each minute. Remember, this is for each thread. If you had 2 threads, this would send 10 requests per minute.

Example

Test Klyda out on the Damn Vulnerable Web App (DVWA), or Mutillidae.

python3 klyda.py --url http://127.0.0.1/dvwa/login.php -u user guest admin -p 1234 password admin -d username:xuser password:xpass Login:Login --bstr "Login failed"

python3 klyda.py --url http://127.0.0.1/mutillidae/index.php?page=login.php -u root -P passwords.txt -d username:xuser password:xpass login-php-submit-button:Login --bstr "Authentication Error"

The Future

Like mentioned earlier, Klyda is still a work in progress. For the future, I plan on adding more functionality and reformating code for a cleaner look.

My top piority is to add proxy functionality, and am currently working on it.



❌