FreshRSS

🔒
❌ Secure Planet Training Courses Updated For 2019 - Click Here
There are new available articles, click to refresh the page.
☐ ☆ ✇ KitPloit - PenTest Tools!

Bytesrevealer - Online Reverse Enginerring Viewer

By: Unknown — April 21st 2025 at 12:30


Bytes Revealer is a powerful reverse engineering and binary analysis tool designed for security researchers, forensic analysts, and developers. With features like hex view, visual representation, string extraction, entropy calculation, and file signature detection, it helps users uncover hidden data inside files. Whether you are analyzing malware, debugging binaries, or investigating unknown file formats, Bytes Revealer makes it easy to explore, search, and extract valuable information from any binary file.

Bytes Revealer do NOT store any file or data. All analysis is performed in your browser.

Current Limitation: Files less than 50MB can perform all analysis, files bigger up to 1.5GB will only do Visual View and Hex View analysis.


Features

File Analysis

  • Chunked file processing for memory efficiency
  • Real-time progress tracking
  • File signature detection
  • Hash calculations (MD5, SHA-1, SHA-256)
  • Entropy and Bytes Frequency analysis

Multiple Views

File View

  • Basic file information and metadata
  • File signatures detection
  • Hash values
  • Entropy calculation
  • Statistical analysis

Visual View

  • Binary data visualization
  • ASCII or Bytes searching
  • Data distribution view
  • Highlighted pattern matching

Hex View

  • Traditional hex editor interface
  • Byte-level inspection
  • Highlighted pattern matching
  • ASCII representation
  • ASCII or Bytes searching

String Analysis

  • ASCII and UTF-8 string extraction
  • String length analysis
  • String type categorization
  • Advanced filtering and sorting
  • String pattern recognition
  • Export capabilities

Search Capabilities

  • Hex pattern search
  • ASCII/UTF-8 string search
  • Regular expression support
  • Highlighted search results

Technical Details

Built With

  • Vue.js 3
  • Tailwind CSS
  • Web Workers for performance
  • Modern JavaScript APIs

Performance Features

  • Chunked file processing
  • Web Worker implementation
  • Memory optimization
  • Cancelable operations
  • Progress tracking

Getting Started

Prerequisites

# Node.js 14+ is required
node -v

Docker Usage

docker-compose build --no-cache

docker-compose up -d

Now open your browser: http://localhost:8080/

To stop the docker container

docker-compose down

Installation

# Clone the repository
git clone https://github.com/vulnex/bytesrevealer

# Navigate to project directory
cd bytesrevealer

# Install dependencies
npm install

# Start development server
npm run dev

Building for Production

# Build the application
npm run build

# Preview production build
npm run preview

Usage

  1. File Upload
  2. Click "Choose File" or drag and drop a file
  3. Progress bar shows upload and analysis status

  4. Analysis Views

  5. Switch between views using the tab interface
  6. Each view provides different analysis perspectives
  7. Real-time updates as you navigate

  8. Search Functions

  9. Use the search bar for pattern matching
  10. Toggle between hex and string search modes
  11. Results are highlighted in the current view

  12. String Analysis

  13. View extracted strings with type and length
  14. Filter strings by type or content
  15. Sort by various criteria
  16. Export results in multiple formats

Performance Considerations

  • Large files are processed in chunks
  • Web Workers handle intensive operations
  • Memory usage is optimized
  • Operations can be canceled if needed

Browser Compatibility

  • Chrome 80+
  • Firefox 75+
  • Safari 13.1+
  • Edge 80+

Contributing

  1. Fork the project
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Security Considerations

  • All strings are properly escaped
  • Input validation is implemented
  • Memory limits are enforced
  • File size restrictions are in place

Future Enhancements

  • Additional file format support
  • More visualization options
  • Pattern recognition improvements
  • Advanced string analysis features
  • Export/import capabilities
  • Collaboration features


☐ ☆ ✇ KitPloit - PenTest Tools!

Lobo Guará - Cyber Threat Intelligence Platform

By: Unknown — April 9th 2025 at 12:30


Lobo Guará is a platform aimed at cybersecurity professionals, with various features focused on Cyber Threat Intelligence (CTI). It offers tools that make it easier to identify threats, monitor data leaks, analyze suspicious domains and URLs, and much more.


Features

1. SSL Certificate Search

Allows identifying domains and subdomains that may pose a threat to organizations. SSL certificates issued by trusted authorities are indexed in real-time, and users can search using keywords of 4 or more characters.

Note: The current database contains certificates issued from September 5, 2024.

2. SSL Certificate Discovery

Allows the insertion of keywords for monitoring. When a certificate is issued and the common name contains the keyword (minimum of 5 characters), it will be displayed to the user.

3. Tracking Link

Generates a link to capture device information from attackers. Useful when the security professional can contact the attacker in some way.

4. Domain Scan

Performs a scan on a domain, displaying whois information and subdomains associated with that domain.

5. Web Path Scan

Allows performing a scan on a URL to identify URIs (web paths) related to that URL.

6. URL Scan

Performs a scan on a URL, generating a screenshot and a mirror of the page. The result can be made public to assist in taking down malicious websites.

7. URL Monitoring

Monitors a URL with no active application until it returns an HTTP 200 code. At that moment, it automatically initiates a URL scan, providing evidence for actions against malicious sites.

8. Data Leak

  • Data Leak Alerts: Monitors and presents almost real-time data leaks posted in hacker forums and websites.
  • URL+User+Password: Allows searching by URL, username, or password, helping identify leaked data from clients or employees.

9. Threat Intelligence Feeds

Centralizes intelligence news from various channels, keeping users updated on the latest threats.

Installation

The application installation has been approved on Ubuntu 24.04 Server and Red Hat 9.4 distributions, the links for which are below:

Lobo Guará Implementation on Ubuntu 24.04

Lobo Guará Implementation on Red Hat 9.4

There is a Dockerfile and a docker-compose version of Lobo Guará too. Just clone the repo and do:

docker compose up

Then, go to your web browser at localhost:7405.

Dependencies

Before proceeding with the installation, ensure the following dependencies are installed:

  • PostgreSQL
  • Python 3.12
  • ChromeDriver and Google Chrome (version 129.0.6668.89)
  • FFUF (version 2.0.0)
  • Subfinder (version 2.6.6)

Installation Instructions

  1. Clone the repository:
git clone https://github.com/olivsec/loboguara.git
  1. Enter the project directory:
cd loboguara/
  1. Edit the configuration file:
nano server/app/config.py

Fill in the required parameters in the config.py file:

class Config:
SECRET_KEY = 'YOUR_SECRET_KEY_HERE'
SQLALCHEMY_DATABASE_URI = 'postgresql://guarauser:YOUR_PASSWORD_HERE@localhost/guaradb?sslmode=disable'
SQLALCHEMY_TRACK_MODIFICATIONS = False

MAIL_SERVER = 'smtp.example.com'
MAIL_PORT = 587
MAIL_USE_TLS = True
MAIL_USERNAME = 'no-reply@example.com'
MAIL_PASSWORD = 'YOUR_SMTP_PASSWORD_HERE'
MAIL_DEFAULT_SENDER = 'no-reply@example.com'

ALLOWED_DOMAINS = ['yourdomain1.my.id', 'yourdomain2.com', 'yourdomain3.net']

API_ACCESS_TOKEN = 'YOUR_LOBOGUARA_API_TOKEN_HERE'
API_URL = 'https://loboguara.olivsec.com.br/api'

CHROME_DRIVER_PATH = '/opt/loboguara/bin/chromedriver'
GOOGLE_CHROME_PATH = '/opt/loboguara/bin/google-chrome'
FFUF_PATH = '/opt/loboguara/bin/ffuf'
SUBFINDER_PATH = '/opt/loboguara/bin/subfinder'

LOG_LEVEL = 'ERROR'
LOG_FILE = '/opt/loboguara/logs/loboguara.log'
  1. Make the installation script executable and run it:
sudo chmod +x ./install.sh
sudo ./install.sh
  1. Start the service after installation:
sudo -u loboguara /opt/loboguara/start.sh

Access the URL below to register the Lobo Guará Super Admin

http://your_address:7405/admin

Online Platform

Access the Lobo Guará platform online: https://loboguara.olivsec.com.br/



☐ ☆ ✇ Krebs on Security

Local Networks Go Global When Domain Names Collide

By: BrianKrebs — August 23rd 2024 at 14:12

The proliferation of new top-level domains (TLDs) has exacerbated a well-known security weakness: Many organizations set up their internal Microsoft authentication systems years ago using domain names in TLDs that didn’t exist at the time. Meaning, they are continuously sending their Windows usernames and passwords to domain names they do not control and which are freely available for anyone to register. Here’s a look at one security researcher’s efforts to map and shrink the size of this insidious problem.

At issue is a well-known security and privacy threat called “namespace collision,” a situation where domain names intended to be used exclusively on an internal company network end up overlapping with domains that can resolve normally on the open Internet.

Windows computers on a private corporate network validate other things on that network using a Microsoft innovation called Active Directory, which is the umbrella term for a broad range of identity-related services in Windows environments. A core part of the way these things find each other involves a Windows feature called “DNS name devolution,” a kind of network shorthand that makes it easier to find other computers or servers without having to specify a full, legitimate domain name for those resources.

Consider the hypothetical private network internalnetwork.example.com: When an employee on this network wishes to access a shared drive called “drive1,” there’s no need to type “drive1.internalnetwork.example.com” into Windows Explorer; entering “\\drive1\” alone will suffice, and Windows takes care of the rest.

But problems can arise when an organization has built their Active Directory network on top of a domain they don’t own or control. While that may sound like a bonkers way to design a corporate authentication system, keep in mind that many organizations built their networks long before the introduction of hundreds of new top-level domains (TLDs), like .network, .inc, and .llc.

For example, a company in 2005 builds their Microsoft Active Directory service around the domain company.llc, perhaps reasoning that since .llc wasn’t even a routable TLD, the domain would simply fail to resolve if the organization’s Windows computers were ever used outside of its local network.

Alas, in 2018, the .llc TLD was born and began selling domains. From then on, anyone who registered company.llc would be able to passively intercept that organization’s Microsoft Windows credentials, or actively modify those connections in some way — such as redirecting them somewhere malicious.

Philippe Caturegli, founder of the security consultancy Seralys, is one of several researchers seeking to chart the size of the namespace collision problem. As a professional penetration tester, Caturegli has long exploited these collisions to attack specific targets that were paying to have their cyber defenses probed. But over the past year, Caturegli has been gradually mapping this vulnerability across the Internet by looking for clues that appear in self-signed security certificates (e.g. SSL/TLS certs).

Caturegli has been scanning the open Internet for self-signed certificates referencing domains in a variety of TLDs likely to appeal to businesses, including .ad, .associates, .center, .cloud, .consulting, .dev, .digital, .domains, .email, .global, .gmbh, .group, .holdings, .host, .inc, .institute, .international, .it, .llc, .ltd, .management, .ms, .name, .network, .security, .services, .site, .srl, .support, .systems, .tech, .university, .win and .zone, among others.

Seralys found certificates referencing more than 9,000 distinct domains across those TLDs. Their analysis determined many TLDs had far more exposed domains than others, and that about 20 percent of the domains they found ending .ad, .cloud and .group remain unregistered.

“The scale of the issue seems bigger than I initially anticipated,” Caturegli said in an interview with KrebsOnSecurity. “And while doing my research, I have also identified government entities (foreign and domestic), critical infrastructures, etc. that have such misconfigured assets.”

REAL-TIME CRIME

Some of the above-listed TLDs are not new and correspond to country-code TLDs, like .it for Italy, and .ad, the country-code TLD for the tiny nation of Andorra. Caturegli said many organizations no doubt viewed a domain ending in .ad as a convenient shorthand for an internal Active Directory setup, while being unaware or unworried that someone could actually register such a domain and intercept all of their Windows credentials and any unencrypted traffic.

When Caturegli discovered an encryption certificate being actively used for the domain memrtcc.ad, the domain was still available for registration. He then learned the .ad registry requires prospective customers to show a valid trademark for a domain before it can be registered.

Undeterred, Caturegli found a domain registrar that would sell him the domain for $160, and handle the trademark registration for another $500 (on subsequent .ad registrations, he located a company in Andorra that could process the trademark application for half that amount).

Caturegli said that immediately after setting up a DNS server for memrtcc.ad, he began receiving a flood of communications from hundreds of Microsoft Windows computers trying to authenticate to the domain. Each request contained a username and a hashed Windows password, and upon searching the usernames online Caturegli concluded they all belonged to police officers in Memphis, Tenn.

“It looks like all of the police cars there have a laptop in the cars, and they’re all attached to this memrtcc.ad domain that I now own,” Caturegli said, noting wryly that “memrtcc” stands for “Memphis Real-Time Crime Center.”

Caturegli said setting up an email server record for memrtcc.ad caused him to begin receiving automated messages from the police department’s IT help desk, including trouble tickets regarding the city’s Okta authentication system.

Mike Barlow, information security manager for the City of Memphis, confirmed the Memphis Police’s systems were sharing their Microsoft Windows credentials with the domain, and that the city was working with Caturegli to have the domain transferred to them.

“We are working with the Memphis Police Department to at least somewhat mitigate the issue in the meantime,” Barlow said.

Domain administrators have long been encouraged to use .local for internal domain names, because this TLD is reserved for use by local networks and cannot be routed over the open Internet. However, Caturegli said many organizations seem to have missed that memo and gotten things backwards — setting up their internal Active Directory structure around the perfectly routable domain local.ad.

Caturegli said he knows this because he “defensively” registered local.ad, which he said is currently used by multiple large organizations for Active Directory setups — including a European mobile phone provider, and the City of Newcastle in the United Kingdom.

ONE WPAD TO RULE THEM ALL

Caturegli said he has now defensively registered a number of domains ending in .ad, such as internal.ad and schema.ad. But perhaps the most dangerous domain in his stable is wpad.ad. WPAD stands for Web Proxy Auto-Discovery Protocol, which is an ancient, on-by-default feature built into every version of Microsoft Windows that was designed to make it simpler for Windows computers to automatically find and download any proxy settings required by the local network.

Trouble is, any organization that chose a .ad domain they don’t own for their Active Directory setup will have a whole bunch of Microsoft systems constantly trying to reach out to wpad.ad if those machines have proxy automated detection enabled.

Security researchers have been beating up on WPAD for more than two decades now, warning time and again how it can be abused for nefarious ends. At this year’s DEF CON security conference in Las Vegas, for example, a researcher showed what happened after they registered the domain wpad.dk: Immediately after switching on the domain, they received a flood of WPAD requests from Microsoft Windows systems in Denmark that had namespace collisions in their Active Directory environments.

Image: Defcon.org.

For his part, Caturegli set up a server on wpad.ad to resolve and record the Internet address of any Windows systems trying to reach Microsoft Sharepoint servers, and saw that over one week it received more than 140,000 hits from hosts around the world attempting to connect.

The fundamental problem with WPAD is the same with Active Directory: Both are technologies originally designed to be used in closed, static, trusted office environments, and neither was built with today’s mobile devices or workforce in mind.

Probably one big reason organizations with potential namespace collision problems don’t fix them is that rebuilding one’s Active Directory infrastructure around a new domain name can be incredibly disruptive, costly, and risky, while the potential threat is considered comparatively low.

But Caturegli said ransomware gangs and other cybercrime groups could siphon huge volumes of Microsoft Windows credentials from quite a few companies with just a small up-front investment.

“It’s an easy way to gain that initial access without even having to launch an actual attack,” he said. “You just wait for the misconfigured workstation to connect to you and send you their credentials.”

If we ever learn that cybercrime groups are using namespace collisions to launch ransomware attacks, nobody can say they weren’t warned. Mike O’Connor, an early domain name investor who registered a number of choice domains such as bar.com, place.com and television.com, warned loudly and often back in 2013 that then-pending plans to add more than 1,000 new TLDs would massively expand the number of namespace collisions.

Mr. O’Connor’s most famous domain is corp.com, because for several decades he watched in horror as hundreds of thousands of Microsoft PCs continuously blasted his domain with credentials from organizations that had set up their Active Directory environment around the domain corp.com.

It turned out that Microsoft had actually used corp.com as an example of how one might set up Active Directory in some editions of Windows NT. Worse, some of the traffic going to corp.com was coming from Microsoft’s internal networks, indicating some part of Microsoft’s own internal infrastructure was misconfigured. When O’Connor said he was ready to sell corp.com to the highest bidder in 2020, Microsoft agreed to buy the domain for an undisclosed amount.

“I kind of imagine this problem to be something like a town [that] knowingly built a water supply out of lead pipes, or vendors of those projects who knew but didn’t tell their customers,” O’Connor told KrebsOnSecurity. “This is not an inadvertent thing like Y2K where everybody was surprised by what happened. People knew and didn’t care.”

☐ ☆ ✇ KitPloit - PenTest Tools!

VED-eBPF - Kernel Exploit And Rootkit Detection Using eBPF

By: Zion3R — December 18th 2023 at 11:30


VED (Vault Exploit Defense)-eBPF leverages eBPF (extended Berkeley Packet Filter) to implement runtime kernel security monitoring and exploit detection for Linux systems.

Introduction

eBPF is an in-kernel virtual machine that allows code execution in the kernel without modifying the kernel source itself. eBPF programs can be attached to tracepoints, kprobes, and other kernel events to efficiently analyze execution and collect data.

VED-eBPF uses eBPF to trace security-sensitive kernel behaviors and detect anomalies that could indicate an exploit or rootkit. It provides two main detections:

  • wCFI (Control Flow Integrity) traces the kernel call stack to detect control flow hijacking attacks. It works by generating a bitmap of valid call sites and validating each return address matches a known callsite.

  • PSD (Privilege Escalation Detection) traces changes to credential structures in the kernel to detect unauthorized privilege escalations.


How it Works

VED-eBPF attaches eBPF programs to kernel functions to trace execution flows and extract security events. The eBPF programs submit these events via perf buffers to userspace for analysis.

wCFI

wCFI traces the call stack by attaching to functions specified on the command line. On each call, it dumps the stack, assigns a stack ID, and validates the return addresses against a precomputed bitmap of valid call sites generated from objdump and /proc/kallsyms.

If an invalid return address is detected, indicating a corrupted stack, it generates a wcfi_stack_event containing:

* Stack trace
* Stack ID
* Invalid return address

This security event is submitted via perf buffers to userspace.

The wCFI eBPF program also tracks changes to the stack pointer and kernel text region to keep validation up-to-date.

PSD

PSD traces credential structure modifications by attaching to functions like commit_creds and prepare_kernel_cred. On each call, it extracts information like:

* Current process credentials
* Hashes of credentials and user namespace
* Call stack

It compares credentials before and after the call to detect unauthorized changes. If an illegal privilege escalation is detected, it generates a psd_event containing the credential fields and submits it via perf buffers.

Prerequsites

VED-eBPF requires:

  • Linux kernel v5.17+ (tested on v5.17)
  • eBPF support enabled
  • BCC toolkit

Current Status

VED-eBPF is currently a proof-of-concept demonstrating the potential for eBPF-based kernel exploit and rootkit detection. Ongoing work includes:

  • Expanding attack coverage
  • Performance optimization
  • Additional kernel versions
  • Integration with security analytics

Conclusion

VED-eBPF shows the promise of eBPF for building efficient, low-overhead kernel security monitoring without kernel modification. By leveraging eBPF tracing and perf buffers, critical security events can be extracted in real-time and analyzed to identify emerging kernel threats for cloud native envionrment.



☐ ☆ ✇ The Hacker News

Reimagining Network Pentesting With Automation

By: The Hacker News — December 14th 2023 at 11:17
Network penetration testing plays a crucial role in protecting businesses in the ever-evolving world of cybersecurity. Yet, business leaders and IT pros have misconceptions about this process, which impacts their security posture and decision-making.  This blog acts as a quick guide on network penetration testing, explaining what it is, debunking common myths and reimagining its role in
☐ ☆ ✇ The Hacker News

Reimagining Network Pentesting With Automation

By: The Hacker News — December 14th 2023 at 11:17
Network penetration testing plays a crucial role in protecting businesses in the ever-evolving world of cybersecurity. Yet, business leaders and IT pros have misconceptions about this process, which impacts their security posture and decision-making.  This blog acts as a quick guide on network penetration testing, explaining what it is, debunking common myths and reimagining its role in
☐ ☆ ✇ KitPloit - PenTest Tools!

DCVC2 - A Golang Discord C2 Unlike Any Other

By: Zion3R — June 5th 2023 at 12:30


This multi operating system compatible tool was created to leverage Discord's voice channels for command and control operations. This tool operates entirely over the Real-Time Protocol (RTP) primarily leveraging DiscordGo and leaves no pesky traces behind in text channels. It is a command line based tool meaning all operations will occur strictly from the terminal on either Windows/Linux/OSX. Please use responsibly but have fun! ;)


Requirements:

  1. Updated (wrong link before) Read about DCVC2
  2. You need a Discord account.
  3. You need a Discord server.
  4. Increase voice chat speed to 96kbps in settings.
  5. You need 2 Discord bots. I found it easiest to give both bots admin perms over the discord server but you can fine tune them to only need voice permissions. The best guide to create bots is here.

Build:

git clone https://github.com/3NailsInfoSec/DCVC2.git
cd DCVC2
go mod download
go build server.go
go build agent.go

Usage:

When you execute the server and agent you should see both join the voice channel you specify:

Shell commands:

cmd> whoami

desktop-3kjj3kj\sm00v

I added 2 hardcoded additions besides basic shell usage:

cmd> screenshot
screenshotting..............................................

&

cmd> download
download file path>C:\Users\sm00v\Downloads\34954477.jpg
............................................................

Credits

Twitter: @sm00v

Github: @sm00v



❌